Newspace parameters
Level: | \( N \) | \(=\) | \( 912 = 2^{4} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 912.ci (of order \(18\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.28235666434\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
79.1 | 0 | 0.939693 | − | 0.342020i | 0 | −0.467043 | + | 2.64873i | 0 | 0.480437 | − | 0.277380i | 0 | 0.766044 | − | 0.642788i | 0 | ||||||||||
79.2 | 0 | 0.939693 | − | 0.342020i | 0 | −0.134718 | + | 0.764021i | 0 | 0.911489 | − | 0.526248i | 0 | 0.766044 | − | 0.642788i | 0 | ||||||||||
79.3 | 0 | 0.939693 | − | 0.342020i | 0 | 0.494739 | − | 2.80581i | 0 | −4.05139 | + | 2.33907i | 0 | 0.766044 | − | 0.642788i | 0 | ||||||||||
79.4 | 0 | 0.939693 | − | 0.342020i | 0 | 0.525770 | − | 2.98179i | 0 | 3.04612 | − | 1.75868i | 0 | 0.766044 | − | 0.642788i | 0 | ||||||||||
127.1 | 0 | 0.939693 | + | 0.342020i | 0 | −0.467043 | − | 2.64873i | 0 | 0.480437 | + | 0.277380i | 0 | 0.766044 | + | 0.642788i | 0 | ||||||||||
127.2 | 0 | 0.939693 | + | 0.342020i | 0 | −0.134718 | − | 0.764021i | 0 | 0.911489 | + | 0.526248i | 0 | 0.766044 | + | 0.642788i | 0 | ||||||||||
127.3 | 0 | 0.939693 | + | 0.342020i | 0 | 0.494739 | + | 2.80581i | 0 | −4.05139 | − | 2.33907i | 0 | 0.766044 | + | 0.642788i | 0 | ||||||||||
127.4 | 0 | 0.939693 | + | 0.342020i | 0 | 0.525770 | + | 2.98179i | 0 | 3.04612 | + | 1.75868i | 0 | 0.766044 | + | 0.642788i | 0 | ||||||||||
223.1 | 0 | −0.173648 | + | 0.984808i | 0 | −3.37195 | − | 2.82940i | 0 | −1.97482 | + | 1.14016i | 0 | −0.939693 | − | 0.342020i | 0 | ||||||||||
223.2 | 0 | −0.173648 | + | 0.984808i | 0 | −1.40574 | − | 1.17956i | 0 | 4.46660 | − | 2.57879i | 0 | −0.939693 | − | 0.342020i | 0 | ||||||||||
223.3 | 0 | −0.173648 | + | 0.984808i | 0 | 1.00588 | + | 0.844034i | 0 | −3.15949 | + | 1.82413i | 0 | −0.939693 | − | 0.342020i | 0 | ||||||||||
223.4 | 0 | −0.173648 | + | 0.984808i | 0 | 1.30003 | + | 1.09086i | 0 | 1.57531 | − | 0.909508i | 0 | −0.939693 | − | 0.342020i | 0 | ||||||||||
319.1 | 0 | −0.173648 | − | 0.984808i | 0 | −3.37195 | + | 2.82940i | 0 | −1.97482 | − | 1.14016i | 0 | −0.939693 | + | 0.342020i | 0 | ||||||||||
319.2 | 0 | −0.173648 | − | 0.984808i | 0 | −1.40574 | + | 1.17956i | 0 | 4.46660 | + | 2.57879i | 0 | −0.939693 | + | 0.342020i | 0 | ||||||||||
319.3 | 0 | −0.173648 | − | 0.984808i | 0 | 1.00588 | − | 0.844034i | 0 | −3.15949 | − | 1.82413i | 0 | −0.939693 | + | 0.342020i | 0 | ||||||||||
319.4 | 0 | −0.173648 | − | 0.984808i | 0 | 1.30003 | − | 1.09086i | 0 | 1.57531 | + | 0.909508i | 0 | −0.939693 | + | 0.342020i | 0 | ||||||||||
751.1 | 0 | −0.766044 | + | 0.642788i | 0 | −2.67232 | − | 0.972646i | 0 | 2.07863 | + | 1.20010i | 0 | 0.173648 | − | 0.984808i | 0 | ||||||||||
751.2 | 0 | −0.766044 | + | 0.642788i | 0 | −0.800469 | − | 0.291347i | 0 | −1.70402 | − | 0.983816i | 0 | 0.173648 | − | 0.984808i | 0 | ||||||||||
751.3 | 0 | −0.766044 | + | 0.642788i | 0 | 1.72729 | + | 0.628683i | 0 | 3.53090 | + | 2.03857i | 0 | 0.173648 | − | 0.984808i | 0 | ||||||||||
751.4 | 0 | −0.766044 | + | 0.642788i | 0 | 3.79853 | + | 1.38255i | 0 | −0.699779 | − | 0.404018i | 0 | 0.173648 | − | 0.984808i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
76.k | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 912.2.ci.h | yes | 24 |
4.b | odd | 2 | 1 | 912.2.ci.g | ✓ | 24 | |
19.f | odd | 18 | 1 | 912.2.ci.g | ✓ | 24 | |
76.k | even | 18 | 1 | inner | 912.2.ci.h | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
912.2.ci.g | ✓ | 24 | 4.b | odd | 2 | 1 | |
912.2.ci.g | ✓ | 24 | 19.f | odd | 18 | 1 | |
912.2.ci.h | yes | 24 | 1.a | even | 1 | 1 | trivial |
912.2.ci.h | yes | 24 | 76.k | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\):
\( T_{5}^{24} - 3 T_{5}^{22} - 34 T_{5}^{21} + 84 T_{5}^{20} - 549 T_{5}^{19} + 2661 T_{5}^{18} + 4995 T_{5}^{17} + 7083 T_{5}^{16} + 43658 T_{5}^{15} + 11538 T_{5}^{14} - 281328 T_{5}^{13} + 774727 T_{5}^{12} - 1715466 T_{5}^{11} + \cdots + 34012224 \)
|
\( T_{7}^{24} - 9 T_{7}^{23} - 15 T_{7}^{22} + 378 T_{7}^{21} + 36 T_{7}^{20} - 10998 T_{7}^{19} + 17656 T_{7}^{18} + 161091 T_{7}^{17} - 381534 T_{7}^{16} - 1697328 T_{7}^{15} + 5641794 T_{7}^{14} + 8508843 T_{7}^{13} + \cdots + 136118889 \)
|