Properties

Label 912.2.ci.h
Level $912$
Weight $2$
Character orbit 912.ci
Analytic conductor $7.282$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.ci (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 9 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q + 9 q^{7} - 9 q^{11} - 9 q^{13} - 6 q^{17} + 3 q^{19} - 6 q^{21} - 15 q^{23} + 6 q^{25} + 12 q^{27} - 6 q^{29} - 12 q^{31} - 3 q^{33} + 30 q^{41} + 9 q^{43} + 3 q^{45} + 15 q^{47} + 27 q^{49} - 3 q^{51} + 6 q^{53} - 21 q^{55} - 9 q^{57} + 36 q^{59} - 21 q^{61} + 3 q^{63} - 9 q^{65} - 45 q^{67} + 36 q^{71} - 42 q^{75} + 108 q^{77} - 36 q^{79} + 27 q^{83} - 9 q^{85} + 9 q^{87} - 27 q^{89} + 36 q^{91} - 18 q^{93} - 30 q^{95} - 51 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1 0 0.939693 0.342020i 0 −0.467043 + 2.64873i 0 0.480437 0.277380i 0 0.766044 0.642788i 0
79.2 0 0.939693 0.342020i 0 −0.134718 + 0.764021i 0 0.911489 0.526248i 0 0.766044 0.642788i 0
79.3 0 0.939693 0.342020i 0 0.494739 2.80581i 0 −4.05139 + 2.33907i 0 0.766044 0.642788i 0
79.4 0 0.939693 0.342020i 0 0.525770 2.98179i 0 3.04612 1.75868i 0 0.766044 0.642788i 0
127.1 0 0.939693 + 0.342020i 0 −0.467043 2.64873i 0 0.480437 + 0.277380i 0 0.766044 + 0.642788i 0
127.2 0 0.939693 + 0.342020i 0 −0.134718 0.764021i 0 0.911489 + 0.526248i 0 0.766044 + 0.642788i 0
127.3 0 0.939693 + 0.342020i 0 0.494739 + 2.80581i 0 −4.05139 2.33907i 0 0.766044 + 0.642788i 0
127.4 0 0.939693 + 0.342020i 0 0.525770 + 2.98179i 0 3.04612 + 1.75868i 0 0.766044 + 0.642788i 0
223.1 0 −0.173648 + 0.984808i 0 −3.37195 2.82940i 0 −1.97482 + 1.14016i 0 −0.939693 0.342020i 0
223.2 0 −0.173648 + 0.984808i 0 −1.40574 1.17956i 0 4.46660 2.57879i 0 −0.939693 0.342020i 0
223.3 0 −0.173648 + 0.984808i 0 1.00588 + 0.844034i 0 −3.15949 + 1.82413i 0 −0.939693 0.342020i 0
223.4 0 −0.173648 + 0.984808i 0 1.30003 + 1.09086i 0 1.57531 0.909508i 0 −0.939693 0.342020i 0
319.1 0 −0.173648 0.984808i 0 −3.37195 + 2.82940i 0 −1.97482 1.14016i 0 −0.939693 + 0.342020i 0
319.2 0 −0.173648 0.984808i 0 −1.40574 + 1.17956i 0 4.46660 + 2.57879i 0 −0.939693 + 0.342020i 0
319.3 0 −0.173648 0.984808i 0 1.00588 0.844034i 0 −3.15949 1.82413i 0 −0.939693 + 0.342020i 0
319.4 0 −0.173648 0.984808i 0 1.30003 1.09086i 0 1.57531 + 0.909508i 0 −0.939693 + 0.342020i 0
751.1 0 −0.766044 + 0.642788i 0 −2.67232 0.972646i 0 2.07863 + 1.20010i 0 0.173648 0.984808i 0
751.2 0 −0.766044 + 0.642788i 0 −0.800469 0.291347i 0 −1.70402 0.983816i 0 0.173648 0.984808i 0
751.3 0 −0.766044 + 0.642788i 0 1.72729 + 0.628683i 0 3.53090 + 2.03857i 0 0.173648 0.984808i 0
751.4 0 −0.766044 + 0.642788i 0 3.79853 + 1.38255i 0 −0.699779 0.404018i 0 0.173648 0.984808i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 895.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
76.k even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.ci.h yes 24
4.b odd 2 1 912.2.ci.g 24
19.f odd 18 1 912.2.ci.g 24
76.k even 18 1 inner 912.2.ci.h yes 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
912.2.ci.g 24 4.b odd 2 1
912.2.ci.g 24 19.f odd 18 1
912.2.ci.h yes 24 1.a even 1 1 trivial
912.2.ci.h yes 24 76.k even 18 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\):

\( T_{5}^{24} - 3 T_{5}^{22} - 34 T_{5}^{21} + 84 T_{5}^{20} - 549 T_{5}^{19} + 2661 T_{5}^{18} + 4995 T_{5}^{17} + 7083 T_{5}^{16} + 43658 T_{5}^{15} + 11538 T_{5}^{14} - 281328 T_{5}^{13} + 774727 T_{5}^{12} - 1715466 T_{5}^{11} + \cdots + 34012224 \) Copy content Toggle raw display
\( T_{7}^{24} - 9 T_{7}^{23} - 15 T_{7}^{22} + 378 T_{7}^{21} + 36 T_{7}^{20} - 10998 T_{7}^{19} + 17656 T_{7}^{18} + 161091 T_{7}^{17} - 381534 T_{7}^{16} - 1697328 T_{7}^{15} + 5641794 T_{7}^{14} + 8508843 T_{7}^{13} + \cdots + 136118889 \) Copy content Toggle raw display