Properties

Label 912.2.q.a.577.1
Level $912$
Weight $2$
Character 912.577
Analytic conductor $7.282$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(49,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 577.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 912.577
Dual form 912.2.q.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} -1.00000 q^{7} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{3} -1.00000 q^{7} +(-0.500000 + 0.866025i) q^{9} +2.00000 q^{11} +(-2.50000 + 4.33013i) q^{13} +(2.00000 + 3.46410i) q^{17} +(4.00000 + 1.73205i) q^{19} +(0.500000 + 0.866025i) q^{21} +(-2.00000 + 3.46410i) q^{23} +(2.50000 - 4.33013i) q^{25} +1.00000 q^{27} +(4.00000 - 6.92820i) q^{29} +3.00000 q^{31} +(-1.00000 - 1.73205i) q^{33} +3.00000 q^{37} +5.00000 q^{39} +(6.00000 + 10.3923i) q^{41} +(-0.500000 - 0.866025i) q^{43} +(-3.00000 + 5.19615i) q^{47} -6.00000 q^{49} +(2.00000 - 3.46410i) q^{51} +(-2.00000 + 3.46410i) q^{53} +(-0.500000 - 4.33013i) q^{57} +(5.00000 + 8.66025i) q^{59} +(6.50000 - 11.2583i) q^{61} +(0.500000 - 0.866025i) q^{63} +(5.50000 - 9.52628i) q^{67} +4.00000 q^{69} +(3.00000 + 5.19615i) q^{71} +(5.50000 + 9.52628i) q^{73} -5.00000 q^{75} -2.00000 q^{77} +(0.500000 + 0.866025i) q^{79} +(-0.500000 - 0.866025i) q^{81} -8.00000 q^{87} +(3.00000 - 5.19615i) q^{89} +(2.50000 - 4.33013i) q^{91} +(-1.50000 - 2.59808i) q^{93} +(-1.00000 - 1.73205i) q^{97} +(-1.00000 + 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 2 q^{7} - q^{9} + 4 q^{11} - 5 q^{13} + 4 q^{17} + 8 q^{19} + q^{21} - 4 q^{23} + 5 q^{25} + 2 q^{27} + 8 q^{29} + 6 q^{31} - 2 q^{33} + 6 q^{37} + 10 q^{39} + 12 q^{41} - q^{43} - 6 q^{47} - 12 q^{49} + 4 q^{51} - 4 q^{53} - q^{57} + 10 q^{59} + 13 q^{61} + q^{63} + 11 q^{67} + 8 q^{69} + 6 q^{71} + 11 q^{73} - 10 q^{75} - 4 q^{77} + q^{79} - q^{81} - 16 q^{87} + 6 q^{89} + 5 q^{91} - 3 q^{93} - 2 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.50000 + 4.33013i −0.693375 + 1.20096i 0.277350 + 0.960769i \(0.410544\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 + 3.46410i 0.485071 + 0.840168i 0.999853 0.0171533i \(-0.00546033\pi\)
−0.514782 + 0.857321i \(0.672127\pi\)
\(18\) 0 0
\(19\) 4.00000 + 1.73205i 0.917663 + 0.397360i
\(20\) 0 0
\(21\) 0.500000 + 0.866025i 0.109109 + 0.188982i
\(22\) 0 0
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.00000 6.92820i 0.742781 1.28654i −0.208443 0.978035i \(-0.566840\pi\)
0.951224 0.308500i \(-0.0998271\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) −1.00000 1.73205i −0.174078 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 0 0
\(39\) 5.00000 0.800641
\(40\) 0 0
\(41\) 6.00000 + 10.3923i 0.937043 + 1.62301i 0.770950 + 0.636895i \(0.219782\pi\)
0.166092 + 0.986110i \(0.446885\pi\)
\(42\) 0 0
\(43\) −0.500000 0.866025i −0.0762493 0.132068i 0.825380 0.564578i \(-0.190961\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 2.00000 3.46410i 0.280056 0.485071i
\(52\) 0 0
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.500000 4.33013i −0.0662266 0.573539i
\(58\) 0 0
\(59\) 5.00000 + 8.66025i 0.650945 + 1.12747i 0.982894 + 0.184172i \(0.0589603\pi\)
−0.331949 + 0.943297i \(0.607706\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 0 0
\(63\) 0.500000 0.866025i 0.0629941 0.109109i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.50000 9.52628i 0.671932 1.16382i −0.305424 0.952217i \(-0.598798\pi\)
0.977356 0.211604i \(-0.0678686\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 5.50000 + 9.52628i 0.643726 + 1.11497i 0.984594 + 0.174855i \(0.0559458\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(74\) 0 0
\(75\) −5.00000 −0.577350
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) 3.00000 5.19615i 0.317999 0.550791i −0.662071 0.749441i \(-0.730322\pi\)
0.980071 + 0.198650i \(0.0636557\pi\)
\(90\) 0 0
\(91\) 2.50000 4.33013i 0.262071 0.453921i
\(92\) 0 0
\(93\) −1.50000 2.59808i −0.155543 0.269408i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) −1.00000 + 1.73205i −0.100504 + 0.174078i
\(100\) 0 0
\(101\) −7.00000 + 12.1244i −0.696526 + 1.20642i 0.273138 + 0.961975i \(0.411939\pi\)
−0.969664 + 0.244443i \(0.921395\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 0 0
\(111\) −1.50000 2.59808i −0.142374 0.246598i
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.50000 4.33013i −0.231125 0.400320i
\(118\) 0 0
\(119\) −2.00000 3.46410i −0.183340 0.317554i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 6.00000 10.3923i 0.541002 0.937043i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.00000 + 6.92820i −0.354943 + 0.614779i −0.987108 0.160055i \(-0.948833\pi\)
0.632166 + 0.774833i \(0.282166\pi\)
\(128\) 0 0
\(129\) −0.500000 + 0.866025i −0.0440225 + 0.0762493i
\(130\) 0 0
\(131\) −7.00000 12.1244i −0.611593 1.05931i −0.990972 0.134069i \(-0.957196\pi\)
0.379379 0.925241i \(-0.376138\pi\)
\(132\) 0 0
\(133\) −4.00000 1.73205i −0.346844 0.150188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 + 15.5885i −0.768922 + 1.33181i 0.169226 + 0.985577i \(0.445873\pi\)
−0.938148 + 0.346235i \(0.887460\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) −5.00000 + 8.66025i −0.418121 + 0.724207i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.00000 + 5.19615i 0.247436 + 0.428571i
\(148\) 0 0
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.50000 2.59808i −0.119713 0.207349i 0.799941 0.600079i \(-0.204864\pi\)
−0.919654 + 0.392730i \(0.871531\pi\)
\(158\) 0 0
\(159\) 4.00000 0.317221
\(160\) 0 0
\(161\) 2.00000 3.46410i 0.157622 0.273009i
\(162\) 0 0
\(163\) −3.00000 −0.234978 −0.117489 0.993074i \(-0.537485\pi\)
−0.117489 + 0.993074i \(0.537485\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.00000 + 1.73205i −0.0773823 + 0.134030i −0.902120 0.431486i \(-0.857990\pi\)
0.824737 + 0.565516i \(0.191323\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 0 0
\(171\) −3.50000 + 2.59808i −0.267652 + 0.198680i
\(172\) 0 0
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) −2.50000 + 4.33013i −0.188982 + 0.327327i
\(176\) 0 0
\(177\) 5.00000 8.66025i 0.375823 0.650945i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 1.00000 1.73205i 0.0743294 0.128742i −0.826465 0.562988i \(-0.809652\pi\)
0.900794 + 0.434246i \(0.142985\pi\)
\(182\) 0 0
\(183\) −13.0000 −0.960988
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 + 6.92820i 0.292509 + 0.506640i
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −9.50000 16.4545i −0.683825 1.18442i −0.973805 0.227387i \(-0.926982\pi\)
0.289980 0.957033i \(-0.406351\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.0000 −1.85242 −0.926212 0.377004i \(-0.876954\pi\)
−0.926212 + 0.377004i \(0.876954\pi\)
\(198\) 0 0
\(199\) 10.5000 18.1865i 0.744325 1.28921i −0.206184 0.978513i \(-0.566105\pi\)
0.950509 0.310696i \(-0.100562\pi\)
\(200\) 0 0
\(201\) −11.0000 −0.775880
\(202\) 0 0
\(203\) −4.00000 + 6.92820i −0.280745 + 0.486265i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.00000 3.46410i −0.139010 0.240772i
\(208\) 0 0
\(209\) 8.00000 + 3.46410i 0.553372 + 0.239617i
\(210\) 0 0
\(211\) −7.50000 12.9904i −0.516321 0.894295i −0.999820 0.0189499i \(-0.993968\pi\)
0.483499 0.875345i \(-0.339366\pi\)
\(212\) 0 0
\(213\) 3.00000 5.19615i 0.205557 0.356034i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) 0 0
\(219\) 5.50000 9.52628i 0.371656 0.643726i
\(220\) 0 0
\(221\) −20.0000 −1.34535
\(222\) 0 0
\(223\) 4.50000 + 7.79423i 0.301342 + 0.521940i 0.976440 0.215788i \(-0.0692320\pi\)
−0.675098 + 0.737728i \(0.735899\pi\)
\(224\) 0 0
\(225\) 2.50000 + 4.33013i 0.166667 + 0.288675i
\(226\) 0 0
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 1.00000 + 1.73205i 0.0657952 + 0.113961i
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.500000 0.866025i 0.0324785 0.0562544i
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 3.50000 6.06218i 0.225455 0.390499i −0.731001 0.682376i \(-0.760947\pi\)
0.956456 + 0.291877i \(0.0942799\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −17.5000 + 12.9904i −1.11350 + 0.826558i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.00000 + 1.73205i −0.0631194 + 0.109326i −0.895858 0.444340i \(-0.853438\pi\)
0.832739 + 0.553666i \(0.186772\pi\)
\(252\) 0 0
\(253\) −4.00000 + 6.92820i −0.251478 + 0.435572i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.0000 17.3205i 0.623783 1.08042i −0.364992 0.931011i \(-0.618928\pi\)
0.988775 0.149413i \(-0.0477384\pi\)
\(258\) 0 0
\(259\) −3.00000 −0.186411
\(260\) 0 0
\(261\) 4.00000 + 6.92820i 0.247594 + 0.428845i
\(262\) 0 0
\(263\) 13.0000 + 22.5167i 0.801614 + 1.38844i 0.918553 + 0.395298i \(0.129359\pi\)
−0.116939 + 0.993139i \(0.537308\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −5.00000 8.66025i −0.304855 0.528025i 0.672374 0.740212i \(-0.265275\pi\)
−0.977229 + 0.212187i \(0.931941\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) −5.00000 −0.302614
\(274\) 0 0
\(275\) 5.00000 8.66025i 0.301511 0.522233i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) −1.50000 + 2.59808i −0.0898027 + 0.155543i
\(280\) 0 0
\(281\) 4.00000 6.92820i 0.238620 0.413302i −0.721699 0.692207i \(-0.756638\pi\)
0.960319 + 0.278906i \(0.0899716\pi\)
\(282\) 0 0
\(283\) −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i \(-0.204600\pi\)
−0.919327 + 0.393494i \(0.871266\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 10.3923i −0.354169 0.613438i
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) −1.00000 + 1.73205i −0.0586210 + 0.101535i
\(292\) 0 0
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) −10.0000 17.3205i −0.578315 1.00167i
\(300\) 0 0
\(301\) 0.500000 + 0.866025i 0.0288195 + 0.0499169i
\(302\) 0 0
\(303\) 14.0000 0.804279
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6.00000 10.3923i −0.342438 0.593120i 0.642447 0.766330i \(-0.277919\pi\)
−0.984885 + 0.173210i \(0.944586\pi\)
\(308\) 0 0
\(309\) 6.50000 + 11.2583i 0.369772 + 0.640464i
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −11.0000 + 19.0526i −0.621757 + 1.07691i 0.367402 + 0.930062i \(0.380247\pi\)
−0.989158 + 0.146852i \(0.953086\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 3.46410i 0.112331 0.194563i −0.804379 0.594117i \(-0.797502\pi\)
0.916710 + 0.399554i \(0.130835\pi\)
\(318\) 0 0
\(319\) 8.00000 13.8564i 0.447914 0.775810i
\(320\) 0 0
\(321\) −9.00000 15.5885i −0.502331 0.870063i
\(322\) 0 0
\(323\) 2.00000 + 17.3205i 0.111283 + 0.963739i
\(324\) 0 0
\(325\) 12.5000 + 21.6506i 0.693375 + 1.20096i
\(326\) 0 0
\(327\) 1.00000 1.73205i 0.0553001 0.0957826i
\(328\) 0 0
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 0 0
\(331\) 25.0000 1.37412 0.687062 0.726599i \(-0.258900\pi\)
0.687062 + 0.726599i \(0.258900\pi\)
\(332\) 0 0
\(333\) −1.50000 + 2.59808i −0.0821995 + 0.142374i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.50000 11.2583i −0.354078 0.613280i 0.632882 0.774248i \(-0.281872\pi\)
−0.986960 + 0.160968i \(0.948538\pi\)
\(338\) 0 0
\(339\) −1.00000 1.73205i −0.0543125 0.0940721i
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 13.8564i −0.429463 0.743851i 0.567363 0.823468i \(-0.307964\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(348\) 0 0
\(349\) −21.0000 −1.12410 −0.562052 0.827102i \(-0.689988\pi\)
−0.562052 + 0.827102i \(0.689988\pi\)
\(350\) 0 0
\(351\) −2.50000 + 4.33013i −0.133440 + 0.231125i
\(352\) 0 0
\(353\) 4.00000 0.212899 0.106449 0.994318i \(-0.466052\pi\)
0.106449 + 0.994318i \(0.466052\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.00000 + 3.46410i −0.105851 + 0.183340i
\(358\) 0 0
\(359\) −10.0000 17.3205i −0.527780 0.914141i −0.999476 0.0323801i \(-0.989691\pi\)
0.471696 0.881761i \(-0.343642\pi\)
\(360\) 0 0
\(361\) 13.0000 + 13.8564i 0.684211 + 0.729285i
\(362\) 0 0
\(363\) 3.50000 + 6.06218i 0.183702 + 0.318182i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3.50000 6.06218i 0.182699 0.316443i −0.760100 0.649806i \(-0.774850\pi\)
0.942799 + 0.333363i \(0.108183\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) 2.00000 3.46410i 0.103835 0.179847i
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.0000 + 34.6410i 1.03005 + 1.78410i
\(378\) 0 0
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 7.00000 + 12.1244i 0.357683 + 0.619526i 0.987573 0.157159i \(-0.0502334\pi\)
−0.629890 + 0.776684i \(0.716900\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.00000 0.0508329
\(388\) 0 0
\(389\) 12.0000 20.7846i 0.608424 1.05382i −0.383076 0.923717i \(-0.625135\pi\)
0.991500 0.130105i \(-0.0415314\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) −7.00000 + 12.1244i −0.353103 + 0.611593i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3.50000 6.06218i −0.175660 0.304252i 0.764730 0.644351i \(-0.222873\pi\)
−0.940389 + 0.340099i \(0.889539\pi\)
\(398\) 0 0
\(399\) 0.500000 + 4.33013i 0.0250313 + 0.216777i
\(400\) 0 0
\(401\) 3.00000 + 5.19615i 0.149813 + 0.259483i 0.931158 0.364615i \(-0.118800\pi\)
−0.781345 + 0.624099i \(0.785466\pi\)
\(402\) 0 0
\(403\) −7.50000 + 12.9904i −0.373602 + 0.647097i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 7.00000 12.1244i 0.346128 0.599511i −0.639430 0.768849i \(-0.720830\pi\)
0.985558 + 0.169338i \(0.0541630\pi\)
\(410\) 0 0
\(411\) 18.0000 0.887875
\(412\) 0 0
\(413\) −5.00000 8.66025i −0.246034 0.426143i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5.00000 −0.244851
\(418\) 0 0
\(419\) 14.0000 0.683945 0.341972 0.939710i \(-0.388905\pi\)
0.341972 + 0.939710i \(0.388905\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) 20.0000 0.970143
\(426\) 0 0
\(427\) −6.50000 + 11.2583i −0.314557 + 0.544829i
\(428\) 0 0
\(429\) 10.0000 0.482805
\(430\) 0 0
\(431\) −5.00000 + 8.66025i −0.240842 + 0.417150i −0.960954 0.276707i \(-0.910757\pi\)
0.720113 + 0.693857i \(0.244090\pi\)
\(432\) 0 0
\(433\) 4.50000 7.79423i 0.216256 0.374567i −0.737404 0.675452i \(-0.763949\pi\)
0.953660 + 0.300885i \(0.0972820\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −14.0000 + 10.3923i −0.669711 + 0.497131i
\(438\) 0 0
\(439\) 17.5000 + 30.3109i 0.835229 + 1.44666i 0.893843 + 0.448379i \(0.147999\pi\)
−0.0586141 + 0.998281i \(0.518668\pi\)
\(440\) 0 0
\(441\) 3.00000 5.19615i 0.142857 0.247436i
\(442\) 0 0
\(443\) −16.0000 + 27.7128i −0.760183 + 1.31668i 0.182573 + 0.983192i \(0.441557\pi\)
−0.942756 + 0.333483i \(0.891776\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.00000 5.19615i 0.141895 0.245770i
\(448\) 0 0
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 12.0000 + 20.7846i 0.565058 + 0.978709i
\(452\) 0 0
\(453\) 6.00000 + 10.3923i 0.281905 + 0.488273i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 0 0
\(459\) 2.00000 + 3.46410i 0.0933520 + 0.161690i
\(460\) 0 0
\(461\) −15.0000 25.9808i −0.698620 1.21004i −0.968945 0.247276i \(-0.920465\pi\)
0.270326 0.962769i \(-0.412869\pi\)
\(462\) 0 0
\(463\) −23.0000 −1.06890 −0.534450 0.845200i \(-0.679481\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −5.50000 + 9.52628i −0.253966 + 0.439883i
\(470\) 0 0
\(471\) −1.50000 + 2.59808i −0.0691164 + 0.119713i
\(472\) 0 0
\(473\) −1.00000 1.73205i −0.0459800 0.0796398i
\(474\) 0 0
\(475\) 17.5000 12.9904i 0.802955 0.596040i
\(476\) 0 0
\(477\) −2.00000 3.46410i −0.0915737 0.158610i
\(478\) 0 0
\(479\) 7.00000 12.1244i 0.319838 0.553976i −0.660616 0.750724i \(-0.729705\pi\)
0.980454 + 0.196748i \(0.0630381\pi\)
\(480\) 0 0
\(481\) −7.50000 + 12.9904i −0.341971 + 0.592310i
\(482\) 0 0
\(483\) −4.00000 −0.182006
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 1.50000 + 2.59808i 0.0678323 + 0.117489i
\(490\) 0 0
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 32.0000 1.44121
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.00000 5.19615i −0.134568 0.233079i
\(498\) 0 0
\(499\) 14.5000 + 25.1147i 0.649109 + 1.12429i 0.983336 + 0.181797i \(0.0581915\pi\)
−0.334227 + 0.942493i \(0.608475\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) 0 0
\(503\) 20.0000 34.6410i 0.891756 1.54457i 0.0539870 0.998542i \(-0.482807\pi\)
0.837769 0.546025i \(-0.183860\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6.00000 + 10.3923i −0.266469 + 0.461538i
\(508\) 0 0
\(509\) 3.00000 5.19615i 0.132973 0.230315i −0.791849 0.610718i \(-0.790881\pi\)
0.924821 + 0.380402i \(0.124214\pi\)
\(510\) 0 0
\(511\) −5.50000 9.52628i −0.243306 0.421418i
\(512\) 0 0
\(513\) 4.00000 + 1.73205i 0.176604 + 0.0764719i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 14.5000 25.1147i 0.634041 1.09819i −0.352677 0.935745i \(-0.614728\pi\)
0.986718 0.162446i \(-0.0519382\pi\)
\(524\) 0 0
\(525\) 5.00000 0.218218
\(526\) 0 0
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) −60.0000 −2.59889
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.00000 + 10.3923i 0.258919 + 0.448461i
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 19.5000 33.7750i 0.838370 1.45210i −0.0528859 0.998601i \(-0.516842\pi\)
0.891256 0.453500i \(-0.149825\pi\)
\(542\) 0 0
\(543\) −2.00000 −0.0858282
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −14.5000 + 25.1147i −0.619975 + 1.07383i 0.369514 + 0.929225i \(0.379524\pi\)
−0.989490 + 0.144604i \(0.953809\pi\)
\(548\) 0 0
\(549\) 6.50000 + 11.2583i 0.277413 + 0.480494i
\(550\) 0 0
\(551\) 28.0000 20.7846i 1.19284 0.885454i
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.0212622 0.0368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.0000 32.9090i 0.805056 1.39440i −0.111198 0.993798i \(-0.535469\pi\)
0.916253 0.400599i \(-0.131198\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 4.00000 6.92820i 0.168880 0.292509i
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.500000 + 0.866025i 0.0209980 + 0.0363696i
\(568\) 0 0
\(569\) 24.0000 1.00613 0.503066 0.864248i \(-0.332205\pi\)
0.503066 + 0.864248i \(0.332205\pi\)
\(570\) 0 0
\(571\) −33.0000 −1.38101 −0.690504 0.723329i \(-0.742611\pi\)
−0.690504 + 0.723329i \(0.742611\pi\)
\(572\) 0 0
\(573\) 12.0000 + 20.7846i 0.501307 + 0.868290i
\(574\) 0 0
\(575\) 10.0000 + 17.3205i 0.417029 + 0.722315i
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) −9.50000 + 16.4545i −0.394807 + 0.683825i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.00000 + 6.92820i −0.165663 + 0.286937i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.0000 22.5167i −0.536567 0.929362i −0.999086 0.0427523i \(-0.986387\pi\)
0.462518 0.886610i \(-0.346946\pi\)
\(588\) 0 0
\(589\) 12.0000 + 5.19615i 0.494451 + 0.214104i
\(590\) 0 0
\(591\) 13.0000 + 22.5167i 0.534749 + 0.926212i
\(592\) 0 0
\(593\) 3.00000 5.19615i 0.123195 0.213380i −0.797831 0.602881i \(-0.794019\pi\)
0.921026 + 0.389501i \(0.127353\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −21.0000 −0.859473
\(598\) 0 0
\(599\) 9.00000 15.5885i 0.367730 0.636927i −0.621480 0.783430i \(-0.713468\pi\)
0.989210 + 0.146503i \(0.0468017\pi\)
\(600\) 0 0
\(601\) −21.0000 −0.856608 −0.428304 0.903635i \(-0.640889\pi\)
−0.428304 + 0.903635i \(0.640889\pi\)
\(602\) 0 0
\(603\) 5.50000 + 9.52628i 0.223977 + 0.387940i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 43.0000 1.74532 0.872658 0.488332i \(-0.162394\pi\)
0.872658 + 0.488332i \(0.162394\pi\)
\(608\) 0 0
\(609\) 8.00000 0.324176
\(610\) 0 0
\(611\) −15.0000 25.9808i −0.606835 1.05107i
\(612\) 0 0
\(613\) 15.0000 + 25.9808i 0.605844 + 1.04935i 0.991917 + 0.126885i \(0.0404979\pi\)
−0.386073 + 0.922468i \(0.626169\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 + 5.19615i −0.120775 + 0.209189i −0.920074 0.391745i \(-0.871871\pi\)
0.799298 + 0.600935i \(0.205205\pi\)
\(618\) 0 0
\(619\) −25.0000 −1.00483 −0.502417 0.864625i \(-0.667556\pi\)
−0.502417 + 0.864625i \(0.667556\pi\)
\(620\) 0 0
\(621\) −2.00000 + 3.46410i −0.0802572 + 0.139010i
\(622\) 0 0
\(623\) −3.00000 + 5.19615i −0.120192 + 0.208179i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) −1.00000 8.66025i −0.0399362 0.345857i
\(628\) 0 0
\(629\) 6.00000 + 10.3923i 0.239236 + 0.414368i
\(630\) 0 0
\(631\) −7.50000 + 12.9904i −0.298570 + 0.517139i −0.975809 0.218624i \(-0.929843\pi\)
0.677239 + 0.735763i \(0.263176\pi\)
\(632\) 0 0
\(633\) −7.50000 + 12.9904i −0.298098 + 0.516321i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.0000 25.9808i 0.594322 1.02940i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 15.0000 + 25.9808i 0.592464 + 1.02618i 0.993899 + 0.110291i \(0.0351782\pi\)
−0.401435 + 0.915888i \(0.631488\pi\)
\(642\) 0 0
\(643\) −9.50000 16.4545i −0.374643 0.648901i 0.615630 0.788035i \(-0.288902\pi\)
−0.990274 + 0.139134i \(0.955568\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 10.0000 + 17.3205i 0.392534 + 0.679889i
\(650\) 0 0
\(651\) 1.50000 + 2.59808i 0.0587896 + 0.101827i
\(652\) 0 0
\(653\) −18.0000 −0.704394 −0.352197 0.935926i \(-0.614565\pi\)
−0.352197 + 0.935926i \(0.614565\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −11.0000 −0.429151
\(658\) 0 0
\(659\) 17.0000 29.4449i 0.662226 1.14701i −0.317803 0.948157i \(-0.602945\pi\)
0.980029 0.198852i \(-0.0637214\pi\)
\(660\) 0 0
\(661\) −21.0000 + 36.3731i −0.816805 + 1.41475i 0.0912190 + 0.995831i \(0.470924\pi\)
−0.908024 + 0.418917i \(0.862410\pi\)
\(662\) 0 0
\(663\) 10.0000 + 17.3205i 0.388368 + 0.672673i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000 + 27.7128i 0.619522 + 1.07304i
\(668\) 0 0
\(669\) 4.50000 7.79423i 0.173980 0.301342i
\(670\) 0 0
\(671\) 13.0000 22.5167i 0.501859 0.869246i
\(672\) 0 0
\(673\) −33.0000 −1.27206 −0.636028 0.771666i \(-0.719424\pi\)
−0.636028 + 0.771666i \(0.719424\pi\)
\(674\) 0 0
\(675\) 2.50000 4.33013i 0.0962250 0.166667i
\(676\) 0 0
\(677\) 34.0000 1.30673 0.653363 0.757045i \(-0.273358\pi\)
0.653363 + 0.757045i \(0.273358\pi\)
\(678\) 0 0
\(679\) 1.00000 + 1.73205i 0.0383765 + 0.0664700i
\(680\) 0 0
\(681\) −12.0000 20.7846i −0.459841 0.796468i
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.50000 11.2583i −0.247990 0.429532i
\(688\) 0 0
\(689\) −10.0000 17.3205i −0.380970 0.659859i
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 0 0
\(693\) 1.00000 1.73205i 0.0379869 0.0657952i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −24.0000 + 41.5692i −0.909065 + 1.57455i
\(698\) 0 0
\(699\) 3.00000 5.19615i 0.113470 0.196537i
\(700\) 0 0
\(701\) −10.0000 17.3205i −0.377695 0.654187i 0.613032 0.790058i \(-0.289950\pi\)
−0.990726 + 0.135872i \(0.956616\pi\)
\(702\) 0 0
\(703\) 12.0000 + 5.19615i 0.452589 + 0.195977i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.00000 12.1244i 0.263262 0.455983i
\(708\) 0 0
\(709\) 19.5000 33.7750i 0.732338 1.26845i −0.223544 0.974694i \(-0.571763\pi\)
0.955882 0.293752i \(-0.0949041\pi\)
\(710\) 0 0
\(711\) −1.00000 −0.0375029
\(712\) 0 0
\(713\) −6.00000 + 10.3923i −0.224702 + 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 13.0000 0.484145
\(722\) 0 0
\(723\) −7.00000 −0.260333
\(724\) 0 0
\(725\) −20.0000 34.6410i −0.742781 1.28654i
\(726\) 0 0
\(727\) −23.5000 40.7032i −0.871567 1.50960i −0.860376 0.509661i \(-0.829771\pi\)
−0.0111912 0.999937i \(-0.503562\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 2.00000 3.46410i 0.0739727 0.128124i
\(732\) 0 0
\(733\) −50.0000 −1.84679 −0.923396 0.383849i \(-0.874598\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11.0000 19.0526i 0.405190 0.701810i
\(738\) 0 0
\(739\) 9.50000 + 16.4545i 0.349463 + 0.605288i 0.986154 0.165831i \(-0.0530307\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(740\) 0 0
\(741\) 20.0000 + 8.66025i 0.734718 + 0.318142i
\(742\) 0 0
\(743\) −25.0000 43.3013i −0.917161 1.58857i −0.803706 0.595026i \(-0.797142\pi\)
−0.113455 0.993543i \(-0.536192\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) 22.5000 38.9711i 0.821037 1.42208i −0.0838743 0.996476i \(-0.526729\pi\)
0.904911 0.425601i \(-0.139937\pi\)
\(752\) 0 0
\(753\) 2.00000 0.0728841
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.50000 11.2583i −0.236247 0.409191i 0.723388 0.690442i \(-0.242584\pi\)
−0.959634 + 0.281251i \(0.909251\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −1.00000 1.73205i −0.0362024 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −50.0000 −1.80540
\(768\) 0 0
\(769\) 18.5000 32.0429i 0.667127 1.15550i −0.311577 0.950221i \(-0.600857\pi\)
0.978704 0.205277i \(-0.0658095\pi\)
\(770\) 0 0
\(771\) −20.0000 −0.720282
\(772\) 0 0
\(773\) −7.00000 + 12.1244i −0.251773 + 0.436083i −0.964014 0.265852i \(-0.914347\pi\)
0.712241 + 0.701935i \(0.247680\pi\)
\(774\) 0 0
\(775\) 7.50000 12.9904i 0.269408 0.466628i
\(776\) 0 0
\(777\) 1.50000 + 2.59808i 0.0538122 + 0.0932055i
\(778\) 0 0
\(779\) 6.00000 + 51.9615i 0.214972 + 1.86171i
\(780\) 0 0
\(781\) 6.00000 + 10.3923i 0.214697 + 0.371866i
\(782\) 0 0
\(783\) 4.00000 6.92820i 0.142948 0.247594i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −25.0000 −0.891154 −0.445577 0.895244i \(-0.647001\pi\)
−0.445577 + 0.895244i \(0.647001\pi\)
\(788\) 0 0
\(789\) 13.0000 22.5167i 0.462812 0.801614i
\(790\) 0 0
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) 32.5000 + 56.2917i 1.15411 + 1.99898i