Newspace parameters
Level: | \( N \) | \(=\) | \( 912 = 2^{4} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 912.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(146.270043669\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) |
Defining polynomial: |
\( x^{6} - 2x^{5} - 4725x^{4} + 92430x^{3} + 1610577x^{2} - 16081740x - 24661341 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2^{9} \) |
Twist minimal: | no (minimal twist has level 456) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 2x^{5} - 4725x^{4} + 92430x^{3} + 1610577x^{2} - 16081740x - 24661341 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -4393\nu^{5} - 288577\nu^{4} + 17990538\nu^{3} + 820304928\nu^{2} - 23681399193\nu - 121791601863 ) / 828150480 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 23423 \nu^{5} - 142247 \nu^{4} + 103907598 \nu^{3} - 1434178872 \nu^{2} - 30899430423 \nu + 62101268487 ) / 3312601920 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 23423 \nu^{5} - 142247 \nu^{4} + 103907598 \nu^{3} - 1434178872 \nu^{2} - 17649022743 \nu + 58788666567 ) / 3312601920 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 5543\nu^{5} - 64113\nu^{4} - 28829198\nu^{3} + 639322632\nu^{2} + 11916019503\nu - 53106861087 ) / 552100320 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -6041\nu^{5} + 3471\nu^{4} + 28357426\nu^{3} - 539262904\nu^{2} - 9893470161\nu + 97030518849 ) / 184033440 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} - \beta_{2} + 1 ) / 4 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -36\beta_{5} - 39\beta_{4} - 29\beta_{3} + 143\beta_{2} - 3\beta _1 + 12622 ) / 8 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 1044\beta_{5} - 69\beta_{4} + 6971\beta_{3} - 12485\beta_{2} + 759\beta _1 - 335116 ) / 8 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -77850\beta_{5} - 80907\beta_{4} - 148531\beta_{3} + 410857\beta_{2} - 21057\beta _1 + 25100360 ) / 4 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 3890574\beta_{5} + 1532274\beta_{4} + 15932809\beta_{3} - 33812113\beta_{2} + 1903236\beta _1 - 1272876977 ) / 4 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 9.00000 | 0 | −86.8767 | 0 | −2.94760 | 0 | 81.0000 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | 0 | 9.00000 | 0 | −80.1366 | 0 | 221.037 | 0 | 81.0000 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | 0 | 9.00000 | 0 | −41.5770 | 0 | −98.3255 | 0 | 81.0000 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 0 | 9.00000 | 0 | 28.9245 | 0 | −210.915 | 0 | 81.0000 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 0 | 9.00000 | 0 | 46.6057 | 0 | 58.6437 | 0 | 81.0000 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 0 | 9.00000 | 0 | 68.0602 | 0 | 181.508 | 0 | 81.0000 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(3\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 912.6.a.y | 6 | |
4.b | odd | 2 | 1 | 456.6.a.f | ✓ | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
456.6.a.f | ✓ | 6 | 4.b | odd | 2 | 1 | |
912.6.a.y | 6 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} + 65T_{5}^{5} - 9557T_{5}^{4} - 445577T_{5}^{3} + 29529208T_{5}^{2} + 602356212T_{5} - 26557430352 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(912))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} \)
$3$
\( (T - 9)^{6} \)
$5$
\( T^{6} + 65 T^{5} + \cdots - 26557430352 \)
$7$
\( T^{6} - 149 T^{5} + \cdots - 143821013760 \)
$11$
\( T^{6} - 203 T^{5} + \cdots + 1637954874112 \)
$13$
\( T^{6} + 298 T^{5} + \cdots - 67\!\cdots\!72 \)
$17$
\( T^{6} - 1319 T^{5} + \cdots + 11\!\cdots\!20 \)
$19$
\( (T + 361)^{6} \)
$23$
\( T^{6} + 1234 T^{5} + \cdots + 10\!\cdots\!44 \)
$29$
\( T^{6} - 7356 T^{5} + \cdots + 86\!\cdots\!48 \)
$31$
\( T^{6} + 1632 T^{5} + \cdots + 17\!\cdots\!16 \)
$37$
\( T^{6} - 14204 T^{5} + \cdots + 44\!\cdots\!00 \)
$41$
\( T^{6} - 14734 T^{5} + \cdots + 13\!\cdots\!32 \)
$43$
\( T^{6} - 4693 T^{5} + \cdots - 77\!\cdots\!60 \)
$47$
\( T^{6} - 10955 T^{5} + \cdots + 60\!\cdots\!28 \)
$53$
\( T^{6} - 47500 T^{5} + \cdots + 85\!\cdots\!12 \)
$59$
\( T^{6} - 61744 T^{5} + \cdots - 49\!\cdots\!12 \)
$61$
\( T^{6} + 81581 T^{5} + \cdots + 42\!\cdots\!00 \)
$67$
\( T^{6} - 45756 T^{5} + \cdots + 85\!\cdots\!76 \)
$71$
\( T^{6} - 10416 T^{5} + \cdots + 11\!\cdots\!80 \)
$73$
\( T^{6} + 54615 T^{5} + \cdots + 21\!\cdots\!08 \)
$79$
\( T^{6} - 145594 T^{5} + \cdots + 13\!\cdots\!88 \)
$83$
\( T^{6} - 160548 T^{5} + \cdots + 12\!\cdots\!00 \)
$89$
\( T^{6} + 97728 T^{5} + \cdots + 37\!\cdots\!84 \)
$97$
\( T^{6} + 760 T^{5} + \cdots - 53\!\cdots\!24 \)
show more
show less