Properties

Label 912.6.a.v.1.5
Level $912$
Weight $6$
Character 912.1
Self dual yes
Analytic conductor $146.270$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,6,Mod(1,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-45,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 7184x^{3} - 76134x^{2} + 12883743x + 275533272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 228)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(57.9047\) of defining polynomial
Character \(\chi\) \(=\) 912.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} +68.7054 q^{5} +92.5541 q^{7} +81.0000 q^{9} -455.495 q^{11} -138.319 q^{13} -618.349 q^{15} -25.2508 q^{17} -361.000 q^{19} -832.987 q^{21} -4594.45 q^{23} +1595.44 q^{25} -729.000 q^{27} +5839.25 q^{29} +8095.84 q^{31} +4099.46 q^{33} +6358.97 q^{35} -5483.74 q^{37} +1244.87 q^{39} +13069.3 q^{41} -9161.20 q^{43} +5565.14 q^{45} +25131.8 q^{47} -8240.74 q^{49} +227.257 q^{51} +31247.6 q^{53} -31295.0 q^{55} +3249.00 q^{57} -26035.2 q^{59} +23473.6 q^{61} +7496.88 q^{63} -9503.24 q^{65} -1346.30 q^{67} +41350.0 q^{69} -62531.0 q^{71} +60494.1 q^{73} -14358.9 q^{75} -42158.0 q^{77} +56411.2 q^{79} +6561.00 q^{81} +79425.3 q^{83} -1734.87 q^{85} -52553.3 q^{87} +7121.69 q^{89} -12802.0 q^{91} -72862.6 q^{93} -24802.7 q^{95} +115588. q^{97} -36895.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 45 q^{3} - 6 q^{5} - 54 q^{7} + 405 q^{9} - 272 q^{11} + 440 q^{13} + 54 q^{15} + 1940 q^{17} - 1805 q^{19} + 486 q^{21} - 3224 q^{23} + 7313 q^{25} - 3645 q^{27} + 7524 q^{29} - 11774 q^{31} + 2448 q^{33}+ \cdots - 22032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 68.7054 1.22904 0.614520 0.788901i \(-0.289350\pi\)
0.614520 + 0.788901i \(0.289350\pi\)
\(6\) 0 0
\(7\) 92.5541 0.713922 0.356961 0.934119i \(-0.383813\pi\)
0.356961 + 0.934119i \(0.383813\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −455.495 −1.13502 −0.567508 0.823368i \(-0.692093\pi\)
−0.567508 + 0.823368i \(0.692093\pi\)
\(12\) 0 0
\(13\) −138.319 −0.226998 −0.113499 0.993538i \(-0.536206\pi\)
−0.113499 + 0.993538i \(0.536206\pi\)
\(14\) 0 0
\(15\) −618.349 −0.709587
\(16\) 0 0
\(17\) −25.2508 −0.0211910 −0.0105955 0.999944i \(-0.503373\pi\)
−0.0105955 + 0.999944i \(0.503373\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) 0 0
\(21\) −832.987 −0.412183
\(22\) 0 0
\(23\) −4594.45 −1.81098 −0.905490 0.424368i \(-0.860496\pi\)
−0.905490 + 0.424368i \(0.860496\pi\)
\(24\) 0 0
\(25\) 1595.44 0.510540
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 5839.25 1.28932 0.644662 0.764467i \(-0.276998\pi\)
0.644662 + 0.764467i \(0.276998\pi\)
\(30\) 0 0
\(31\) 8095.84 1.51307 0.756533 0.653956i \(-0.226892\pi\)
0.756533 + 0.653956i \(0.226892\pi\)
\(32\) 0 0
\(33\) 4099.46 0.655302
\(34\) 0 0
\(35\) 6358.97 0.877438
\(36\) 0 0
\(37\) −5483.74 −0.658525 −0.329263 0.944238i \(-0.606800\pi\)
−0.329263 + 0.944238i \(0.606800\pi\)
\(38\) 0 0
\(39\) 1244.87 0.131057
\(40\) 0 0
\(41\) 13069.3 1.21420 0.607102 0.794624i \(-0.292332\pi\)
0.607102 + 0.794624i \(0.292332\pi\)
\(42\) 0 0
\(43\) −9161.20 −0.755581 −0.377791 0.925891i \(-0.623316\pi\)
−0.377791 + 0.925891i \(0.623316\pi\)
\(44\) 0 0
\(45\) 5565.14 0.409680
\(46\) 0 0
\(47\) 25131.8 1.65951 0.829754 0.558130i \(-0.188481\pi\)
0.829754 + 0.558130i \(0.188481\pi\)
\(48\) 0 0
\(49\) −8240.74 −0.490316
\(50\) 0 0
\(51\) 227.257 0.0122347
\(52\) 0 0
\(53\) 31247.6 1.52801 0.764006 0.645209i \(-0.223230\pi\)
0.764006 + 0.645209i \(0.223230\pi\)
\(54\) 0 0
\(55\) −31295.0 −1.39498
\(56\) 0 0
\(57\) 3249.00 0.132453
\(58\) 0 0
\(59\) −26035.2 −0.973711 −0.486856 0.873482i \(-0.661856\pi\)
−0.486856 + 0.873482i \(0.661856\pi\)
\(60\) 0 0
\(61\) 23473.6 0.807708 0.403854 0.914823i \(-0.367670\pi\)
0.403854 + 0.914823i \(0.367670\pi\)
\(62\) 0 0
\(63\) 7496.88 0.237974
\(64\) 0 0
\(65\) −9503.24 −0.278990
\(66\) 0 0
\(67\) −1346.30 −0.0366401 −0.0183200 0.999832i \(-0.505832\pi\)
−0.0183200 + 0.999832i \(0.505832\pi\)
\(68\) 0 0
\(69\) 41350.0 1.04557
\(70\) 0 0
\(71\) −62531.0 −1.47214 −0.736071 0.676904i \(-0.763321\pi\)
−0.736071 + 0.676904i \(0.763321\pi\)
\(72\) 0 0
\(73\) 60494.1 1.32864 0.664318 0.747451i \(-0.268722\pi\)
0.664318 + 0.747451i \(0.268722\pi\)
\(74\) 0 0
\(75\) −14358.9 −0.294760
\(76\) 0 0
\(77\) −42158.0 −0.810313
\(78\) 0 0
\(79\) 56411.2 1.01694 0.508472 0.861078i \(-0.330210\pi\)
0.508472 + 0.861078i \(0.330210\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 79425.3 1.26550 0.632752 0.774354i \(-0.281925\pi\)
0.632752 + 0.774354i \(0.281925\pi\)
\(84\) 0 0
\(85\) −1734.87 −0.0260446
\(86\) 0 0
\(87\) −52553.3 −0.744392
\(88\) 0 0
\(89\) 7121.69 0.0953033 0.0476516 0.998864i \(-0.484826\pi\)
0.0476516 + 0.998864i \(0.484826\pi\)
\(90\) 0 0
\(91\) −12802.0 −0.162059
\(92\) 0 0
\(93\) −72862.6 −0.873569
\(94\) 0 0
\(95\) −24802.7 −0.281961
\(96\) 0 0
\(97\) 115588. 1.24733 0.623666 0.781691i \(-0.285642\pi\)
0.623666 + 0.781691i \(0.285642\pi\)
\(98\) 0 0
\(99\) −36895.1 −0.378339
\(100\) 0 0
\(101\) −32109.9 −0.313210 −0.156605 0.987661i \(-0.550055\pi\)
−0.156605 + 0.987661i \(0.550055\pi\)
\(102\) 0 0
\(103\) −195110. −1.81212 −0.906061 0.423148i \(-0.860925\pi\)
−0.906061 + 0.423148i \(0.860925\pi\)
\(104\) 0 0
\(105\) −57230.7 −0.506589
\(106\) 0 0
\(107\) −20216.6 −0.170706 −0.0853531 0.996351i \(-0.527202\pi\)
−0.0853531 + 0.996351i \(0.527202\pi\)
\(108\) 0 0
\(109\) −94942.4 −0.765410 −0.382705 0.923871i \(-0.625007\pi\)
−0.382705 + 0.923871i \(0.625007\pi\)
\(110\) 0 0
\(111\) 49353.7 0.380200
\(112\) 0 0
\(113\) −40546.3 −0.298713 −0.149357 0.988783i \(-0.547720\pi\)
−0.149357 + 0.988783i \(0.547720\pi\)
\(114\) 0 0
\(115\) −315663. −2.22577
\(116\) 0 0
\(117\) −11203.8 −0.0756661
\(118\) 0 0
\(119\) −2337.06 −0.0151287
\(120\) 0 0
\(121\) 46425.0 0.288262
\(122\) 0 0
\(123\) −117623. −0.701021
\(124\) 0 0
\(125\) −105089. −0.601566
\(126\) 0 0
\(127\) 179240. 0.986112 0.493056 0.869998i \(-0.335880\pi\)
0.493056 + 0.869998i \(0.335880\pi\)
\(128\) 0 0
\(129\) 82450.8 0.436235
\(130\) 0 0
\(131\) 264193. 1.34506 0.672532 0.740068i \(-0.265207\pi\)
0.672532 + 0.740068i \(0.265207\pi\)
\(132\) 0 0
\(133\) −33412.0 −0.163785
\(134\) 0 0
\(135\) −50086.3 −0.236529
\(136\) 0 0
\(137\) 180893. 0.823419 0.411710 0.911315i \(-0.364932\pi\)
0.411710 + 0.911315i \(0.364932\pi\)
\(138\) 0 0
\(139\) 40272.0 0.176794 0.0883968 0.996085i \(-0.471826\pi\)
0.0883968 + 0.996085i \(0.471826\pi\)
\(140\) 0 0
\(141\) −226186. −0.958117
\(142\) 0 0
\(143\) 63003.5 0.257647
\(144\) 0 0
\(145\) 401188. 1.58463
\(146\) 0 0
\(147\) 74166.7 0.283084
\(148\) 0 0
\(149\) −106352. −0.392447 −0.196224 0.980559i \(-0.562868\pi\)
−0.196224 + 0.980559i \(0.562868\pi\)
\(150\) 0 0
\(151\) 473107. 1.68856 0.844280 0.535902i \(-0.180028\pi\)
0.844280 + 0.535902i \(0.180028\pi\)
\(152\) 0 0
\(153\) −2045.31 −0.00706368
\(154\) 0 0
\(155\) 556228. 1.85962
\(156\) 0 0
\(157\) −221657. −0.717681 −0.358841 0.933399i \(-0.616828\pi\)
−0.358841 + 0.933399i \(0.616828\pi\)
\(158\) 0 0
\(159\) −281228. −0.882199
\(160\) 0 0
\(161\) −425235. −1.29290
\(162\) 0 0
\(163\) 632179. 1.86368 0.931840 0.362870i \(-0.118203\pi\)
0.931840 + 0.362870i \(0.118203\pi\)
\(164\) 0 0
\(165\) 281655. 0.805393
\(166\) 0 0
\(167\) −219742. −0.609707 −0.304853 0.952399i \(-0.598607\pi\)
−0.304853 + 0.952399i \(0.598607\pi\)
\(168\) 0 0
\(169\) −352161. −0.948472
\(170\) 0 0
\(171\) −29241.0 −0.0764719
\(172\) 0 0
\(173\) −185721. −0.471786 −0.235893 0.971779i \(-0.575802\pi\)
−0.235893 + 0.971779i \(0.575802\pi\)
\(174\) 0 0
\(175\) 147664. 0.364485
\(176\) 0 0
\(177\) 234316. 0.562173
\(178\) 0 0
\(179\) 452972. 1.05667 0.528335 0.849036i \(-0.322817\pi\)
0.528335 + 0.849036i \(0.322817\pi\)
\(180\) 0 0
\(181\) −246811. −0.559975 −0.279988 0.960004i \(-0.590330\pi\)
−0.279988 + 0.960004i \(0.590330\pi\)
\(182\) 0 0
\(183\) −211262. −0.466330
\(184\) 0 0
\(185\) −376763. −0.809354
\(186\) 0 0
\(187\) 11501.6 0.0240522
\(188\) 0 0
\(189\) −67471.9 −0.137394
\(190\) 0 0
\(191\) 569883. 1.13032 0.565161 0.824981i \(-0.308814\pi\)
0.565161 + 0.824981i \(0.308814\pi\)
\(192\) 0 0
\(193\) 832118. 1.60802 0.804010 0.594616i \(-0.202696\pi\)
0.804010 + 0.594616i \(0.202696\pi\)
\(194\) 0 0
\(195\) 85529.2 0.161075
\(196\) 0 0
\(197\) −38624.6 −0.0709086 −0.0354543 0.999371i \(-0.511288\pi\)
−0.0354543 + 0.999371i \(0.511288\pi\)
\(198\) 0 0
\(199\) 63345.6 0.113392 0.0566962 0.998391i \(-0.481943\pi\)
0.0566962 + 0.998391i \(0.481943\pi\)
\(200\) 0 0
\(201\) 12116.7 0.0211542
\(202\) 0 0
\(203\) 540447. 0.920477
\(204\) 0 0
\(205\) 897930. 1.49231
\(206\) 0 0
\(207\) −372150. −0.603660
\(208\) 0 0
\(209\) 164434. 0.260391
\(210\) 0 0
\(211\) 123375. 0.190774 0.0953871 0.995440i \(-0.469591\pi\)
0.0953871 + 0.995440i \(0.469591\pi\)
\(212\) 0 0
\(213\) 562779. 0.849942
\(214\) 0 0
\(215\) −629424. −0.928640
\(216\) 0 0
\(217\) 749303. 1.08021
\(218\) 0 0
\(219\) −544447. −0.767088
\(220\) 0 0
\(221\) 3492.65 0.00481033
\(222\) 0 0
\(223\) −72181.4 −0.0971993 −0.0485996 0.998818i \(-0.515476\pi\)
−0.0485996 + 0.998818i \(0.515476\pi\)
\(224\) 0 0
\(225\) 129230. 0.170180
\(226\) 0 0
\(227\) 386692. 0.498082 0.249041 0.968493i \(-0.419885\pi\)
0.249041 + 0.968493i \(0.419885\pi\)
\(228\) 0 0
\(229\) 423629. 0.533822 0.266911 0.963721i \(-0.413997\pi\)
0.266911 + 0.963721i \(0.413997\pi\)
\(230\) 0 0
\(231\) 379422. 0.467834
\(232\) 0 0
\(233\) 436055. 0.526201 0.263101 0.964768i \(-0.415255\pi\)
0.263101 + 0.964768i \(0.415255\pi\)
\(234\) 0 0
\(235\) 1.72669e6 2.03960
\(236\) 0 0
\(237\) −507701. −0.587133
\(238\) 0 0
\(239\) 1.30409e6 1.47677 0.738384 0.674380i \(-0.235589\pi\)
0.738384 + 0.674380i \(0.235589\pi\)
\(240\) 0 0
\(241\) 148667. 0.164882 0.0824409 0.996596i \(-0.473728\pi\)
0.0824409 + 0.996596i \(0.473728\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −566184. −0.602618
\(246\) 0 0
\(247\) 49933.0 0.0520770
\(248\) 0 0
\(249\) −714828. −0.730640
\(250\) 0 0
\(251\) −362686. −0.363367 −0.181684 0.983357i \(-0.558155\pi\)
−0.181684 + 0.983357i \(0.558155\pi\)
\(252\) 0 0
\(253\) 2.09275e6 2.05549
\(254\) 0 0
\(255\) 15613.8 0.0150369
\(256\) 0 0
\(257\) −582935. −0.550538 −0.275269 0.961367i \(-0.588767\pi\)
−0.275269 + 0.961367i \(0.588767\pi\)
\(258\) 0 0
\(259\) −507543. −0.470136
\(260\) 0 0
\(261\) 472980. 0.429775
\(262\) 0 0
\(263\) 1.66782e6 1.48682 0.743412 0.668833i \(-0.233206\pi\)
0.743412 + 0.668833i \(0.233206\pi\)
\(264\) 0 0
\(265\) 2.14688e6 1.87799
\(266\) 0 0
\(267\) −64095.2 −0.0550234
\(268\) 0 0
\(269\) 316816. 0.266948 0.133474 0.991052i \(-0.457387\pi\)
0.133474 + 0.991052i \(0.457387\pi\)
\(270\) 0 0
\(271\) −2.05650e6 −1.70101 −0.850503 0.525970i \(-0.823703\pi\)
−0.850503 + 0.525970i \(0.823703\pi\)
\(272\) 0 0
\(273\) 115218. 0.0935648
\(274\) 0 0
\(275\) −726714. −0.579471
\(276\) 0 0
\(277\) −422934. −0.331187 −0.165594 0.986194i \(-0.552954\pi\)
−0.165594 + 0.986194i \(0.552954\pi\)
\(278\) 0 0
\(279\) 655763. 0.504355
\(280\) 0 0
\(281\) −98335.2 −0.0742922 −0.0371461 0.999310i \(-0.511827\pi\)
−0.0371461 + 0.999310i \(0.511827\pi\)
\(282\) 0 0
\(283\) 1.43796e6 1.06728 0.533642 0.845710i \(-0.320823\pi\)
0.533642 + 0.845710i \(0.320823\pi\)
\(284\) 0 0
\(285\) 223224. 0.162790
\(286\) 0 0
\(287\) 1.20961e6 0.866847
\(288\) 0 0
\(289\) −1.41922e6 −0.999551
\(290\) 0 0
\(291\) −1.04029e6 −0.720148
\(292\) 0 0
\(293\) 2.05305e6 1.39711 0.698555 0.715557i \(-0.253827\pi\)
0.698555 + 0.715557i \(0.253827\pi\)
\(294\) 0 0
\(295\) −1.78876e6 −1.19673
\(296\) 0 0
\(297\) 332056. 0.218434
\(298\) 0 0
\(299\) 635498. 0.411089
\(300\) 0 0
\(301\) −847907. −0.539426
\(302\) 0 0
\(303\) 288989. 0.180832
\(304\) 0 0
\(305\) 1.61276e6 0.992706
\(306\) 0 0
\(307\) 2.78894e6 1.68886 0.844429 0.535668i \(-0.179940\pi\)
0.844429 + 0.535668i \(0.179940\pi\)
\(308\) 0 0
\(309\) 1.75599e6 1.04623
\(310\) 0 0
\(311\) −881911. −0.517040 −0.258520 0.966006i \(-0.583235\pi\)
−0.258520 + 0.966006i \(0.583235\pi\)
\(312\) 0 0
\(313\) 1.26094e6 0.727499 0.363749 0.931497i \(-0.381496\pi\)
0.363749 + 0.931497i \(0.381496\pi\)
\(314\) 0 0
\(315\) 515076. 0.292479
\(316\) 0 0
\(317\) 445866. 0.249205 0.124602 0.992207i \(-0.460234\pi\)
0.124602 + 0.992207i \(0.460234\pi\)
\(318\) 0 0
\(319\) −2.65975e6 −1.46340
\(320\) 0 0
\(321\) 181950. 0.0985572
\(322\) 0 0
\(323\) 9115.53 0.00486156
\(324\) 0 0
\(325\) −220679. −0.115892
\(326\) 0 0
\(327\) 854481. 0.441909
\(328\) 0 0
\(329\) 2.32605e6 1.18476
\(330\) 0 0
\(331\) −199749. −0.100211 −0.0501055 0.998744i \(-0.515956\pi\)
−0.0501055 + 0.998744i \(0.515956\pi\)
\(332\) 0 0
\(333\) −444183. −0.219508
\(334\) 0 0
\(335\) −92498.4 −0.0450321
\(336\) 0 0
\(337\) −487801. −0.233974 −0.116987 0.993133i \(-0.537324\pi\)
−0.116987 + 0.993133i \(0.537324\pi\)
\(338\) 0 0
\(339\) 364916. 0.172462
\(340\) 0 0
\(341\) −3.68762e6 −1.71735
\(342\) 0 0
\(343\) −2.31827e6 −1.06397
\(344\) 0 0
\(345\) 2.84097e6 1.28505
\(346\) 0 0
\(347\) −340706. −0.151900 −0.0759498 0.997112i \(-0.524199\pi\)
−0.0759498 + 0.997112i \(0.524199\pi\)
\(348\) 0 0
\(349\) 1.95453e6 0.858969 0.429485 0.903074i \(-0.358695\pi\)
0.429485 + 0.903074i \(0.358695\pi\)
\(350\) 0 0
\(351\) 100834. 0.0436858
\(352\) 0 0
\(353\) −189240. −0.0808307 −0.0404153 0.999183i \(-0.512868\pi\)
−0.0404153 + 0.999183i \(0.512868\pi\)
\(354\) 0 0
\(355\) −4.29622e6 −1.80932
\(356\) 0 0
\(357\) 21033.6 0.00873459
\(358\) 0 0
\(359\) 1.38450e6 0.566967 0.283484 0.958977i \(-0.408510\pi\)
0.283484 + 0.958977i \(0.408510\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) −417825. −0.166428
\(364\) 0 0
\(365\) 4.15627e6 1.63295
\(366\) 0 0
\(367\) 2.01107e6 0.779403 0.389701 0.920941i \(-0.372578\pi\)
0.389701 + 0.920941i \(0.372578\pi\)
\(368\) 0 0
\(369\) 1.05861e6 0.404735
\(370\) 0 0
\(371\) 2.89209e6 1.09088
\(372\) 0 0
\(373\) −3.33720e6 −1.24197 −0.620983 0.783824i \(-0.713266\pi\)
−0.620983 + 0.783824i \(0.713266\pi\)
\(374\) 0 0
\(375\) 945804. 0.347315
\(376\) 0 0
\(377\) −807678. −0.292674
\(378\) 0 0
\(379\) 320740. 0.114698 0.0573490 0.998354i \(-0.481735\pi\)
0.0573490 + 0.998354i \(0.481735\pi\)
\(380\) 0 0
\(381\) −1.61316e6 −0.569332
\(382\) 0 0
\(383\) −5.60942e6 −1.95398 −0.976992 0.213278i \(-0.931586\pi\)
−0.976992 + 0.213278i \(0.931586\pi\)
\(384\) 0 0
\(385\) −2.89648e6 −0.995907
\(386\) 0 0
\(387\) −742057. −0.251860
\(388\) 0 0
\(389\) 1.26415e6 0.423571 0.211785 0.977316i \(-0.432072\pi\)
0.211785 + 0.977316i \(0.432072\pi\)
\(390\) 0 0
\(391\) 116013. 0.0383766
\(392\) 0 0
\(393\) −2.37774e6 −0.776573
\(394\) 0 0
\(395\) 3.87575e6 1.24987
\(396\) 0 0
\(397\) −3.69231e6 −1.17577 −0.587884 0.808945i \(-0.700039\pi\)
−0.587884 + 0.808945i \(0.700039\pi\)
\(398\) 0 0
\(399\) 300708. 0.0945612
\(400\) 0 0
\(401\) 2.16581e6 0.672605 0.336303 0.941754i \(-0.390823\pi\)
0.336303 + 0.941754i \(0.390823\pi\)
\(402\) 0 0
\(403\) −1.11981e6 −0.343463
\(404\) 0 0
\(405\) 450776. 0.136560
\(406\) 0 0
\(407\) 2.49782e6 0.747437
\(408\) 0 0
\(409\) −293772. −0.0868364 −0.0434182 0.999057i \(-0.513825\pi\)
−0.0434182 + 0.999057i \(0.513825\pi\)
\(410\) 0 0
\(411\) −1.62804e6 −0.475401
\(412\) 0 0
\(413\) −2.40966e6 −0.695154
\(414\) 0 0
\(415\) 5.45695e6 1.55536
\(416\) 0 0
\(417\) −362448. −0.102072
\(418\) 0 0
\(419\) −3.02446e6 −0.841615 −0.420807 0.907150i \(-0.638253\pi\)
−0.420807 + 0.907150i \(0.638253\pi\)
\(420\) 0 0
\(421\) −5.71044e6 −1.57023 −0.785117 0.619348i \(-0.787397\pi\)
−0.785117 + 0.619348i \(0.787397\pi\)
\(422\) 0 0
\(423\) 2.03568e6 0.553169
\(424\) 0 0
\(425\) −40286.0 −0.0108189
\(426\) 0 0
\(427\) 2.17257e6 0.576640
\(428\) 0 0
\(429\) −567031. −0.148752
\(430\) 0 0
\(431\) −855091. −0.221727 −0.110864 0.993836i \(-0.535362\pi\)
−0.110864 + 0.993836i \(0.535362\pi\)
\(432\) 0 0
\(433\) −3.21472e6 −0.823992 −0.411996 0.911186i \(-0.635168\pi\)
−0.411996 + 0.911186i \(0.635168\pi\)
\(434\) 0 0
\(435\) −3.61070e6 −0.914888
\(436\) 0 0
\(437\) 1.65859e6 0.415467
\(438\) 0 0
\(439\) 6.88316e6 1.70462 0.852308 0.523040i \(-0.175202\pi\)
0.852308 + 0.523040i \(0.175202\pi\)
\(440\) 0 0
\(441\) −667500. −0.163439
\(442\) 0 0
\(443\) 1.98623e6 0.480863 0.240431 0.970666i \(-0.422711\pi\)
0.240431 + 0.970666i \(0.422711\pi\)
\(444\) 0 0
\(445\) 489299. 0.117132
\(446\) 0 0
\(447\) 957170. 0.226579
\(448\) 0 0
\(449\) −2.18473e6 −0.511425 −0.255712 0.966753i \(-0.582310\pi\)
−0.255712 + 0.966753i \(0.582310\pi\)
\(450\) 0 0
\(451\) −5.95299e6 −1.37814
\(452\) 0 0
\(453\) −4.25796e6 −0.974891
\(454\) 0 0
\(455\) −879564. −0.199177
\(456\) 0 0
\(457\) 3.89170e6 0.871663 0.435831 0.900028i \(-0.356454\pi\)
0.435831 + 0.900028i \(0.356454\pi\)
\(458\) 0 0
\(459\) 18407.8 0.00407822
\(460\) 0 0
\(461\) 2.81521e6 0.616962 0.308481 0.951231i \(-0.400179\pi\)
0.308481 + 0.951231i \(0.400179\pi\)
\(462\) 0 0
\(463\) 334859. 0.0725955 0.0362978 0.999341i \(-0.488444\pi\)
0.0362978 + 0.999341i \(0.488444\pi\)
\(464\) 0 0
\(465\) −5.00606e6 −1.07365
\(466\) 0 0
\(467\) −4.92891e6 −1.04582 −0.522912 0.852386i \(-0.675155\pi\)
−0.522912 + 0.852386i \(0.675155\pi\)
\(468\) 0 0
\(469\) −124606. −0.0261581
\(470\) 0 0
\(471\) 1.99491e6 0.414354
\(472\) 0 0
\(473\) 4.17288e6 0.857597
\(474\) 0 0
\(475\) −575952. −0.117126
\(476\) 0 0
\(477\) 2.53106e6 0.509338
\(478\) 0 0
\(479\) 8.65727e6 1.72402 0.862009 0.506892i \(-0.169206\pi\)
0.862009 + 0.506892i \(0.169206\pi\)
\(480\) 0 0
\(481\) 758504. 0.149484
\(482\) 0 0
\(483\) 3.82711e6 0.746455
\(484\) 0 0
\(485\) 7.94150e6 1.53302
\(486\) 0 0
\(487\) 687262. 0.131311 0.0656553 0.997842i \(-0.479086\pi\)
0.0656553 + 0.997842i \(0.479086\pi\)
\(488\) 0 0
\(489\) −5.68961e6 −1.07600
\(490\) 0 0
\(491\) 5.24841e6 0.982481 0.491240 0.871024i \(-0.336544\pi\)
0.491240 + 0.871024i \(0.336544\pi\)
\(492\) 0 0
\(493\) −147446. −0.0273221
\(494\) 0 0
\(495\) −2.53490e6 −0.464994
\(496\) 0 0
\(497\) −5.78750e6 −1.05099
\(498\) 0 0
\(499\) 1.73505e6 0.311932 0.155966 0.987762i \(-0.450151\pi\)
0.155966 + 0.987762i \(0.450151\pi\)
\(500\) 0 0
\(501\) 1.97767e6 0.352014
\(502\) 0 0
\(503\) 7.46626e6 1.31578 0.657889 0.753115i \(-0.271449\pi\)
0.657889 + 0.753115i \(0.271449\pi\)
\(504\) 0 0
\(505\) −2.20613e6 −0.384948
\(506\) 0 0
\(507\) 3.16945e6 0.547600
\(508\) 0 0
\(509\) 7.25555e6 1.24130 0.620648 0.784089i \(-0.286869\pi\)
0.620648 + 0.784089i \(0.286869\pi\)
\(510\) 0 0
\(511\) 5.59897e6 0.948541
\(512\) 0 0
\(513\) 263169. 0.0441511
\(514\) 0 0
\(515\) −1.34051e7 −2.22717
\(516\) 0 0
\(517\) −1.14474e7 −1.88357
\(518\) 0 0
\(519\) 1.67149e6 0.272386
\(520\) 0 0
\(521\) 1.04532e7 1.68716 0.843580 0.537003i \(-0.180444\pi\)
0.843580 + 0.537003i \(0.180444\pi\)
\(522\) 0 0
\(523\) −5.76718e6 −0.921955 −0.460977 0.887412i \(-0.652501\pi\)
−0.460977 + 0.887412i \(0.652501\pi\)
\(524\) 0 0
\(525\) −1.32898e6 −0.210436
\(526\) 0 0
\(527\) −204426. −0.0320634
\(528\) 0 0
\(529\) 1.46726e7 2.27965
\(530\) 0 0
\(531\) −2.10885e6 −0.324570
\(532\) 0 0
\(533\) −1.80772e6 −0.275622
\(534\) 0 0
\(535\) −1.38899e6 −0.209805
\(536\) 0 0
\(537\) −4.07675e6 −0.610068
\(538\) 0 0
\(539\) 3.75362e6 0.556517
\(540\) 0 0
\(541\) −8.23533e6 −1.20973 −0.604864 0.796329i \(-0.706773\pi\)
−0.604864 + 0.796329i \(0.706773\pi\)
\(542\) 0 0
\(543\) 2.22130e6 0.323302
\(544\) 0 0
\(545\) −6.52306e6 −0.940719
\(546\) 0 0
\(547\) −4.43504e6 −0.633767 −0.316883 0.948465i \(-0.602636\pi\)
−0.316883 + 0.948465i \(0.602636\pi\)
\(548\) 0 0
\(549\) 1.90136e6 0.269236
\(550\) 0 0
\(551\) −2.10797e6 −0.295791
\(552\) 0 0
\(553\) 5.22108e6 0.726019
\(554\) 0 0
\(555\) 3.39086e6 0.467281
\(556\) 0 0
\(557\) −9.40423e6 −1.28436 −0.642178 0.766555i \(-0.721969\pi\)
−0.642178 + 0.766555i \(0.721969\pi\)
\(558\) 0 0
\(559\) 1.26717e6 0.171516
\(560\) 0 0
\(561\) −103514. −0.0138865
\(562\) 0 0
\(563\) 8.42988e6 1.12086 0.560429 0.828203i \(-0.310636\pi\)
0.560429 + 0.828203i \(0.310636\pi\)
\(564\) 0 0
\(565\) −2.78575e6 −0.367131
\(566\) 0 0
\(567\) 607247. 0.0793246
\(568\) 0 0
\(569\) 8.14622e6 1.05481 0.527407 0.849613i \(-0.323164\pi\)
0.527407 + 0.849613i \(0.323164\pi\)
\(570\) 0 0
\(571\) 1.44633e6 0.185643 0.0928215 0.995683i \(-0.470411\pi\)
0.0928215 + 0.995683i \(0.470411\pi\)
\(572\) 0 0
\(573\) −5.12895e6 −0.652592
\(574\) 0 0
\(575\) −7.33015e6 −0.924577
\(576\) 0 0
\(577\) 7.86543e6 0.983519 0.491760 0.870731i \(-0.336354\pi\)
0.491760 + 0.870731i \(0.336354\pi\)
\(578\) 0 0
\(579\) −7.48906e6 −0.928391
\(580\) 0 0
\(581\) 7.35114e6 0.903471
\(582\) 0 0
\(583\) −1.42331e7 −1.73432
\(584\) 0 0
\(585\) −769763. −0.0929966
\(586\) 0 0
\(587\) −1.49205e7 −1.78726 −0.893631 0.448802i \(-0.851851\pi\)
−0.893631 + 0.448802i \(0.851851\pi\)
\(588\) 0 0
\(589\) −2.92260e6 −0.347121
\(590\) 0 0
\(591\) 347622. 0.0409391
\(592\) 0 0
\(593\) 1.14093e7 1.33236 0.666179 0.745792i \(-0.267929\pi\)
0.666179 + 0.745792i \(0.267929\pi\)
\(594\) 0 0
\(595\) −160569. −0.0185938
\(596\) 0 0
\(597\) −570111. −0.0654671
\(598\) 0 0
\(599\) 7.64606e6 0.870705 0.435352 0.900260i \(-0.356624\pi\)
0.435352 + 0.900260i \(0.356624\pi\)
\(600\) 0 0
\(601\) −7.31161e6 −0.825708 −0.412854 0.910797i \(-0.635468\pi\)
−0.412854 + 0.910797i \(0.635468\pi\)
\(602\) 0 0
\(603\) −109051. −0.0122134
\(604\) 0 0
\(605\) 3.18965e6 0.354286
\(606\) 0 0
\(607\) −4.14398e6 −0.456506 −0.228253 0.973602i \(-0.573301\pi\)
−0.228253 + 0.973602i \(0.573301\pi\)
\(608\) 0 0
\(609\) −4.86402e6 −0.531438
\(610\) 0 0
\(611\) −3.47620e6 −0.376705
\(612\) 0 0
\(613\) −8.51734e6 −0.915488 −0.457744 0.889084i \(-0.651342\pi\)
−0.457744 + 0.889084i \(0.651342\pi\)
\(614\) 0 0
\(615\) −8.08137e6 −0.861583
\(616\) 0 0
\(617\) 4.77541e6 0.505008 0.252504 0.967596i \(-0.418746\pi\)
0.252504 + 0.967596i \(0.418746\pi\)
\(618\) 0 0
\(619\) −1.38607e7 −1.45398 −0.726989 0.686649i \(-0.759081\pi\)
−0.726989 + 0.686649i \(0.759081\pi\)
\(620\) 0 0
\(621\) 3.34935e6 0.348523
\(622\) 0 0
\(623\) 659141. 0.0680391
\(624\) 0 0
\(625\) −1.22059e7 −1.24989
\(626\) 0 0
\(627\) −1.47990e6 −0.150337
\(628\) 0 0
\(629\) 138469. 0.0139548
\(630\) 0 0
\(631\) 1.49814e7 1.49789 0.748946 0.662631i \(-0.230560\pi\)
0.748946 + 0.662631i \(0.230560\pi\)
\(632\) 0 0
\(633\) −1.11037e6 −0.110143
\(634\) 0 0
\(635\) 1.23148e7 1.21197
\(636\) 0 0
\(637\) 1.13985e6 0.111301
\(638\) 0 0
\(639\) −5.06501e6 −0.490714
\(640\) 0 0
\(641\) 3.32362e6 0.319497 0.159748 0.987158i \(-0.448932\pi\)
0.159748 + 0.987158i \(0.448932\pi\)
\(642\) 0 0
\(643\) −6.63132e6 −0.632518 −0.316259 0.948673i \(-0.602427\pi\)
−0.316259 + 0.948673i \(0.602427\pi\)
\(644\) 0 0
\(645\) 5.66482e6 0.536150
\(646\) 0 0
\(647\) −9.63184e6 −0.904583 −0.452292 0.891870i \(-0.649393\pi\)
−0.452292 + 0.891870i \(0.649393\pi\)
\(648\) 0 0
\(649\) 1.18589e7 1.10518
\(650\) 0 0
\(651\) −6.74373e6 −0.623660
\(652\) 0 0
\(653\) 1.92143e7 1.76336 0.881680 0.471848i \(-0.156413\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(654\) 0 0
\(655\) 1.81515e7 1.65314
\(656\) 0 0
\(657\) 4.90002e6 0.442878
\(658\) 0 0
\(659\) −1.36828e7 −1.22733 −0.613664 0.789568i \(-0.710305\pi\)
−0.613664 + 0.789568i \(0.710305\pi\)
\(660\) 0 0
\(661\) −1.42269e7 −1.26651 −0.633254 0.773944i \(-0.718281\pi\)
−0.633254 + 0.773944i \(0.718281\pi\)
\(662\) 0 0
\(663\) −31433.9 −0.00277724
\(664\) 0 0
\(665\) −2.29559e6 −0.201298
\(666\) 0 0
\(667\) −2.68281e7 −2.33494
\(668\) 0 0
\(669\) 649633. 0.0561180
\(670\) 0 0
\(671\) −1.06921e7 −0.916762
\(672\) 0 0
\(673\) −1.34068e7 −1.14100 −0.570501 0.821297i \(-0.693251\pi\)
−0.570501 + 0.821297i \(0.693251\pi\)
\(674\) 0 0
\(675\) −1.16307e6 −0.0982534
\(676\) 0 0
\(677\) −9.06473e6 −0.760122 −0.380061 0.924961i \(-0.624097\pi\)
−0.380061 + 0.924961i \(0.624097\pi\)
\(678\) 0 0
\(679\) 1.06981e7 0.890498
\(680\) 0 0
\(681\) −3.48023e6 −0.287568
\(682\) 0 0
\(683\) −1.14492e7 −0.939123 −0.469562 0.882900i \(-0.655588\pi\)
−0.469562 + 0.882900i \(0.655588\pi\)
\(684\) 0 0
\(685\) 1.24283e7 1.01202
\(686\) 0 0
\(687\) −3.81266e6 −0.308202
\(688\) 0 0
\(689\) −4.32213e6 −0.346856
\(690\) 0 0
\(691\) 9.17204e6 0.730753 0.365377 0.930860i \(-0.380940\pi\)
0.365377 + 0.930860i \(0.380940\pi\)
\(692\) 0 0
\(693\) −3.41479e6 −0.270104
\(694\) 0 0
\(695\) 2.76691e6 0.217286
\(696\) 0 0
\(697\) −330009. −0.0257303
\(698\) 0 0
\(699\) −3.92450e6 −0.303802
\(700\) 0 0
\(701\) 1.57928e6 0.121385 0.0606924 0.998157i \(-0.480669\pi\)
0.0606924 + 0.998157i \(0.480669\pi\)
\(702\) 0 0
\(703\) 1.97963e6 0.151076
\(704\) 0 0
\(705\) −1.55402e7 −1.17756
\(706\) 0 0
\(707\) −2.97190e6 −0.223607
\(708\) 0 0
\(709\) 2.08665e7 1.55896 0.779480 0.626428i \(-0.215484\pi\)
0.779480 + 0.626428i \(0.215484\pi\)
\(710\) 0 0
\(711\) 4.56930e6 0.338982
\(712\) 0 0
\(713\) −3.71959e7 −2.74013
\(714\) 0 0
\(715\) 4.32868e6 0.316658
\(716\) 0 0
\(717\) −1.17368e7 −0.852613
\(718\) 0 0
\(719\) 1.24652e6 0.0899241 0.0449620 0.998989i \(-0.485683\pi\)
0.0449620 + 0.998989i \(0.485683\pi\)
\(720\) 0 0
\(721\) −1.80583e7 −1.29371
\(722\) 0 0
\(723\) −1.33800e6 −0.0951945
\(724\) 0 0
\(725\) 9.31616e6 0.658251
\(726\) 0 0
\(727\) 8.16134e6 0.572698 0.286349 0.958125i \(-0.407558\pi\)
0.286349 + 0.958125i \(0.407558\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 231327. 0.0160116
\(732\) 0 0
\(733\) 4.20287e6 0.288926 0.144463 0.989510i \(-0.453855\pi\)
0.144463 + 0.989510i \(0.453855\pi\)
\(734\) 0 0
\(735\) 5.09565e6 0.347922
\(736\) 0 0
\(737\) 613235. 0.0415871
\(738\) 0 0
\(739\) −1.97042e7 −1.32724 −0.663619 0.748071i \(-0.730980\pi\)
−0.663619 + 0.748071i \(0.730980\pi\)
\(740\) 0 0
\(741\) −449397. −0.0300666
\(742\) 0 0
\(743\) 1.76027e6 0.116979 0.0584895 0.998288i \(-0.481372\pi\)
0.0584895 + 0.998288i \(0.481372\pi\)
\(744\) 0 0
\(745\) −7.30698e6 −0.482333
\(746\) 0 0
\(747\) 6.43345e6 0.421835
\(748\) 0 0
\(749\) −1.87113e6 −0.121871
\(750\) 0 0
\(751\) −1.93990e7 −1.25510 −0.627551 0.778575i \(-0.715943\pi\)
−0.627551 + 0.778575i \(0.715943\pi\)
\(752\) 0 0
\(753\) 3.26417e6 0.209790
\(754\) 0 0
\(755\) 3.25050e7 2.07531
\(756\) 0 0
\(757\) −3.66152e6 −0.232232 −0.116116 0.993236i \(-0.537044\pi\)
−0.116116 + 0.993236i \(0.537044\pi\)
\(758\) 0 0
\(759\) −1.88347e7 −1.18674
\(760\) 0 0
\(761\) −2.09526e7 −1.31152 −0.655762 0.754967i \(-0.727653\pi\)
−0.655762 + 0.754967i \(0.727653\pi\)
\(762\) 0 0
\(763\) −8.78731e6 −0.546442
\(764\) 0 0
\(765\) −140524. −0.00868155
\(766\) 0 0
\(767\) 3.60115e6 0.221031
\(768\) 0 0
\(769\) 1.71458e7 1.04555 0.522773 0.852472i \(-0.324898\pi\)
0.522773 + 0.852472i \(0.324898\pi\)
\(770\) 0 0
\(771\) 5.24641e6 0.317853
\(772\) 0 0
\(773\) 1.42888e7 0.860099 0.430049 0.902805i \(-0.358496\pi\)
0.430049 + 0.902805i \(0.358496\pi\)
\(774\) 0 0
\(775\) 1.29164e7 0.772480
\(776\) 0 0
\(777\) 4.56788e6 0.271433
\(778\) 0 0
\(779\) −4.71801e6 −0.278558
\(780\) 0 0
\(781\) 2.84826e7 1.67091
\(782\) 0 0
\(783\) −4.25682e6 −0.248131
\(784\) 0 0
\(785\) −1.52290e7 −0.882059
\(786\) 0 0
\(787\) 1.68977e6 0.0972502 0.0486251 0.998817i \(-0.484516\pi\)
0.0486251 + 0.998817i \(0.484516\pi\)
\(788\) 0 0
\(789\) −1.50104e7 −0.858419
\(790\) 0 0
\(791\) −3.75272e6 −0.213258
\(792\) 0 0
\(793\) −3.24683e6 −0.183348
\(794\) 0 0
\(795\) −1.93219e7 −1.08426
\(796\) 0 0
\(797\) −8.07902e6 −0.450519 −0.225259 0.974299i \(-0.572323\pi\)
−0.225259 + 0.974299i \(0.572323\pi\)
\(798\) 0 0
\(799\) −634598. −0.0351667
\(800\) 0 0
\(801\) 576857. 0.0317678
\(802\) 0 0
\(803\) −2.75548e7 −1.50802
\(804\) 0 0
\(805\) −2.92159e7 −1.58902
\(806\) 0 0
\(807\) −2.85134e6 −0.154122
\(808\) 0 0
\(809\) 3.20293e7 1.72059 0.860293 0.509799i \(-0.170280\pi\)
0.860293 + 0.509799i \(0.170280\pi\)
\(810\) 0 0
\(811\) −2.79665e7 −1.49309 −0.746545 0.665334i \(-0.768289\pi\)
−0.746545 + 0.665334i \(0.768289\pi\)
\(812\) 0 0
\(813\) 1.85085e7 0.982077
\(814\) 0 0
\(815\) 4.34342e7 2.29054
\(816\) 0 0
\(817\) 3.30719e6 0.173342
\(818\) 0 0
\(819\) −1.03696e6 −0.0540196
\(820\) 0 0
\(821\) −1.93844e7 −1.00368 −0.501838 0.864961i \(-0.667343\pi\)
−0.501838 + 0.864961i \(0.667343\pi\)
\(822\) 0 0
\(823\) −3.64416e7 −1.87542 −0.937709 0.347421i \(-0.887058\pi\)
−0.937709 + 0.347421i \(0.887058\pi\)
\(824\) 0 0
\(825\) 6.54042e6 0.334558
\(826\) 0 0
\(827\) 1.28526e7 0.653473 0.326736 0.945116i \(-0.394051\pi\)
0.326736 + 0.945116i \(0.394051\pi\)
\(828\) 0 0
\(829\) −3.23505e7 −1.63491 −0.817457 0.575989i \(-0.804617\pi\)
−0.817457 + 0.575989i \(0.804617\pi\)
\(830\) 0 0
\(831\) 3.80641e6 0.191211
\(832\) 0 0
\(833\) 208085. 0.0103903
\(834\) 0 0
\(835\) −1.50974e7 −0.749354
\(836\) 0 0
\(837\) −5.90187e6 −0.291190
\(838\) 0 0
\(839\) 1.00791e7 0.494330 0.247165 0.968973i \(-0.420501\pi\)
0.247165 + 0.968973i \(0.420501\pi\)
\(840\) 0 0
\(841\) 1.35857e7 0.662358
\(842\) 0 0
\(843\) 885017. 0.0428926
\(844\) 0 0
\(845\) −2.41954e7 −1.16571
\(846\) 0 0
\(847\) 4.29682e6 0.205797
\(848\) 0 0
\(849\) −1.29416e7 −0.616197
\(850\) 0 0
\(851\) 2.51947e7 1.19258
\(852\) 0 0
\(853\) −2.85150e7 −1.34184 −0.670919 0.741530i \(-0.734100\pi\)
−0.670919 + 0.741530i \(0.734100\pi\)
\(854\) 0 0
\(855\) −2.00902e6 −0.0939870
\(856\) 0 0
\(857\) 1.42267e7 0.661685 0.330843 0.943686i \(-0.392667\pi\)
0.330843 + 0.943686i \(0.392667\pi\)
\(858\) 0 0
\(859\) 8.83950e6 0.408738 0.204369 0.978894i \(-0.434486\pi\)
0.204369 + 0.978894i \(0.434486\pi\)
\(860\) 0 0
\(861\) −1.08865e7 −0.500474
\(862\) 0 0
\(863\) 2.21209e7 1.01106 0.505528 0.862810i \(-0.331298\pi\)
0.505528 + 0.862810i \(0.331298\pi\)
\(864\) 0 0
\(865\) −1.27600e7 −0.579845
\(866\) 0 0
\(867\) 1.27730e7 0.577091
\(868\) 0 0
\(869\) −2.56950e7 −1.15425
\(870\) 0 0
\(871\) 186219. 0.00831723
\(872\) 0 0
\(873\) 9.36260e6 0.415778
\(874\) 0 0
\(875\) −9.72645e6 −0.429471
\(876\) 0 0
\(877\) 1.81374e7 0.796300 0.398150 0.917320i \(-0.369652\pi\)
0.398150 + 0.917320i \(0.369652\pi\)
\(878\) 0 0
\(879\) −1.84774e7 −0.806621
\(880\) 0 0
\(881\) −2.33506e7 −1.01358 −0.506790 0.862069i \(-0.669168\pi\)
−0.506790 + 0.862069i \(0.669168\pi\)
\(882\) 0 0
\(883\) 3.19662e7 1.37971 0.689857 0.723945i \(-0.257673\pi\)
0.689857 + 0.723945i \(0.257673\pi\)
\(884\) 0 0
\(885\) 1.60988e7 0.690933
\(886\) 0 0
\(887\) 3.72115e7 1.58806 0.794031 0.607877i \(-0.207979\pi\)
0.794031 + 0.607877i \(0.207979\pi\)
\(888\) 0 0
\(889\) 1.65894e7 0.704007
\(890\) 0 0
\(891\) −2.98850e6 −0.126113
\(892\) 0 0
\(893\) −9.07258e6 −0.380717
\(894\) 0 0
\(895\) 3.11217e7 1.29869
\(896\) 0 0
\(897\) −5.71948e6 −0.237342
\(898\) 0 0
\(899\) 4.72737e7 1.95083
\(900\) 0 0
\(901\) −789026. −0.0323802
\(902\) 0 0
\(903\) 7.63116e6 0.311438
\(904\) 0 0
\(905\) −1.69573e7 −0.688232
\(906\) 0 0
\(907\) −3.16967e7 −1.27937 −0.639685 0.768637i \(-0.720935\pi\)
−0.639685 + 0.768637i \(0.720935\pi\)
\(908\) 0 0
\(909\) −2.60090e6 −0.104403
\(910\) 0 0
\(911\) −3.01177e7 −1.20234 −0.601168 0.799123i \(-0.705298\pi\)
−0.601168 + 0.799123i \(0.705298\pi\)
\(912\) 0 0
\(913\) −3.61779e7 −1.43637
\(914\) 0 0
\(915\) −1.45148e7 −0.573139
\(916\) 0 0
\(917\) 2.44521e7 0.960271
\(918\) 0 0
\(919\) 3.19659e7 1.24853 0.624263 0.781214i \(-0.285399\pi\)
0.624263 + 0.781214i \(0.285399\pi\)
\(920\) 0 0
\(921\) −2.51004e7 −0.975062
\(922\) 0 0
\(923\) 8.64921e6 0.334174
\(924\) 0 0
\(925\) −8.74896e6 −0.336203
\(926\) 0 0
\(927\) −1.58039e7 −0.604041
\(928\) 0 0
\(929\) −2.68114e7 −1.01925 −0.509624 0.860398i \(-0.670215\pi\)
−0.509624 + 0.860398i \(0.670215\pi\)
\(930\) 0 0
\(931\) 2.97491e6 0.112486
\(932\) 0 0
\(933\) 7.93720e6 0.298513
\(934\) 0 0
\(935\) 790223. 0.0295611
\(936\) 0 0
\(937\) 3.98690e7 1.48350 0.741748 0.670678i \(-0.233997\pi\)
0.741748 + 0.670678i \(0.233997\pi\)
\(938\) 0 0
\(939\) −1.13484e7 −0.420022
\(940\) 0 0
\(941\) −2.21442e7 −0.815242 −0.407621 0.913151i \(-0.633642\pi\)
−0.407621 + 0.913151i \(0.633642\pi\)
\(942\) 0 0
\(943\) −6.00461e7 −2.19890
\(944\) 0 0
\(945\) −4.63569e6 −0.168863
\(946\) 0 0
\(947\) −183531. −0.00665021 −0.00332511 0.999994i \(-0.501058\pi\)
−0.00332511 + 0.999994i \(0.501058\pi\)
\(948\) 0 0
\(949\) −8.36746e6 −0.301598
\(950\) 0 0
\(951\) −4.01279e6 −0.143878
\(952\) 0 0
\(953\) 3.95151e7 1.40939 0.704694 0.709511i \(-0.251084\pi\)
0.704694 + 0.709511i \(0.251084\pi\)
\(954\) 0 0
\(955\) 3.91540e7 1.38921
\(956\) 0 0
\(957\) 2.39378e7 0.844897
\(958\) 0 0
\(959\) 1.67424e7 0.587857
\(960\) 0 0
\(961\) 3.69135e7 1.28937
\(962\) 0 0
\(963\) −1.63755e6 −0.0569020
\(964\) 0 0
\(965\) 5.71710e7 1.97632
\(966\) 0 0
\(967\) 2.88127e7 0.990872 0.495436 0.868645i \(-0.335008\pi\)
0.495436 + 0.868645i \(0.335008\pi\)
\(968\) 0 0
\(969\) −82039.8 −0.00280682
\(970\) 0 0
\(971\) 3.63561e7 1.23745 0.618727 0.785606i \(-0.287649\pi\)
0.618727 + 0.785606i \(0.287649\pi\)
\(972\) 0 0
\(973\) 3.72734e6 0.126217
\(974\) 0 0
\(975\) 1.98611e6 0.0669100
\(976\) 0 0
\(977\) 1.64450e7 0.551185 0.275592 0.961275i \(-0.411126\pi\)
0.275592 + 0.961275i \(0.411126\pi\)
\(978\) 0 0
\(979\) −3.24389e6 −0.108171
\(980\) 0 0
\(981\) −7.69033e6 −0.255137
\(982\) 0 0
\(983\) −678596. −0.0223989 −0.0111995 0.999937i \(-0.503565\pi\)
−0.0111995 + 0.999937i \(0.503565\pi\)
\(984\) 0 0
\(985\) −2.65372e6 −0.0871495
\(986\) 0 0
\(987\) −2.09345e7 −0.684020
\(988\) 0 0
\(989\) 4.20906e7 1.36834
\(990\) 0 0
\(991\) −3.57109e7 −1.15509 −0.577546 0.816358i \(-0.695989\pi\)
−0.577546 + 0.816358i \(0.695989\pi\)
\(992\) 0 0
\(993\) 1.79774e6 0.0578569
\(994\) 0 0
\(995\) 4.35219e6 0.139364
\(996\) 0 0
\(997\) −5.41050e7 −1.72385 −0.861926 0.507035i \(-0.830742\pi\)
−0.861926 + 0.507035i \(0.830742\pi\)
\(998\) 0 0
\(999\) 3.99765e6 0.126733
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.6.a.v.1.5 5
4.3 odd 2 228.6.a.d.1.5 5
12.11 even 2 684.6.a.f.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.6.a.d.1.5 5 4.3 odd 2
684.6.a.f.1.1 5 12.11 even 2
912.6.a.v.1.5 5 1.1 even 1 trivial