Properties

Label 92.2
Level 92
Weight 2
Dimension 132
Nonzero newspaces 4
Newform subspaces 6
Sturm bound 1056
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 6 \)
Sturm bound: \(1056\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(92))\).

Total New Old
Modular forms 319 176 143
Cusp forms 210 132 78
Eisenstein series 109 44 65

Trace form

\( 132 q - 11 q^{2} - 11 q^{4} - 22 q^{5} - 11 q^{6} - 11 q^{8} - 22 q^{9} - 11 q^{10} - 11 q^{12} - 22 q^{13} - 11 q^{14} - 11 q^{15} - 11 q^{16} - 33 q^{17} - 11 q^{18} - 11 q^{19} - 11 q^{20} - 55 q^{21}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
92.2.a \(\chi_{92}(1, \cdot)\) 92.2.a.a 1 1
92.2.a.b 1
92.2.b \(\chi_{92}(91, \cdot)\) 92.2.b.a 4 1
92.2.b.b 6
92.2.e \(\chi_{92}(9, \cdot)\) 92.2.e.a 20 10
92.2.h \(\chi_{92}(7, \cdot)\) 92.2.h.a 100 10

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(92))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(92)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)