Properties

Label 912.2.q.b
Level $912$
Weight $2$
Character orbit 912.q
Analytic conductor $7.282$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} - q^{7} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{3} - q^{7} - \zeta_{6} q^{9} + 2 q^{11} + 3 \zeta_{6} q^{13} + (4 \zeta_{6} - 4) q^{17} + ( - 2 \zeta_{6} - 3) q^{19} + ( - \zeta_{6} + 1) q^{21} + 4 \zeta_{6} q^{23} + 5 \zeta_{6} q^{25} + q^{27} + 3 q^{31} + (2 \zeta_{6} - 2) q^{33} - 5 q^{37} - 3 q^{39} + (4 \zeta_{6} - 4) q^{41} + (9 \zeta_{6} - 9) q^{43} + 10 \zeta_{6} q^{47} - 6 q^{49} - 4 \zeta_{6} q^{51} + 4 \zeta_{6} q^{53} + ( - 3 \zeta_{6} + 5) q^{57} + (14 \zeta_{6} - 14) q^{59} - 11 \zeta_{6} q^{61} + \zeta_{6} q^{63} + 3 \zeta_{6} q^{67} - 4 q^{69} + ( - 14 \zeta_{6} + 14) q^{71} + ( - 11 \zeta_{6} + 11) q^{73} - 5 q^{75} - 2 q^{77} + ( - \zeta_{6} + 1) q^{79} + (\zeta_{6} - 1) q^{81} - 8 q^{83} + 14 \zeta_{6} q^{89} - 3 \zeta_{6} q^{91} + (3 \zeta_{6} - 3) q^{93} + (2 \zeta_{6} - 2) q^{97} - 2 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 2 q^{7} - q^{9} + 4 q^{11} + 3 q^{13} - 4 q^{17} - 8 q^{19} + q^{21} + 4 q^{23} + 5 q^{25} + 2 q^{27} + 6 q^{31} - 2 q^{33} - 10 q^{37} - 6 q^{39} - 4 q^{41} - 9 q^{43} + 10 q^{47} - 12 q^{49} - 4 q^{51} + 4 q^{53} + 7 q^{57} - 14 q^{59} - 11 q^{61} + q^{63} + 3 q^{67} - 8 q^{69} + 14 q^{71} + 11 q^{73} - 10 q^{75} - 4 q^{77} + q^{79} - q^{81} - 16 q^{83} + 14 q^{89} - 3 q^{91} - 3 q^{93} - 2 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0 0 −1.00000 0 −0.500000 0.866025i 0
577.1 0 −0.500000 0.866025i 0 0 0 −1.00000 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.q.b 2
3.b odd 2 1 2736.2.s.k 2
4.b odd 2 1 114.2.e.b 2
12.b even 2 1 342.2.g.c 2
19.c even 3 1 inner 912.2.q.b 2
57.h odd 6 1 2736.2.s.k 2
76.f even 6 1 2166.2.a.h 1
76.g odd 6 1 114.2.e.b 2
76.g odd 6 1 2166.2.a.b 1
228.m even 6 1 342.2.g.c 2
228.m even 6 1 6498.2.a.u 1
228.n odd 6 1 6498.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.e.b 2 4.b odd 2 1
114.2.e.b 2 76.g odd 6 1
342.2.g.c 2 12.b even 2 1
342.2.g.c 2 228.m even 6 1
912.2.q.b 2 1.a even 1 1 trivial
912.2.q.b 2 19.c even 3 1 inner
2166.2.a.b 1 76.g odd 6 1
2166.2.a.h 1 76.f even 6 1
2736.2.s.k 2 3.b odd 2 1
2736.2.s.k 2 57.h odd 6 1
6498.2.a.g 1 228.n odd 6 1
6498.2.a.u 1 228.m even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{13}^{2} - 3T_{13} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 8T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T - 3)^{2} \) Copy content Toggle raw display
$37$ \( (T + 5)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$43$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$47$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$53$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$61$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$67$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$71$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$73$ \( T^{2} - 11T + 121 \) Copy content Toggle raw display
$79$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$83$ \( (T + 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
show more
show less