Properties

Label 92.3.f.a.21.4
Level $92$
Weight $3$
Character 92.21
Analytic conductor $2.507$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [92,3,Mod(5,92)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("92.5"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(92, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 92.f (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.50681843211\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(4\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 21.4
Character \(\chi\) \(=\) 92.21
Dual form 92.3.f.a.57.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.652910 + 4.54109i) q^{3} +(-1.15784 + 3.94325i) q^{5} +(-4.50708 - 3.90541i) q^{7} +(-11.5598 + 3.39426i) q^{9} +(-2.23489 - 3.47756i) q^{11} +(14.6306 + 16.8846i) q^{13} +(-18.6626 - 2.68328i) q^{15} +(9.68346 + 4.42229i) q^{17} +(20.2597 - 9.25228i) q^{19} +(14.7921 - 23.0169i) q^{21} +(-14.0368 + 18.2200i) q^{23} +(6.82268 + 4.38467i) q^{25} +(-5.80859 - 12.7190i) q^{27} +(2.96443 - 6.49120i) q^{29} +(5.77656 - 40.1769i) q^{31} +(14.3327 - 12.4194i) q^{33} +(20.6185 - 13.2507i) q^{35} +(-18.4913 - 62.9755i) q^{37} +(-67.1219 + 77.4628i) q^{39} +(43.3495 + 12.7286i) q^{41} +(-14.0003 + 2.01294i) q^{43} -49.5131i q^{45} -42.3125 q^{47} +(-1.91186 - 13.2973i) q^{49} +(-13.7596 + 46.8608i) q^{51} +(69.2461 + 60.0021i) q^{53} +(16.3005 - 4.78627i) q^{55} +(55.2432 + 85.9601i) q^{57} +(46.8794 + 54.1017i) q^{59} +(-74.4782 - 10.7083i) q^{61} +(65.3567 + 29.8474i) q^{63} +(-83.5201 + 38.1423i) q^{65} +(29.2979 - 45.5884i) q^{67} +(-91.9035 - 51.8461i) q^{69} +(-102.888 - 66.1223i) q^{71} +(26.3453 + 57.6881i) q^{73} +(-15.4566 + 33.8452i) q^{75} +(-3.50845 + 24.4018i) q^{77} +(26.5494 - 23.0052i) q^{79} +(-37.2514 + 23.9400i) q^{81} +(-34.8453 - 118.672i) q^{83} +(-28.6501 + 33.0640i) q^{85} +(31.4126 + 9.22358i) q^{87} +(-42.7385 + 6.14487i) q^{89} -133.238i q^{91} +186.218 q^{93} +(13.0266 + 90.6018i) q^{95} +(25.2240 - 85.9050i) q^{97} +(37.6385 + 32.6140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 2 q^{3} - 6 q^{9} - 2 q^{13} + 77 q^{15} + 55 q^{17} + 33 q^{19} + 33 q^{21} - 50 q^{23} - 54 q^{25} - 191 q^{27} + q^{29} - 53 q^{31} - 121 q^{33} - 156 q^{35} - 352 q^{37} - 306 q^{39} + 6 q^{41}+ \cdots + 1353 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/92\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(47\)
\(\chi(n)\) \(e\left(\frac{13}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.652910 + 4.54109i 0.217637 + 1.51370i 0.746727 + 0.665131i \(0.231624\pi\)
−0.529090 + 0.848566i \(0.677467\pi\)
\(4\) 0 0
\(5\) −1.15784 + 3.94325i −0.231569 + 0.788651i 0.758935 + 0.651166i \(0.225720\pi\)
−0.990504 + 0.137485i \(0.956098\pi\)
\(6\) 0 0
\(7\) −4.50708 3.90541i −0.643868 0.557915i 0.270540 0.962709i \(-0.412798\pi\)
−0.914408 + 0.404794i \(0.867343\pi\)
\(8\) 0 0
\(9\) −11.5598 + 3.39426i −1.28442 + 0.377140i
\(10\) 0 0
\(11\) −2.23489 3.47756i −0.203172 0.316142i 0.724684 0.689082i \(-0.241986\pi\)
−0.927855 + 0.372940i \(0.878350\pi\)
\(12\) 0 0
\(13\) 14.6306 + 16.8846i 1.12543 + 1.29881i 0.949274 + 0.314451i \(0.101820\pi\)
0.176154 + 0.984363i \(0.443634\pi\)
\(14\) 0 0
\(15\) −18.6626 2.68328i −1.24418 0.178886i
\(16\) 0 0
\(17\) 9.68346 + 4.42229i 0.569615 + 0.260135i 0.679335 0.733828i \(-0.262268\pi\)
−0.109720 + 0.993963i \(0.534995\pi\)
\(18\) 0 0
\(19\) 20.2597 9.25228i 1.06630 0.486962i 0.196569 0.980490i \(-0.437020\pi\)
0.869730 + 0.493528i \(0.164293\pi\)
\(20\) 0 0
\(21\) 14.7921 23.0169i 0.704385 1.09604i
\(22\) 0 0
\(23\) −14.0368 + 18.2200i −0.610294 + 0.792175i
\(24\) 0 0
\(25\) 6.82268 + 4.38467i 0.272907 + 0.175387i
\(26\) 0 0
\(27\) −5.80859 12.7190i −0.215133 0.471076i
\(28\) 0 0
\(29\) 2.96443 6.49120i 0.102222 0.223835i −0.851610 0.524176i \(-0.824373\pi\)
0.953832 + 0.300342i \(0.0971007\pi\)
\(30\) 0 0
\(31\) 5.77656 40.1769i 0.186341 1.29603i −0.655044 0.755591i \(-0.727350\pi\)
0.841384 0.540437i \(-0.181741\pi\)
\(32\) 0 0
\(33\) 14.3327 12.4194i 0.434325 0.376345i
\(34\) 0 0
\(35\) 20.6185 13.2507i 0.589100 0.378592i
\(36\) 0 0
\(37\) −18.4913 62.9755i −0.499765 1.70204i −0.693042 0.720898i \(-0.743730\pi\)
0.193277 0.981144i \(-0.438088\pi\)
\(38\) 0 0
\(39\) −67.1219 + 77.4628i −1.72107 + 1.98623i
\(40\) 0 0
\(41\) 43.3495 + 12.7286i 1.05731 + 0.310453i 0.763765 0.645494i \(-0.223348\pi\)
0.293540 + 0.955947i \(0.405167\pi\)
\(42\) 0 0
\(43\) −14.0003 + 2.01294i −0.325588 + 0.0468125i −0.303171 0.952936i \(-0.598045\pi\)
−0.0224171 + 0.999749i \(0.507136\pi\)
\(44\) 0 0
\(45\) 49.5131i 1.10029i
\(46\) 0 0
\(47\) −42.3125 −0.900266 −0.450133 0.892961i \(-0.648623\pi\)
−0.450133 + 0.892961i \(0.648623\pi\)
\(48\) 0 0
\(49\) −1.91186 13.2973i −0.0390177 0.271374i
\(50\) 0 0
\(51\) −13.7596 + 46.8608i −0.269796 + 0.918839i
\(52\) 0 0
\(53\) 69.2461 + 60.0021i 1.30653 + 1.13211i 0.982540 + 0.186054i \(0.0595698\pi\)
0.323990 + 0.946061i \(0.394976\pi\)
\(54\) 0 0
\(55\) 16.3005 4.78627i 0.296374 0.0870231i
\(56\) 0 0
\(57\) 55.2432 + 85.9601i 0.969179 + 1.50807i
\(58\) 0 0
\(59\) 46.8794 + 54.1017i 0.794566 + 0.916978i 0.998070 0.0620958i \(-0.0197784\pi\)
−0.203504 + 0.979074i \(0.565233\pi\)
\(60\) 0 0
\(61\) −74.4782 10.7083i −1.22095 0.175547i −0.498453 0.866917i \(-0.666098\pi\)
−0.722501 + 0.691370i \(0.757007\pi\)
\(62\) 0 0
\(63\) 65.3567 + 29.8474i 1.03741 + 0.473769i
\(64\) 0 0
\(65\) −83.5201 + 38.1423i −1.28492 + 0.586805i
\(66\) 0 0
\(67\) 29.2979 45.5884i 0.437282 0.680424i −0.550750 0.834670i \(-0.685658\pi\)
0.988033 + 0.154246i \(0.0492947\pi\)
\(68\) 0 0
\(69\) −91.9035 51.8461i −1.33194 0.751393i
\(70\) 0 0
\(71\) −102.888 66.1223i −1.44913 0.931300i −0.999270 0.0382010i \(-0.987837\pi\)
−0.449861 0.893099i \(-0.648526\pi\)
\(72\) 0 0
\(73\) 26.3453 + 57.6881i 0.360894 + 0.790248i 0.999781 + 0.0209467i \(0.00666803\pi\)
−0.638887 + 0.769301i \(0.720605\pi\)
\(74\) 0 0
\(75\) −15.4566 + 33.8452i −0.206088 + 0.451270i
\(76\) 0 0
\(77\) −3.50845 + 24.4018i −0.0455642 + 0.316906i
\(78\) 0 0
\(79\) 26.5494 23.0052i 0.336068 0.291204i −0.470435 0.882435i \(-0.655903\pi\)
0.806503 + 0.591230i \(0.201358\pi\)
\(80\) 0 0
\(81\) −37.2514 + 23.9400i −0.459894 + 0.295556i
\(82\) 0 0
\(83\) −34.8453 118.672i −0.419823 1.42979i −0.849876 0.526983i \(-0.823323\pi\)
0.430052 0.902804i \(-0.358495\pi\)
\(84\) 0 0
\(85\) −28.6501 + 33.0640i −0.337060 + 0.388988i
\(86\) 0 0
\(87\) 31.4126 + 9.22358i 0.361065 + 0.106018i
\(88\) 0 0
\(89\) −42.7385 + 6.14487i −0.480208 + 0.0690435i −0.378168 0.925737i \(-0.623446\pi\)
−0.102040 + 0.994780i \(0.532537\pi\)
\(90\) 0 0
\(91\) 133.238i 1.46416i
\(92\) 0 0
\(93\) 186.218 2.00235
\(94\) 0 0
\(95\) 13.0266 + 90.6018i 0.137122 + 0.953703i
\(96\) 0 0
\(97\) 25.2240 85.9050i 0.260041 0.885619i −0.721182 0.692745i \(-0.756401\pi\)
0.981224 0.192874i \(-0.0617807\pi\)
\(98\) 0 0
\(99\) 37.6385 + 32.6140i 0.380187 + 0.329434i
\(100\) 0 0
\(101\) −35.2693 + 10.3560i −0.349201 + 0.102535i −0.451629 0.892206i \(-0.649157\pi\)
0.102428 + 0.994740i \(0.467339\pi\)
\(102\) 0 0
\(103\) 9.11413 + 14.1819i 0.0884867 + 0.137688i 0.882675 0.469983i \(-0.155740\pi\)
−0.794189 + 0.607671i \(0.792104\pi\)
\(104\) 0 0
\(105\) 73.6347 + 84.9790i 0.701283 + 0.809323i
\(106\) 0 0
\(107\) 78.7091 + 11.3167i 0.735599 + 0.105763i 0.499924 0.866069i \(-0.333361\pi\)
0.235674 + 0.971832i \(0.424270\pi\)
\(108\) 0 0
\(109\) −36.0128 16.4465i −0.330393 0.150885i 0.243311 0.969948i \(-0.421767\pi\)
−0.573704 + 0.819063i \(0.694494\pi\)
\(110\) 0 0
\(111\) 273.905 125.088i 2.46761 1.12692i
\(112\) 0 0
\(113\) 52.0211 80.9465i 0.460364 0.716340i −0.531016 0.847362i \(-0.678189\pi\)
0.991379 + 0.131022i \(0.0418258\pi\)
\(114\) 0 0
\(115\) −55.5938 76.4465i −0.483425 0.664752i
\(116\) 0 0
\(117\) −226.437 145.522i −1.93536 1.24378i
\(118\) 0 0
\(119\) −26.3733 57.7494i −0.221624 0.485289i
\(120\) 0 0
\(121\) 43.1665 94.5216i 0.356748 0.781170i
\(122\) 0 0
\(123\) −29.4982 + 205.165i −0.239823 + 1.66801i
\(124\) 0 0
\(125\) −102.838 + 89.1093i −0.822701 + 0.712874i
\(126\) 0 0
\(127\) 25.8646 16.6222i 0.203658 0.130883i −0.434836 0.900510i \(-0.643194\pi\)
0.638495 + 0.769626i \(0.279557\pi\)
\(128\) 0 0
\(129\) −18.2819 62.2623i −0.141720 0.482653i
\(130\) 0 0
\(131\) −98.9165 + 114.156i −0.755088 + 0.871418i −0.995051 0.0993640i \(-0.968319\pi\)
0.239963 + 0.970782i \(0.422865\pi\)
\(132\) 0 0
\(133\) −127.446 37.4215i −0.958240 0.281365i
\(134\) 0 0
\(135\) 56.8799 8.17809i 0.421332 0.0605785i
\(136\) 0 0
\(137\) 202.579i 1.47868i 0.673331 + 0.739341i \(0.264863\pi\)
−0.673331 + 0.739341i \(0.735137\pi\)
\(138\) 0 0
\(139\) −46.0946 −0.331616 −0.165808 0.986158i \(-0.553023\pi\)
−0.165808 + 0.986158i \(0.553023\pi\)
\(140\) 0 0
\(141\) −27.6263 192.145i −0.195931 1.36273i
\(142\) 0 0
\(143\) 26.0194 88.6138i 0.181954 0.619677i
\(144\) 0 0
\(145\) 22.1641 + 19.2053i 0.152856 + 0.132450i
\(146\) 0 0
\(147\) 59.1360 17.3639i 0.402286 0.118122i
\(148\) 0 0
\(149\) −58.3434 90.7841i −0.391567 0.609289i 0.588372 0.808591i \(-0.299769\pi\)
−0.979938 + 0.199301i \(0.936133\pi\)
\(150\) 0 0
\(151\) 73.8459 + 85.2227i 0.489046 + 0.564389i 0.945610 0.325301i \(-0.105466\pi\)
−0.456565 + 0.889690i \(0.650920\pi\)
\(152\) 0 0
\(153\) −126.949 18.2525i −0.829732 0.119297i
\(154\) 0 0
\(155\) 151.739 + 69.2970i 0.978963 + 0.447077i
\(156\) 0 0
\(157\) 34.2215 15.6284i 0.217971 0.0995441i −0.303437 0.952852i \(-0.598134\pi\)
0.521408 + 0.853307i \(0.325407\pi\)
\(158\) 0 0
\(159\) −227.263 + 353.629i −1.42933 + 2.22408i
\(160\) 0 0
\(161\) 134.421 27.2999i 0.834915 0.169564i
\(162\) 0 0
\(163\) 224.042 + 143.983i 1.37449 + 0.883331i 0.999053 0.0435174i \(-0.0138564\pi\)
0.375437 + 0.926848i \(0.377493\pi\)
\(164\) 0 0
\(165\) 32.3777 + 70.8972i 0.196228 + 0.429680i
\(166\) 0 0
\(167\) −7.86457 + 17.2210i −0.0470932 + 0.103120i −0.931716 0.363187i \(-0.881689\pi\)
0.884623 + 0.466307i \(0.154416\pi\)
\(168\) 0 0
\(169\) −46.9841 + 326.782i −0.278013 + 1.93362i
\(170\) 0 0
\(171\) −202.793 + 175.721i −1.18592 + 1.02761i
\(172\) 0 0
\(173\) 219.370 140.981i 1.26804 0.814917i 0.278672 0.960386i \(-0.410106\pi\)
0.989363 + 0.145470i \(0.0464693\pi\)
\(174\) 0 0
\(175\) −13.6264 46.4074i −0.0778654 0.265185i
\(176\) 0 0
\(177\) −215.073 + 248.207i −1.21510 + 1.40230i
\(178\) 0 0
\(179\) −280.793 82.4483i −1.56868 0.460605i −0.622061 0.782969i \(-0.713704\pi\)
−0.946616 + 0.322364i \(0.895523\pi\)
\(180\) 0 0
\(181\) 136.599 19.6399i 0.754689 0.108508i 0.245777 0.969326i \(-0.420957\pi\)
0.508912 + 0.860818i \(0.330048\pi\)
\(182\) 0 0
\(183\) 345.204i 1.88636i
\(184\) 0 0
\(185\) 269.739 1.45805
\(186\) 0 0
\(187\) −6.26271 43.5581i −0.0334904 0.232931i
\(188\) 0 0
\(189\) −23.4932 + 80.0106i −0.124303 + 0.423337i
\(190\) 0 0
\(191\) 145.689 + 126.240i 0.762771 + 0.660945i 0.946744 0.321986i \(-0.104351\pi\)
−0.183973 + 0.982931i \(0.558896\pi\)
\(192\) 0 0
\(193\) −157.034 + 46.1093i −0.813646 + 0.238908i −0.661978 0.749523i \(-0.730283\pi\)
−0.151668 + 0.988431i \(0.548465\pi\)
\(194\) 0 0
\(195\) −227.739 354.369i −1.16789 1.81728i
\(196\) 0 0
\(197\) −143.126 165.176i −0.726529 0.838459i 0.265547 0.964098i \(-0.414447\pi\)
−0.992076 + 0.125639i \(0.959902\pi\)
\(198\) 0 0
\(199\) 22.0140 + 3.16514i 0.110623 + 0.0159052i 0.197404 0.980322i \(-0.436749\pi\)
−0.0867808 + 0.996227i \(0.527658\pi\)
\(200\) 0 0
\(201\) 226.150 + 103.279i 1.12512 + 0.513827i
\(202\) 0 0
\(203\) −38.7117 + 17.6790i −0.190698 + 0.0870889i
\(204\) 0 0
\(205\) −100.384 + 156.200i −0.489678 + 0.761954i
\(206\) 0 0
\(207\) 100.418 258.264i 0.485112 1.24765i
\(208\) 0 0
\(209\) −77.4535 49.7763i −0.370591 0.238164i
\(210\) 0 0
\(211\) 13.2244 + 28.9574i 0.0626750 + 0.137239i 0.938378 0.345612i \(-0.112329\pi\)
−0.875703 + 0.482851i \(0.839601\pi\)
\(212\) 0 0
\(213\) 233.090 510.397i 1.09432 2.39623i
\(214\) 0 0
\(215\) 8.27262 57.5373i 0.0384773 0.267616i
\(216\) 0 0
\(217\) −182.942 + 158.521i −0.843053 + 0.730509i
\(218\) 0 0
\(219\) −244.766 + 157.301i −1.11765 + 0.718271i
\(220\) 0 0
\(221\) 67.0060 + 228.202i 0.303195 + 1.03259i
\(222\) 0 0
\(223\) 104.179 120.229i 0.467169 0.539142i −0.472453 0.881356i \(-0.656631\pi\)
0.939622 + 0.342214i \(0.111177\pi\)
\(224\) 0 0
\(225\) −93.7514 27.5279i −0.416673 0.122346i
\(226\) 0 0
\(227\) 349.537 50.2558i 1.53981 0.221391i 0.680462 0.732783i \(-0.261779\pi\)
0.859347 + 0.511392i \(0.170870\pi\)
\(228\) 0 0
\(229\) 23.9320i 0.104507i 0.998634 + 0.0522534i \(0.0166403\pi\)
−0.998634 + 0.0522534i \(0.983360\pi\)
\(230\) 0 0
\(231\) −113.101 −0.489616
\(232\) 0 0
\(233\) −46.7553 325.190i −0.200666 1.39567i −0.802313 0.596903i \(-0.796398\pi\)
0.601647 0.798762i \(-0.294511\pi\)
\(234\) 0 0
\(235\) 48.9913 166.849i 0.208474 0.709996i
\(236\) 0 0
\(237\) 121.803 + 105.543i 0.513936 + 0.445328i
\(238\) 0 0
\(239\) −32.6548 + 9.58830i −0.136631 + 0.0401184i −0.349333 0.936999i \(-0.613592\pi\)
0.212702 + 0.977117i \(0.431774\pi\)
\(240\) 0 0
\(241\) 54.1794 + 84.3048i 0.224811 + 0.349813i 0.935276 0.353920i \(-0.115152\pi\)
−0.710465 + 0.703733i \(0.751515\pi\)
\(242\) 0 0
\(243\) −215.446 248.638i −0.886608 1.02320i
\(244\) 0 0
\(245\) 54.6483 + 7.85724i 0.223054 + 0.0320704i
\(246\) 0 0
\(247\) 452.631 + 206.710i 1.83252 + 0.836882i
\(248\) 0 0
\(249\) 516.151 235.718i 2.07290 0.946660i
\(250\) 0 0
\(251\) 128.053 199.254i 0.510171 0.793842i −0.486643 0.873601i \(-0.661779\pi\)
0.996814 + 0.0797589i \(0.0254150\pi\)
\(252\) 0 0
\(253\) 94.7318 + 8.09386i 0.374434 + 0.0319915i
\(254\) 0 0
\(255\) −168.853 108.515i −0.662167 0.425549i
\(256\) 0 0
\(257\) 21.6669 + 47.4439i 0.0843071 + 0.184607i 0.947090 0.320967i \(-0.104008\pi\)
−0.862783 + 0.505574i \(0.831281\pi\)
\(258\) 0 0
\(259\) −162.603 + 356.052i −0.627812 + 1.37472i
\(260\) 0 0
\(261\) −12.2354 + 85.0988i −0.0468788 + 0.326049i
\(262\) 0 0
\(263\) −345.839 + 299.672i −1.31498 + 1.13944i −0.334590 + 0.942364i \(0.608598\pi\)
−0.980389 + 0.197072i \(0.936857\pi\)
\(264\) 0 0
\(265\) −316.780 + 203.582i −1.19539 + 0.768233i
\(266\) 0 0
\(267\) −55.8089 190.068i −0.209022 0.711863i
\(268\) 0 0
\(269\) 90.3607 104.282i 0.335913 0.387665i −0.562513 0.826788i \(-0.690165\pi\)
0.898427 + 0.439124i \(0.144711\pi\)
\(270\) 0 0
\(271\) −251.816 73.9397i −0.929209 0.272840i −0.218103 0.975926i \(-0.569987\pi\)
−0.711106 + 0.703085i \(0.751805\pi\)
\(272\) 0 0
\(273\) 605.048 86.9927i 2.21629 0.318655i
\(274\) 0 0
\(275\) 33.5255i 0.121911i
\(276\) 0 0
\(277\) 226.528 0.817789 0.408895 0.912582i \(-0.365914\pi\)
0.408895 + 0.912582i \(0.365914\pi\)
\(278\) 0 0
\(279\) 69.5948 + 484.043i 0.249444 + 1.73492i
\(280\) 0 0
\(281\) 15.7801 53.7421i 0.0561570 0.191253i −0.926637 0.375956i \(-0.877314\pi\)
0.982794 + 0.184703i \(0.0591324\pi\)
\(282\) 0 0
\(283\) 49.7570 + 43.1147i 0.175820 + 0.152349i 0.738325 0.674445i \(-0.235617\pi\)
−0.562505 + 0.826794i \(0.690162\pi\)
\(284\) 0 0
\(285\) −402.926 + 118.310i −1.41377 + 0.415122i
\(286\) 0 0
\(287\) −145.669 226.666i −0.507559 0.789777i
\(288\) 0 0
\(289\) −115.042 132.766i −0.398069 0.459396i
\(290\) 0 0
\(291\) 406.571 + 58.4562i 1.39715 + 0.200880i
\(292\) 0 0
\(293\) −386.498 176.508i −1.31911 0.602416i −0.373470 0.927642i \(-0.621832\pi\)
−0.945636 + 0.325226i \(0.894560\pi\)
\(294\) 0 0
\(295\) −267.616 + 122.216i −0.907173 + 0.414292i
\(296\) 0 0
\(297\) −31.2496 + 48.6254i −0.105218 + 0.163722i
\(298\) 0 0
\(299\) −513.003 + 29.5647i −1.71573 + 0.0988785i
\(300\) 0 0
\(301\) 70.9617 + 45.6043i 0.235753 + 0.151509i
\(302\) 0 0
\(303\) −70.0552 153.399i −0.231205 0.506269i
\(304\) 0 0
\(305\) 128.460 281.288i 0.421180 0.922255i
\(306\) 0 0
\(307\) −55.6170 + 386.824i −0.181163 + 1.26001i 0.672856 + 0.739773i \(0.265067\pi\)
−0.854019 + 0.520241i \(0.825842\pi\)
\(308\) 0 0
\(309\) −58.4504 + 50.6476i −0.189160 + 0.163908i
\(310\) 0 0
\(311\) −358.452 + 230.363i −1.15258 + 0.740718i −0.970151 0.242501i \(-0.922032\pi\)
−0.182429 + 0.983219i \(0.558396\pi\)
\(312\) 0 0
\(313\) −97.7992 333.073i −0.312457 1.06413i −0.954685 0.297618i \(-0.903808\pi\)
0.642227 0.766514i \(-0.278010\pi\)
\(314\) 0 0
\(315\) −193.369 + 223.160i −0.613870 + 0.708443i
\(316\) 0 0
\(317\) 8.13498 + 2.38865i 0.0256624 + 0.00753516i 0.294539 0.955640i \(-0.404834\pi\)
−0.268876 + 0.963175i \(0.586652\pi\)
\(318\) 0 0
\(319\) −29.1987 + 4.19814i −0.0915320 + 0.0131603i
\(320\) 0 0
\(321\) 364.814i 1.13649i
\(322\) 0 0
\(323\) 237.100 0.734056
\(324\) 0 0
\(325\) 25.7864 + 179.348i 0.0793428 + 0.551841i
\(326\) 0 0
\(327\) 51.1719 174.276i 0.156489 0.532953i
\(328\) 0 0
\(329\) 190.706 + 165.248i 0.579653 + 0.502272i
\(330\) 0 0
\(331\) 274.611 80.6330i 0.829640 0.243604i 0.160778 0.986991i \(-0.448600\pi\)
0.668862 + 0.743386i \(0.266782\pi\)
\(332\) 0 0
\(333\) 427.510 + 665.219i 1.28381 + 1.99765i
\(334\) 0 0
\(335\) 145.844 + 168.313i 0.435356 + 0.502428i
\(336\) 0 0
\(337\) −615.867 88.5483i −1.82750 0.262755i −0.859036 0.511915i \(-0.828936\pi\)
−0.968462 + 0.249160i \(0.919845\pi\)
\(338\) 0 0
\(339\) 401.550 + 183.382i 1.18451 + 0.540950i
\(340\) 0 0
\(341\) −152.627 + 69.7026i −0.447588 + 0.204406i
\(342\) 0 0
\(343\) −201.302 + 313.232i −0.586886 + 0.913212i
\(344\) 0 0
\(345\) 310.852 302.369i 0.901022 0.876433i
\(346\) 0 0
\(347\) 288.389 + 185.336i 0.831092 + 0.534110i 0.885625 0.464402i \(-0.153731\pi\)
−0.0545329 + 0.998512i \(0.517367\pi\)
\(348\) 0 0
\(349\) −63.2248 138.443i −0.181160 0.396685i 0.797165 0.603762i \(-0.206332\pi\)
−0.978325 + 0.207077i \(0.933605\pi\)
\(350\) 0 0
\(351\) 129.773 284.162i 0.369723 0.809580i
\(352\) 0 0
\(353\) 5.61754 39.0708i 0.0159137 0.110682i −0.980316 0.197433i \(-0.936739\pi\)
0.996230 + 0.0867511i \(0.0276485\pi\)
\(354\) 0 0
\(355\) 379.866 329.155i 1.07004 0.927198i
\(356\) 0 0
\(357\) 245.026 157.469i 0.686347 0.441089i
\(358\) 0 0
\(359\) 13.8682 + 47.2307i 0.0386300 + 0.131562i 0.976550 0.215289i \(-0.0690693\pi\)
−0.937920 + 0.346851i \(0.887251\pi\)
\(360\) 0 0
\(361\) 88.4450 102.071i 0.245000 0.282745i
\(362\) 0 0
\(363\) 457.415 + 134.309i 1.26010 + 0.369998i
\(364\) 0 0
\(365\) −257.982 + 37.0923i −0.706801 + 0.101623i
\(366\) 0 0
\(367\) 148.649i 0.405039i 0.979278 + 0.202519i \(0.0649129\pi\)
−0.979278 + 0.202519i \(0.935087\pi\)
\(368\) 0 0
\(369\) −544.315 −1.47511
\(370\) 0 0
\(371\) −77.7651 540.868i −0.209609 1.45786i
\(372\) 0 0
\(373\) −130.556 + 444.634i −0.350017 + 1.19205i 0.576911 + 0.816807i \(0.304258\pi\)
−0.926927 + 0.375241i \(0.877560\pi\)
\(374\) 0 0
\(375\) −471.797 408.814i −1.25813 1.09017i
\(376\) 0 0
\(377\) 152.972 44.9168i 0.405762 0.119143i
\(378\) 0 0
\(379\) −201.015 312.785i −0.530382 0.825290i 0.467907 0.883778i \(-0.345008\pi\)
−0.998288 + 0.0584882i \(0.981372\pi\)
\(380\) 0 0
\(381\) 92.3701 + 106.601i 0.242441 + 0.279792i
\(382\) 0 0
\(383\) −227.561 32.7184i −0.594155 0.0854266i −0.161324 0.986902i \(-0.551576\pi\)
−0.432831 + 0.901475i \(0.642485\pi\)
\(384\) 0 0
\(385\) −92.1602 42.0881i −0.239377 0.109320i
\(386\) 0 0
\(387\) 155.008 70.7896i 0.400537 0.182919i
\(388\) 0 0
\(389\) 152.821 237.794i 0.392856 0.611296i −0.587336 0.809343i \(-0.699823\pi\)
0.980193 + 0.198047i \(0.0634597\pi\)
\(390\) 0 0
\(391\) −216.499 + 114.358i −0.553705 + 0.292477i
\(392\) 0 0
\(393\) −582.975 374.655i −1.48340 0.953322i
\(394\) 0 0
\(395\) 59.9752 + 131.327i 0.151836 + 0.332474i
\(396\) 0 0
\(397\) −95.3365 + 208.758i −0.240142 + 0.525839i −0.990878 0.134765i \(-0.956972\pi\)
0.750735 + 0.660603i \(0.229699\pi\)
\(398\) 0 0
\(399\) 86.7236 603.176i 0.217352 1.51172i
\(400\) 0 0
\(401\) 255.812 221.662i 0.637934 0.552773i −0.274710 0.961527i \(-0.588582\pi\)
0.912645 + 0.408754i \(0.134036\pi\)
\(402\) 0 0
\(403\) 762.884 490.276i 1.89301 1.21656i
\(404\) 0 0
\(405\) −51.2703 174.611i −0.126593 0.431137i
\(406\) 0 0
\(407\) −177.675 + 205.048i −0.436548 + 0.503803i
\(408\) 0 0
\(409\) −181.420 53.2698i −0.443570 0.130244i 0.0523178 0.998630i \(-0.483339\pi\)
−0.495888 + 0.868387i \(0.665157\pi\)
\(410\) 0 0
\(411\) −919.931 + 132.266i −2.23828 + 0.321815i
\(412\) 0 0
\(413\) 426.924i 1.03371i
\(414\) 0 0
\(415\) 508.301 1.22482
\(416\) 0 0
\(417\) −30.0956 209.320i −0.0721718 0.501966i
\(418\) 0 0
\(419\) 26.0736 88.7987i 0.0622283 0.211930i −0.922510 0.385974i \(-0.873865\pi\)
0.984738 + 0.174044i \(0.0556836\pi\)
\(420\) 0 0
\(421\) 212.022 + 183.718i 0.503616 + 0.436386i 0.869250 0.494373i \(-0.164602\pi\)
−0.365634 + 0.930759i \(0.619148\pi\)
\(422\) 0 0
\(423\) 489.123 143.619i 1.15632 0.339526i
\(424\) 0 0
\(425\) 46.6769 + 72.6307i 0.109828 + 0.170896i
\(426\) 0 0
\(427\) 293.859 + 339.131i 0.688193 + 0.794218i
\(428\) 0 0
\(429\) 419.391 + 60.2994i 0.977602 + 0.140558i
\(430\) 0 0
\(431\) 176.562 + 80.6333i 0.409657 + 0.187084i 0.609575 0.792729i \(-0.291340\pi\)
−0.199918 + 0.979813i \(0.564067\pi\)
\(432\) 0 0
\(433\) −249.896 + 114.124i −0.577128 + 0.263566i −0.682522 0.730865i \(-0.739117\pi\)
0.105394 + 0.994431i \(0.466390\pi\)
\(434\) 0 0
\(435\) −72.7419 + 113.189i −0.167223 + 0.260204i
\(436\) 0 0
\(437\) −115.803 + 499.004i −0.264996 + 1.14189i
\(438\) 0 0
\(439\) 44.4677 + 28.5776i 0.101293 + 0.0650971i 0.590307 0.807179i \(-0.299007\pi\)
−0.489014 + 0.872276i \(0.662643\pi\)
\(440\) 0 0
\(441\) 67.2352 + 147.225i 0.152461 + 0.333843i
\(442\) 0 0
\(443\) 39.4183 86.3140i 0.0889803 0.194840i −0.859910 0.510446i \(-0.829480\pi\)
0.948890 + 0.315606i \(0.102208\pi\)
\(444\) 0 0
\(445\) 25.2538 175.644i 0.0567500 0.394705i
\(446\) 0 0
\(447\) 374.166 324.217i 0.837060 0.725317i
\(448\) 0 0
\(449\) 267.976 172.218i 0.596829 0.383559i −0.207068 0.978326i \(-0.566392\pi\)
0.803898 + 0.594768i \(0.202756\pi\)
\(450\) 0 0
\(451\) −52.6171 179.197i −0.116668 0.397333i
\(452\) 0 0
\(453\) −338.789 + 390.984i −0.747879 + 0.863099i
\(454\) 0 0
\(455\) 525.393 + 154.269i 1.15471 + 0.339053i
\(456\) 0 0
\(457\) −590.258 + 84.8663i −1.29159 + 0.185703i −0.753649 0.657277i \(-0.771708\pi\)
−0.537945 + 0.842980i \(0.680799\pi\)
\(458\) 0 0
\(459\) 148.852i 0.324295i
\(460\) 0 0
\(461\) 155.035 0.336301 0.168151 0.985761i \(-0.446220\pi\)
0.168151 + 0.985761i \(0.446220\pi\)
\(462\) 0 0
\(463\) 46.9176 + 326.319i 0.101334 + 0.704793i 0.975634 + 0.219406i \(0.0704121\pi\)
−0.874300 + 0.485387i \(0.838679\pi\)
\(464\) 0 0
\(465\) −215.612 + 734.307i −0.463681 + 1.57915i
\(466\) 0 0
\(467\) −97.7755 84.7229i −0.209369 0.181420i 0.543863 0.839174i \(-0.316961\pi\)
−0.753233 + 0.657754i \(0.771506\pi\)
\(468\) 0 0
\(469\) −310.089 + 91.0504i −0.661171 + 0.194137i
\(470\) 0 0
\(471\) 93.3137 + 145.199i 0.198118 + 0.308278i
\(472\) 0 0
\(473\) 38.2892 + 44.1881i 0.0809497 + 0.0934209i
\(474\) 0 0
\(475\) 178.794 + 25.7066i 0.376408 + 0.0541192i
\(476\) 0 0
\(477\) −1004.13 458.571i −2.10510 0.961365i
\(478\) 0 0
\(479\) 40.0901 18.3085i 0.0836954 0.0382224i −0.373127 0.927780i \(-0.621715\pi\)
0.456823 + 0.889558i \(0.348987\pi\)
\(480\) 0 0
\(481\) 792.777 1233.59i 1.64819 2.56463i
\(482\) 0 0
\(483\) 211.736 + 592.595i 0.438377 + 1.22691i
\(484\) 0 0
\(485\) 309.540 + 198.929i 0.638227 + 0.410163i
\(486\) 0 0
\(487\) −129.184 282.872i −0.265264 0.580847i 0.729392 0.684096i \(-0.239803\pi\)
−0.994655 + 0.103249i \(0.967076\pi\)
\(488\) 0 0
\(489\) −507.560 + 1111.40i −1.03796 + 2.27281i
\(490\) 0 0
\(491\) −85.1490 + 592.224i −0.173420 + 1.20616i 0.698173 + 0.715929i \(0.253997\pi\)
−0.871593 + 0.490231i \(0.836912\pi\)
\(492\) 0 0
\(493\) 57.4119 49.7477i 0.116454 0.100908i
\(494\) 0 0
\(495\) −172.185 + 110.656i −0.347848 + 0.223548i
\(496\) 0 0
\(497\) 205.491 + 699.839i 0.413463 + 1.40813i
\(498\) 0 0
\(499\) 352.186 406.445i 0.705784 0.814518i −0.283738 0.958902i \(-0.591574\pi\)
0.989522 + 0.144384i \(0.0461199\pi\)
\(500\) 0 0
\(501\) −83.3370 24.4700i −0.166341 0.0488422i
\(502\) 0 0
\(503\) −702.832 + 101.052i −1.39728 + 0.200898i −0.799454 0.600728i \(-0.794878\pi\)
−0.597826 + 0.801626i \(0.703969\pi\)
\(504\) 0 0
\(505\) 151.066i 0.299141i
\(506\) 0 0
\(507\) −1514.62 −2.98742
\(508\) 0 0
\(509\) 43.4268 + 302.040i 0.0853178 + 0.593398i 0.986966 + 0.160928i \(0.0514488\pi\)
−0.901648 + 0.432470i \(0.857642\pi\)
\(510\) 0 0
\(511\) 106.555 362.894i 0.208523 0.710164i
\(512\) 0 0
\(513\) −235.360 203.941i −0.458792 0.397546i
\(514\) 0 0
\(515\) −66.4754 + 19.5190i −0.129079 + 0.0379009i
\(516\) 0 0
\(517\) 94.5638 + 147.144i 0.182909 + 0.284611i
\(518\) 0 0
\(519\) 783.434 + 904.132i 1.50951 + 1.74206i
\(520\) 0 0
\(521\) −937.654 134.814i −1.79972 0.258761i −0.840579 0.541688i \(-0.817785\pi\)
−0.959141 + 0.282928i \(0.908694\pi\)
\(522\) 0 0
\(523\) −409.411 186.972i −0.782812 0.357498i −0.0164149 0.999865i \(-0.505225\pi\)
−0.766397 + 0.642367i \(0.777953\pi\)
\(524\) 0 0
\(525\) 201.843 92.1788i 0.384464 0.175579i
\(526\) 0 0
\(527\) 233.611 363.505i 0.443284 0.689764i
\(528\) 0 0
\(529\) −134.939 511.500i −0.255083 0.966919i
\(530\) 0 0
\(531\) −725.550 466.283i −1.36638 0.878122i
\(532\) 0 0
\(533\) 419.312 + 918.164i 0.786701 + 1.72263i
\(534\) 0 0
\(535\) −135.757 + 297.267i −0.253752 + 0.555639i
\(536\) 0 0
\(537\) 191.072 1328.94i 0.355815 2.47475i
\(538\) 0 0
\(539\) −41.9694 + 36.3666i −0.0778652 + 0.0674706i
\(540\) 0 0
\(541\) 68.7661 44.1933i 0.127109 0.0816882i −0.475541 0.879693i \(-0.657748\pi\)
0.602650 + 0.798005i \(0.294111\pi\)
\(542\) 0 0
\(543\) 178.373 + 607.484i 0.328496 + 1.11876i
\(544\) 0 0
\(545\) 106.550 122.965i 0.195505 0.225624i
\(546\) 0 0
\(547\) 516.577 + 151.681i 0.944381 + 0.277295i 0.717446 0.696614i \(-0.245311\pi\)
0.226936 + 0.973910i \(0.427129\pi\)
\(548\) 0 0
\(549\) 897.298 129.012i 1.63442 0.234994i
\(550\) 0 0
\(551\) 158.937i 0.288453i
\(552\) 0 0
\(553\) −209.505 −0.378851
\(554\) 0 0
\(555\) 176.115 + 1224.91i 0.317325 + 2.20704i
\(556\) 0 0
\(557\) 253.770 864.261i 0.455601 1.55164i −0.336764 0.941589i \(-0.609332\pi\)
0.792365 0.610047i \(-0.208849\pi\)
\(558\) 0 0
\(559\) −238.820 206.938i −0.427226 0.370194i
\(560\) 0 0
\(561\) 193.712 56.8791i 0.345298 0.101389i
\(562\) 0 0
\(563\) 436.398 + 679.048i 0.775129 + 1.20612i 0.974100 + 0.226119i \(0.0726037\pi\)
−0.198971 + 0.980005i \(0.563760\pi\)
\(564\) 0 0
\(565\) 258.960 + 298.856i 0.458337 + 0.528949i
\(566\) 0 0
\(567\) 261.390 + 37.5823i 0.461006 + 0.0662827i
\(568\) 0 0
\(569\) −735.254 335.779i −1.29219 0.590122i −0.353675 0.935368i \(-0.615068\pi\)
−0.938512 + 0.345246i \(0.887795\pi\)
\(570\) 0 0
\(571\) −690.428 + 315.308i −1.20916 + 0.552203i −0.914961 0.403543i \(-0.867779\pi\)
−0.294195 + 0.955746i \(0.595051\pi\)
\(572\) 0 0
\(573\) −478.147 + 744.012i −0.834463 + 1.29845i
\(574\) 0 0
\(575\) −175.657 + 62.7629i −0.305491 + 0.109153i
\(576\) 0 0
\(577\) 797.093 + 512.261i 1.38144 + 0.887800i 0.999340 0.0363194i \(-0.0115634\pi\)
0.382104 + 0.924119i \(0.375200\pi\)
\(578\) 0 0
\(579\) −311.915 682.999i −0.538714 1.17962i
\(580\) 0 0
\(581\) −306.413 + 670.951i −0.527389 + 1.15482i
\(582\) 0 0
\(583\) 53.9032 374.905i 0.0924583 0.643062i
\(584\) 0 0
\(585\) 836.008 724.405i 1.42907 1.23830i
\(586\) 0 0
\(587\) −14.6822 + 9.43567i −0.0250123 + 0.0160744i −0.553087 0.833123i \(-0.686550\pi\)
0.528075 + 0.849198i \(0.322914\pi\)
\(588\) 0 0
\(589\) −254.697 867.417i −0.432422 1.47269i
\(590\) 0 0
\(591\) 656.633 757.794i 1.11105 1.28222i
\(592\) 0 0
\(593\) 349.853 + 102.726i 0.589972 + 0.173231i 0.563074 0.826407i \(-0.309619\pi\)
0.0268985 + 0.999638i \(0.491437\pi\)
\(594\) 0 0
\(595\) 258.257 37.1317i 0.434045 0.0624063i
\(596\) 0 0
\(597\) 102.034i 0.170912i
\(598\) 0 0
\(599\) 353.210 0.589666 0.294833 0.955549i \(-0.404736\pi\)
0.294833 + 0.955549i \(0.404736\pi\)
\(600\) 0 0
\(601\) −86.5051 601.656i −0.143935 1.00109i −0.925900 0.377769i \(-0.876691\pi\)
0.781965 0.623323i \(-0.214218\pi\)
\(602\) 0 0
\(603\) −183.938 + 626.436i −0.305039 + 1.03887i
\(604\) 0 0
\(605\) 322.742 + 279.658i 0.533459 + 0.462244i
\(606\) 0 0
\(607\) 76.1375 22.3560i 0.125432 0.0368303i −0.218414 0.975856i \(-0.570088\pi\)
0.343846 + 0.939026i \(0.388270\pi\)
\(608\) 0 0
\(609\) −105.557 164.250i −0.173329 0.269705i
\(610\) 0 0
\(611\) −619.056 714.429i −1.01318 1.16928i
\(612\) 0 0
\(613\) 904.918 + 130.108i 1.47621 + 0.212247i 0.832929 0.553381i \(-0.186662\pi\)
0.643284 + 0.765628i \(0.277572\pi\)
\(614\) 0 0
\(615\) −774.862 353.868i −1.25994 0.575395i
\(616\) 0 0
\(617\) −348.068 + 158.957i −0.564130 + 0.257630i −0.677003 0.735980i \(-0.736722\pi\)
0.112873 + 0.993609i \(0.463995\pi\)
\(618\) 0 0
\(619\) 53.5130 83.2678i 0.0864507 0.134520i −0.795335 0.606170i \(-0.792705\pi\)
0.881786 + 0.471650i \(0.156341\pi\)
\(620\) 0 0
\(621\) 313.275 + 72.7014i 0.504469 + 0.117072i
\(622\) 0 0
\(623\) 216.624 + 139.216i 0.347711 + 0.223461i
\(624\) 0 0
\(625\) −148.084 324.258i −0.236934 0.518813i
\(626\) 0 0
\(627\) 175.469 384.223i 0.279854 0.612795i
\(628\) 0 0
\(629\) 99.4363 691.595i 0.158086 1.09951i
\(630\) 0 0
\(631\) −78.1637 + 67.7292i −0.123873 + 0.107336i −0.714594 0.699539i \(-0.753389\pi\)
0.590722 + 0.806876i \(0.298843\pi\)
\(632\) 0 0
\(633\) −122.864 + 78.9599i −0.194098 + 0.124739i
\(634\) 0 0
\(635\) 35.5983 + 121.237i 0.0560603 + 0.190924i
\(636\) 0 0
\(637\) 196.548 226.828i 0.308552 0.356088i
\(638\) 0 0
\(639\) 1413.80 + 415.129i 2.21252 + 0.649655i
\(640\) 0 0
\(641\) −510.875 + 73.4527i −0.796997 + 0.114591i −0.528770 0.848765i \(-0.677347\pi\)
−0.268227 + 0.963356i \(0.586438\pi\)
\(642\) 0 0
\(643\) 498.014i 0.774516i −0.921971 0.387258i \(-0.873422\pi\)
0.921971 0.387258i \(-0.126578\pi\)
\(644\) 0 0
\(645\) 266.684 0.413463
\(646\) 0 0
\(647\) −111.460 775.222i −0.172272 1.19818i −0.874069 0.485802i \(-0.838528\pi\)
0.701797 0.712377i \(-0.252382\pi\)
\(648\) 0 0
\(649\) 83.3715 283.937i 0.128461 0.437500i
\(650\) 0 0
\(651\) −839.301 727.258i −1.28925 1.11714i
\(652\) 0 0
\(653\) −902.763 + 265.075i −1.38249 + 0.405934i −0.886634 0.462473i \(-0.846962\pi\)
−0.495852 + 0.868407i \(0.665144\pi\)
\(654\) 0 0
\(655\) −335.615 522.228i −0.512390 0.797294i
\(656\) 0 0
\(657\) −500.353 577.438i −0.761573 0.878902i
\(658\) 0 0
\(659\) −540.683 77.7384i −0.820459 0.117964i −0.280713 0.959792i \(-0.590571\pi\)
−0.539747 + 0.841828i \(0.681480\pi\)
\(660\) 0 0
\(661\) 568.988 + 259.848i 0.860799 + 0.393114i 0.796371 0.604809i \(-0.206750\pi\)
0.0644283 + 0.997922i \(0.479478\pi\)
\(662\) 0 0
\(663\) −992.535 + 453.276i −1.49704 + 0.683674i
\(664\) 0 0
\(665\) 295.125 459.223i 0.443797 0.690561i
\(666\) 0 0
\(667\) 76.6589 + 145.127i 0.114931 + 0.217582i
\(668\) 0 0
\(669\) 613.989 + 394.586i 0.917771 + 0.589815i
\(670\) 0 0
\(671\) 129.212 + 282.934i 0.192566 + 0.421660i
\(672\) 0 0
\(673\) −311.460 + 682.003i −0.462794 + 1.01338i 0.524048 + 0.851689i \(0.324421\pi\)
−0.986842 + 0.161688i \(0.948306\pi\)
\(674\) 0 0
\(675\) 16.1387 112.247i 0.0239091 0.166292i
\(676\) 0 0
\(677\) 381.369 330.458i 0.563322 0.488121i −0.326021 0.945363i \(-0.605708\pi\)
0.889343 + 0.457241i \(0.151162\pi\)
\(678\) 0 0
\(679\) −449.180 + 288.671i −0.661532 + 0.425141i
\(680\) 0 0
\(681\) 456.432 + 1554.47i 0.670238 + 2.28262i
\(682\) 0 0
\(683\) 118.673 136.956i 0.173753 0.200522i −0.662193 0.749333i \(-0.730374\pi\)
0.835946 + 0.548812i \(0.184920\pi\)
\(684\) 0 0
\(685\) −798.822 234.555i −1.16616 0.342417i
\(686\) 0 0
\(687\) −108.678 + 15.6255i −0.158192 + 0.0227445i
\(688\) 0 0
\(689\) 2047.05i 2.97105i
\(690\) 0 0
\(691\) −1097.50 −1.58828 −0.794141 0.607733i \(-0.792079\pi\)
−0.794141 + 0.607733i \(0.792079\pi\)
\(692\) 0 0
\(693\) −42.2690 293.987i −0.0609943 0.424224i
\(694\) 0 0
\(695\) 53.3704 181.763i 0.0767919 0.261529i
\(696\) 0 0
\(697\) 363.484 + 314.961i 0.521498 + 0.451880i
\(698\) 0 0
\(699\) 1446.19 424.640i 2.06894 0.607496i
\(700\) 0 0
\(701\) −41.4868 64.5547i −0.0591823 0.0920895i 0.810401 0.585875i \(-0.199249\pi\)
−0.869584 + 0.493786i \(0.835613\pi\)
\(702\) 0 0
\(703\) −957.295 1104.78i −1.36173 1.57152i
\(704\) 0 0
\(705\) 789.663 + 113.536i 1.12009 + 0.161045i
\(706\) 0 0
\(707\) 199.406 + 91.0656i 0.282045 + 0.128806i
\(708\) 0 0
\(709\) 476.205 217.475i 0.671657 0.306735i −0.0502389 0.998737i \(-0.515998\pi\)
0.721896 + 0.692002i \(0.243271\pi\)
\(710\) 0 0
\(711\) −228.819 + 356.050i −0.321827 + 0.500773i
\(712\) 0 0
\(713\) 650.940 + 669.202i 0.912959 + 0.938572i
\(714\) 0 0
\(715\) 319.300 + 205.202i 0.446574 + 0.286996i
\(716\) 0 0
\(717\) −64.8620 142.028i −0.0904630 0.198086i
\(718\) 0 0
\(719\) 445.125 974.687i 0.619088 1.35561i −0.297092 0.954849i \(-0.596017\pi\)
0.916181 0.400766i \(-0.131256\pi\)
\(720\) 0 0
\(721\) 14.3078 99.5132i 0.0198444 0.138021i
\(722\) 0 0
\(723\) −347.462 + 301.077i −0.480583 + 0.416428i
\(724\) 0 0
\(725\) 48.6872 31.2893i 0.0671547 0.0431577i
\(726\) 0 0
\(727\) 209.327 + 712.904i 0.287933 + 0.980610i 0.968726 + 0.248134i \(0.0798173\pi\)
−0.680793 + 0.732476i \(0.738364\pi\)
\(728\) 0 0
\(729\) 727.439 839.509i 0.997859 1.15159i
\(730\) 0 0
\(731\) −144.473 42.4211i −0.197637 0.0580316i
\(732\) 0 0
\(733\) −1149.32 + 165.247i −1.56797 + 0.225439i −0.870861 0.491530i \(-0.836438\pi\)
−0.697105 + 0.716969i \(0.745529\pi\)
\(734\) 0 0
\(735\) 253.293i 0.344616i
\(736\) 0 0
\(737\) −224.014 −0.303954
\(738\) 0 0
\(739\) 61.9143 + 430.624i 0.0837812 + 0.582711i 0.987860 + 0.155346i \(0.0496492\pi\)
−0.904079 + 0.427366i \(0.859442\pi\)
\(740\) 0 0
\(741\) −643.160 + 2190.40i −0.867963 + 2.95601i
\(742\) 0 0
\(743\) −342.586 296.852i −0.461084 0.399532i 0.393105 0.919493i \(-0.371401\pi\)
−0.854190 + 0.519962i \(0.825946\pi\)
\(744\) 0 0
\(745\) 425.538 124.949i 0.571191 0.167717i
\(746\) 0 0
\(747\) 805.609 + 1253.55i 1.07846 + 1.67811i
\(748\) 0 0
\(749\) −310.552 358.396i −0.414622 0.478499i
\(750\) 0 0
\(751\) 32.9586 + 4.73874i 0.0438863 + 0.00630990i 0.164223 0.986423i \(-0.447488\pi\)
−0.120337 + 0.992733i \(0.538397\pi\)
\(752\) 0 0
\(753\) 988.439 + 451.405i 1.31267 + 0.599476i
\(754\) 0 0
\(755\) −421.557 + 192.519i −0.558354 + 0.254992i
\(756\) 0 0
\(757\) −751.204 + 1168.90i −0.992343 + 1.54412i −0.162055 + 0.986782i \(0.551812\pi\)
−0.830288 + 0.557334i \(0.811824\pi\)
\(758\) 0 0
\(759\) 25.0964 + 435.470i 0.0330651 + 0.573742i
\(760\) 0 0
\(761\) 334.245 + 214.806i 0.439218 + 0.282268i 0.741503 0.670949i \(-0.234113\pi\)
−0.302285 + 0.953217i \(0.597750\pi\)
\(762\) 0 0
\(763\) 98.0824 + 214.770i 0.128548 + 0.281482i
\(764\) 0 0
\(765\) 218.961 479.458i 0.286224 0.626743i
\(766\) 0 0
\(767\) −227.612 + 1583.08i −0.296756 + 2.06399i
\(768\) 0 0
\(769\) 435.262 377.157i 0.566010 0.490451i −0.324207 0.945986i \(-0.605098\pi\)
0.890218 + 0.455535i \(0.150552\pi\)
\(770\) 0 0
\(771\) −201.301 + 129.368i −0.261090 + 0.167793i
\(772\) 0 0
\(773\) −390.863 1331.16i −0.505645 1.72207i −0.676199 0.736719i \(-0.736374\pi\)
0.170555 0.985348i \(-0.445444\pi\)
\(774\) 0 0
\(775\) 215.574 248.786i 0.278160 0.321014i
\(776\) 0 0
\(777\) −1723.03 505.927i −2.21754 0.651128i
\(778\) 0 0
\(779\) 996.016 143.205i 1.27858 0.183832i
\(780\) 0 0
\(781\) 505.576i 0.647344i
\(782\) 0 0
\(783\) −99.7810 −0.127434
\(784\) 0 0
\(785\) 22.0037 + 153.039i 0.0280302 + 0.194955i
\(786\) 0 0
\(787\) 10.9848 37.4108i 0.0139578 0.0475360i −0.952220 0.305414i \(-0.901205\pi\)
0.966177 + 0.257878i \(0.0830233\pi\)
\(788\) 0 0
\(789\) −1586.64 1374.83i −2.01095 1.74250i
\(790\) 0 0
\(791\) −550.592 + 161.668i −0.696071 + 0.204385i
\(792\) 0 0
\(793\) −908.852 1414.20i −1.14609 1.78336i
\(794\) 0 0
\(795\) −1131.31 1305.60i −1.42303 1.64227i
\(796\) 0 0
\(797\) 341.975 + 49.1686i 0.429078 + 0.0616921i 0.353471 0.935446i \(-0.385001\pi\)
0.0756074 + 0.997138i \(0.475910\pi\)
\(798\) 0 0
\(799\) −409.731 187.118i −0.512805 0.234190i
\(800\) 0 0
\(801\) 473.191 216.099i 0.590750 0.269786i
\(802\) 0 0
\(803\) 141.735 220.544i 0.176507 0.274650i
\(804\) 0 0
\(805\) −47.9886 + 561.667i −0.0596132 + 0.697723i
\(806\) 0 0
\(807\) 532.551 + 342.249i 0.659914 + 0.424101i
\(808\) 0 0
\(809\) −239.809 525.109i −0.296427 0.649084i 0.701553 0.712617i \(-0.252490\pi\)
−0.997980 + 0.0635331i \(0.979763\pi\)
\(810\) 0 0
\(811\) 328.090 718.417i 0.404550 0.885841i −0.592239 0.805763i \(-0.701756\pi\)
0.996789 0.0800783i \(-0.0255170\pi\)
\(812\) 0 0
\(813\) 171.354 1191.79i 0.210768 1.46592i
\(814\) 0 0
\(815\) −827.167 + 716.744i −1.01493 + 0.879440i
\(816\) 0 0
\(817\) −265.017 + 170.316i −0.324378 + 0.208465i
\(818\) 0 0
\(819\) 452.245 + 1540.21i 0.552192 + 1.88059i
\(820\) 0 0
\(821\) 981.965 1133.25i 1.19606 1.38033i 0.290082 0.957002i \(-0.406318\pi\)
0.905978 0.423325i \(-0.139137\pi\)
\(822\) 0 0
\(823\) −608.029 178.534i −0.738796 0.216930i −0.109382 0.994000i \(-0.534887\pi\)
−0.629415 + 0.777070i \(0.716705\pi\)
\(824\) 0 0
\(825\) 152.242 21.8892i 0.184536 0.0265323i
\(826\) 0 0
\(827\) 441.652i 0.534041i 0.963691 + 0.267020i \(0.0860391\pi\)
−0.963691 + 0.267020i \(0.913961\pi\)
\(828\) 0 0
\(829\) 1234.02 1.48856 0.744282 0.667866i \(-0.232792\pi\)
0.744282 + 0.667866i \(0.232792\pi\)
\(830\) 0 0
\(831\) 147.902 + 1028.68i 0.177981 + 1.23788i
\(832\) 0 0
\(833\) 40.2911 137.219i 0.0483686 0.164728i
\(834\) 0 0
\(835\) −58.8009 50.9512i −0.0704202 0.0610194i
\(836\) 0 0
\(837\) −544.565 + 159.899i −0.650615 + 0.191038i
\(838\) 0 0
\(839\) −197.829 307.828i −0.235792 0.366899i 0.703112 0.711079i \(-0.251793\pi\)
−0.938904 + 0.344180i \(0.888157\pi\)
\(840\) 0 0
\(841\) 517.390 + 597.100i 0.615208 + 0.709988i
\(842\) 0 0
\(843\) 254.351 + 36.5701i 0.301721 + 0.0433809i
\(844\) 0 0
\(845\) −1234.18 563.633i −1.46057 0.667021i
\(846\) 0 0
\(847\) −563.700 + 257.433i −0.665525 + 0.303935i
\(848\) 0 0
\(849\) −163.301 + 254.101i −0.192345 + 0.299294i
\(850\) 0 0
\(851\) 1406.97 + 547.061i 1.65332 + 0.642844i
\(852\) 0 0
\(853\) 946.360 + 608.189i 1.10945 + 0.713000i 0.961173 0.275946i \(-0.0889912\pi\)
0.148276 + 0.988946i \(0.452628\pi\)
\(854\) 0 0
\(855\) −458.110 1003.12i −0.535801 1.17324i
\(856\) 0 0
\(857\) 309.596 677.921i 0.361256 0.791039i −0.638515 0.769610i \(-0.720451\pi\)
0.999770 0.0214297i \(-0.00682182\pi\)
\(858\) 0 0
\(859\) 46.1609 321.056i 0.0537380 0.373756i −0.945151 0.326633i \(-0.894086\pi\)
0.998889 0.0471225i \(-0.0150051\pi\)
\(860\) 0 0
\(861\) 934.202 809.491i 1.08502 0.940175i
\(862\) 0 0
\(863\) 121.418 78.0307i 0.140693 0.0904180i −0.468401 0.883516i \(-0.655170\pi\)
0.609094 + 0.793098i \(0.291533\pi\)
\(864\) 0 0
\(865\) 301.926 + 1028.27i 0.349047 + 1.18875i
\(866\) 0 0
\(867\) 527.788 609.100i 0.608752 0.702538i
\(868\) 0 0
\(869\) −139.337 40.9129i −0.160341 0.0470805i
\(870\) 0 0
\(871\) 1198.39 172.302i 1.37587 0.197821i
\(872\) 0 0
\(873\) 1078.66i 1.23558i
\(874\) 0 0
\(875\) 811.505 0.927434
\(876\) 0 0
\(877\) 108.228 + 752.744i 0.123407 + 0.858317i 0.953651 + 0.300916i \(0.0972924\pi\)
−0.830243 + 0.557401i \(0.811799\pi\)
\(878\) 0 0
\(879\) 549.189 1870.37i 0.624789 2.12784i
\(880\) 0 0
\(881\) 185.788 + 160.986i 0.210883 + 0.182731i 0.753897 0.656992i \(-0.228172\pi\)
−0.543014 + 0.839723i \(0.682717\pi\)
\(882\) 0 0
\(883\) 855.787 251.282i 0.969182 0.284577i 0.241430 0.970418i \(-0.422384\pi\)
0.727752 + 0.685841i \(0.240565\pi\)
\(884\) 0 0
\(885\) −729.723 1135.47i −0.824546 1.28302i
\(886\) 0 0
\(887\) 670.197 + 773.448i 0.755577 + 0.871982i 0.995096 0.0989093i \(-0.0315354\pi\)
−0.239520 + 0.970892i \(0.576990\pi\)
\(888\) 0 0
\(889\) −181.490 26.0944i −0.204151 0.0293525i
\(890\) 0 0
\(891\) 166.506 + 76.0405i 0.186875 + 0.0853429i
\(892\) 0 0
\(893\) −857.238 + 391.487i −0.959953 + 0.438396i
\(894\) 0 0
\(895\) 650.229 1011.78i 0.726513 1.13048i
\(896\) 0 0
\(897\) −469.201 2310.29i −0.523078 2.57557i
\(898\) 0 0
\(899\) −243.672 156.598i −0.271048 0.174192i
\(900\) 0 0
\(901\) 405.195 + 887.253i 0.449717 + 0.984743i
\(902\) 0 0
\(903\) −160.762 + 352.019i −0.178031 + 0.389833i
\(904\) 0 0
\(905\) −80.7148 + 561.384i −0.0891876 + 0.620313i
\(906\) 0 0
\(907\) −853.773 + 739.799i −0.941315 + 0.815654i −0.983024 0.183475i \(-0.941265\pi\)
0.0417089 + 0.999130i \(0.486720\pi\)
\(908\) 0 0
\(909\) 372.554 239.426i 0.409850 0.263395i
\(910\) 0 0
\(911\) 13.9867 + 47.6344i 0.0153532 + 0.0522881i 0.966813 0.255484i \(-0.0822348\pi\)
−0.951460 + 0.307772i \(0.900417\pi\)
\(912\) 0 0
\(913\) −334.814 + 386.396i −0.366719 + 0.423216i
\(914\) 0 0
\(915\) 1361.23 + 399.692i 1.48768 + 0.436822i
\(916\) 0 0
\(917\) 891.649 128.200i 0.972355 0.139803i
\(918\) 0 0
\(919\) 1349.99i 1.46897i 0.678624 + 0.734486i \(0.262577\pi\)
−0.678624 + 0.734486i \(0.737423\pi\)
\(920\) 0 0
\(921\) −1792.92 −1.94671
\(922\) 0 0
\(923\) −388.867 2704.63i −0.421308 2.93026i
\(924\) 0 0
\(925\) 149.967 510.741i 0.162126 0.552152i
\(926\) 0 0
\(927\) −153.494 133.003i −0.165582 0.143477i
\(928\) 0 0
\(929\) −692.545 + 203.350i −0.745474 + 0.218891i −0.632342 0.774689i \(-0.717906\pi\)
−0.113132 + 0.993580i \(0.536088\pi\)
\(930\) 0 0
\(931\) −161.764 251.710i −0.173753 0.270365i
\(932\) 0 0
\(933\) −1280.14 1477.36i −1.37207 1.58345i
\(934\) 0 0
\(935\) 179.012 + 25.7380i 0.191457 + 0.0275273i
\(936\) 0 0
\(937\) 342.448 + 156.391i 0.365473 + 0.166906i 0.589683 0.807635i \(-0.299253\pi\)
−0.224210 + 0.974541i \(0.571980\pi\)
\(938\) 0 0
\(939\) 1448.66 661.582i 1.54277 0.704560i
\(940\) 0 0
\(941\) −726.514 + 1130.48i −0.772066 + 1.20136i 0.202943 + 0.979191i \(0.434949\pi\)
−0.975009 + 0.222167i \(0.928687\pi\)
\(942\) 0 0
\(943\) −840.402 + 611.162i −0.891200 + 0.648104i
\(944\) 0 0
\(945\) −288.301 185.280i −0.305080 0.196063i
\(946\) 0 0
\(947\) −448.917 982.990i −0.474041 1.03800i −0.984059 0.177841i \(-0.943089\pi\)
0.510018 0.860164i \(-0.329639\pi\)
\(948\) 0 0
\(949\) −588.592 + 1288.84i −0.620224 + 1.35810i
\(950\) 0 0
\(951\) −5.53564 + 38.5013i −0.00582087 + 0.0404850i
\(952\) 0 0
\(953\) −183.747 + 159.218i −0.192809 + 0.167070i −0.745915 0.666041i \(-0.767988\pi\)
0.553107 + 0.833111i \(0.313442\pi\)
\(954\) 0 0
\(955\) −666.484 + 428.323i −0.697889 + 0.448506i
\(956\) 0 0
\(957\) −38.1283 129.853i −0.0398414 0.135687i
\(958\) 0 0
\(959\) 791.155 913.041i 0.824979 0.952076i
\(960\) 0 0
\(961\) −658.740 193.423i −0.685473 0.201273i
\(962\) 0 0
\(963\) −948.270 + 136.341i −0.984705 + 0.141579i
\(964\) 0 0
\(965\) 672.611i 0.697007i
\(966\) 0 0
\(967\) −117.933 −0.121957 −0.0609786 0.998139i \(-0.519422\pi\)
−0.0609786 + 0.998139i \(0.519422\pi\)
\(968\) 0 0
\(969\) 154.805 + 1076.69i 0.159757 + 1.11114i
\(970\) 0 0
\(971\) 74.0080 252.048i 0.0762183 0.259576i −0.912565 0.408931i \(-0.865902\pi\)
0.988784 + 0.149355i \(0.0477198\pi\)
\(972\) 0 0
\(973\) 207.752 + 180.018i 0.213517 + 0.185013i
\(974\) 0 0
\(975\) −797.601 + 234.197i −0.818052 + 0.240202i
\(976\) 0 0
\(977\) 655.907 + 1020.61i 0.671348 + 1.04464i 0.995136 + 0.0985080i \(0.0314070\pi\)
−0.323789 + 0.946129i \(0.604957\pi\)
\(978\) 0 0
\(979\) 116.885 + 134.893i 0.119392 + 0.137786i
\(980\) 0 0
\(981\) 472.124 + 67.8811i 0.481268 + 0.0691959i
\(982\) 0 0
\(983\) −364.849 166.621i −0.371159 0.169503i 0.221098 0.975251i \(-0.429036\pi\)
−0.592257 + 0.805749i \(0.701763\pi\)
\(984\) 0 0
\(985\) 817.050 373.134i 0.829493 0.378817i
\(986\) 0 0
\(987\) −625.890 + 973.904i −0.634134 + 0.986732i
\(988\) 0 0
\(989\) 159.843 283.341i 0.161621 0.286492i
\(990\) 0 0
\(991\) 249.059 + 160.060i 0.251320 + 0.161514i 0.660236 0.751059i \(-0.270456\pi\)
−0.408915 + 0.912572i \(0.634093\pi\)
\(992\) 0 0
\(993\) 545.458 + 1194.39i 0.549303 + 1.20281i
\(994\) 0 0
\(995\) −37.9698 + 83.1422i −0.0381606 + 0.0835600i
\(996\) 0 0
\(997\) 150.061 1043.70i 0.150512 1.04684i −0.764851 0.644207i \(-0.777187\pi\)
0.915363 0.402629i \(-0.131904\pi\)
\(998\) 0 0
\(999\) −693.580 + 600.991i −0.694275 + 0.601592i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.3.f.a.21.4 40
4.3 odd 2 368.3.p.c.113.1 40
23.9 even 11 2116.3.d.c.1057.5 40
23.11 odd 22 inner 92.3.f.a.57.4 yes 40
23.14 odd 22 2116.3.d.c.1057.6 40
92.11 even 22 368.3.p.c.241.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.3.f.a.21.4 40 1.1 even 1 trivial
92.3.f.a.57.4 yes 40 23.11 odd 22 inner
368.3.p.c.113.1 40 4.3 odd 2
368.3.p.c.241.1 40 92.11 even 22
2116.3.d.c.1057.5 40 23.9 even 11
2116.3.d.c.1057.6 40 23.14 odd 22