Defining parameters
Level: | \( N \) | \(=\) | \( 92 = 2^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 92.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(92))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 15 | 2 | 13 |
Cusp forms | 10 | 2 | 8 |
Eisenstein series | 5 | 0 | 5 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(92))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 23 | |||||||
92.2.a.a | $1$ | $0.735$ | \(\Q\) | None | \(0\) | \(-3\) | \(-2\) | \(-4\) | $-$ | $-$ | \(q-3q^{3}-2q^{5}-4q^{7}+6q^{9}+2q^{11}+\cdots\) | |
92.2.a.b | $1$ | $0.735$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(2\) | $-$ | $+$ | \(q+q^{3}+2q^{7}-2q^{9}-q^{13}-6q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(92))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(92)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)