Properties

Label 912.2.cc.c.257.2
Level $912$
Weight $2$
Character 912.257
Analytic conductor $7.282$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.cc (of order \(18\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Defining polynomial: \(x^{18} - x^{15} - 18 x^{14} + 36 x^{13} + 10 x^{12} + 18 x^{11} + 90 x^{10} - 567 x^{9} + 270 x^{8} + 162 x^{7} + 270 x^{6} + 2916 x^{5} - 4374 x^{4} - 729 x^{3} + 19683\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 257.2
Root \(0.0786547 + 1.73026i\) of defining polynomial
Character \(\chi\) \(=\) 912.257
Dual form 912.2.cc.c.401.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.517874 - 1.65282i) q^{3} +(-0.258510 + 0.710252i) q^{5} +(-0.777943 + 1.34744i) q^{7} +(-2.46361 + 1.71190i) q^{9} +O(q^{10})\) \(q+(-0.517874 - 1.65282i) q^{3} +(-0.258510 + 0.710252i) q^{5} +(-0.777943 + 1.34744i) q^{7} +(-2.46361 + 1.71190i) q^{9} +(-0.832399 + 0.480586i) q^{11} +(0.416982 - 0.496940i) q^{13} +(1.30779 + 0.0594499i) q^{15} +(6.73013 - 1.18670i) q^{17} +(4.14364 + 1.35288i) q^{19} +(2.62994 + 0.587996i) q^{21} +(-0.400647 - 1.10077i) q^{23} +(3.39259 + 2.84672i) q^{25} +(4.10530 + 3.18535i) q^{27} +(1.39666 - 7.92086i) q^{29} +(2.63927 + 1.52379i) q^{31} +(1.22540 + 1.12692i) q^{33} +(-0.755913 - 0.900862i) q^{35} -4.12648i q^{37} +(-1.03729 - 0.431843i) q^{39} +(-4.09755 + 3.43825i) q^{41} +(7.34330 + 2.67274i) q^{43} +(-0.579012 - 2.19233i) q^{45} +(3.11004 + 0.548383i) q^{47} +(2.28961 + 3.96572i) q^{49} +(-5.44676 - 10.5091i) q^{51} +(-13.6276 + 4.96002i) q^{53} +(-0.126153 - 0.715449i) q^{55} +(0.0901766 - 7.54930i) q^{57} +(-2.02192 - 11.4669i) q^{59} +(10.1813 - 3.70568i) q^{61} +(-0.390129 - 4.65133i) q^{63} +(0.245158 + 0.424626i) q^{65} +(9.19012 + 1.62047i) q^{67} +(-1.61189 + 1.23226i) q^{69} +(-0.0322101 - 0.0117235i) q^{71} +(-3.04446 + 2.55461i) q^{73} +(2.94818 - 7.08158i) q^{75} -1.49547i q^{77} +(0.893115 + 1.06437i) q^{79} +(3.13878 - 8.43493i) q^{81} +(10.4856 + 6.05389i) q^{83} +(-0.896950 + 5.08686i) q^{85} +(-13.8150 + 1.79358i) q^{87} +(4.68075 + 3.92762i) q^{89} +(0.345207 + 0.948448i) q^{91} +(1.15173 - 5.15137i) q^{93} +(-2.03206 + 2.59329i) q^{95} +(9.54804 - 1.68358i) q^{97} +(1.22799 - 2.60896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18q - 3q^{3} - 3q^{9} + O(q^{10}) \) \( 18q - 3q^{3} - 3q^{9} - 12q^{13} - 18q^{15} + 6q^{17} + 6q^{19} - 18q^{25} + 6q^{27} - 6q^{29} - 24q^{33} + 24q^{35} - 6q^{39} + 3q^{41} + 6q^{43} - 54q^{45} - 30q^{47} + 21q^{49} - 42q^{51} - 60q^{53} - 30q^{55} + 12q^{57} - 3q^{59} + 54q^{61} + 18q^{63} + 24q^{65} + 15q^{67} + 30q^{69} - 36q^{71} - 42q^{73} + 6q^{79} - 3q^{81} - 36q^{83} - 60q^{89} + 18q^{91} - 66q^{93} - 6q^{95} + 9q^{97} + 102q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.517874 1.65282i −0.298995 0.954255i
\(4\) 0 0
\(5\) −0.258510 + 0.710252i −0.115609 + 0.317634i −0.983979 0.178283i \(-0.942946\pi\)
0.868370 + 0.495917i \(0.165168\pi\)
\(6\) 0 0
\(7\) −0.777943 + 1.34744i −0.294035 + 0.509283i −0.974760 0.223256i \(-0.928331\pi\)
0.680725 + 0.732539i \(0.261665\pi\)
\(8\) 0 0
\(9\) −2.46361 + 1.71190i −0.821204 + 0.570634i
\(10\) 0 0
\(11\) −0.832399 + 0.480586i −0.250978 + 0.144902i −0.620212 0.784434i \(-0.712953\pi\)
0.369234 + 0.929336i \(0.379620\pi\)
\(12\) 0 0
\(13\) 0.416982 0.496940i 0.115650 0.137826i −0.705113 0.709095i \(-0.749104\pi\)
0.820763 + 0.571268i \(0.193548\pi\)
\(14\) 0 0
\(15\) 1.30779 + 0.0594499i 0.337671 + 0.0153499i
\(16\) 0 0
\(17\) 6.73013 1.18670i 1.63230 0.287818i 0.718968 0.695043i \(-0.244615\pi\)
0.913328 + 0.407226i \(0.133504\pi\)
\(18\) 0 0
\(19\) 4.14364 + 1.35288i 0.950615 + 0.310371i
\(20\) 0 0
\(21\) 2.62994 + 0.587996i 0.573901 + 0.128311i
\(22\) 0 0
\(23\) −0.400647 1.10077i −0.0835407 0.229526i 0.890888 0.454223i \(-0.150083\pi\)
−0.974429 + 0.224697i \(0.927861\pi\)
\(24\) 0 0
\(25\) 3.39259 + 2.84672i 0.678519 + 0.569345i
\(26\) 0 0
\(27\) 4.10530 + 3.18535i 0.790066 + 0.613022i
\(28\) 0 0
\(29\) 1.39666 7.92086i 0.259354 1.47087i −0.525292 0.850922i \(-0.676044\pi\)
0.784645 0.619945i \(-0.212845\pi\)
\(30\) 0 0
\(31\) 2.63927 + 1.52379i 0.474028 + 0.273680i 0.717924 0.696121i \(-0.245092\pi\)
−0.243897 + 0.969801i \(0.578426\pi\)
\(32\) 0 0
\(33\) 1.22540 + 1.12692i 0.213314 + 0.196172i
\(34\) 0 0
\(35\) −0.755913 0.900862i −0.127773 0.152273i
\(36\) 0 0
\(37\) 4.12648i 0.678389i −0.940716 0.339195i \(-0.889846\pi\)
0.940716 0.339195i \(-0.110154\pi\)
\(38\) 0 0
\(39\) −1.03729 0.431843i −0.166100 0.0691502i
\(40\) 0 0
\(41\) −4.09755 + 3.43825i −0.639929 + 0.536964i −0.903996 0.427540i \(-0.859380\pi\)
0.264067 + 0.964504i \(0.414936\pi\)
\(42\) 0 0
\(43\) 7.34330 + 2.67274i 1.11984 + 0.407589i 0.834595 0.550865i \(-0.185702\pi\)
0.285248 + 0.958454i \(0.407924\pi\)
\(44\) 0 0
\(45\) −0.579012 2.19233i −0.0863139 0.326813i
\(46\) 0 0
\(47\) 3.11004 + 0.548383i 0.453646 + 0.0799899i 0.395802 0.918336i \(-0.370467\pi\)
0.0578432 + 0.998326i \(0.481578\pi\)
\(48\) 0 0
\(49\) 2.28961 + 3.96572i 0.327087 + 0.566531i
\(50\) 0 0
\(51\) −5.44676 10.5091i −0.762699 1.47157i
\(52\) 0 0
\(53\) −13.6276 + 4.96002i −1.87189 + 0.681312i −0.905427 + 0.424503i \(0.860449\pi\)
−0.966462 + 0.256809i \(0.917329\pi\)
\(54\) 0 0
\(55\) −0.126153 0.715449i −0.0170105 0.0964711i
\(56\) 0 0
\(57\) 0.0901766 7.54930i 0.0119442 0.999929i
\(58\) 0 0
\(59\) −2.02192 11.4669i −0.263231 1.49286i −0.774024 0.633156i \(-0.781759\pi\)
0.510793 0.859704i \(-0.329352\pi\)
\(60\) 0 0
\(61\) 10.1813 3.70568i 1.30358 0.474464i 0.405419 0.914131i \(-0.367126\pi\)
0.898161 + 0.439667i \(0.144903\pi\)
\(62\) 0 0
\(63\) −0.390129 4.65133i −0.0491517 0.586012i
\(64\) 0 0
\(65\) 0.245158 + 0.424626i 0.0304081 + 0.0526684i
\(66\) 0 0
\(67\) 9.19012 + 1.62047i 1.12275 + 0.197972i 0.704049 0.710151i \(-0.251374\pi\)
0.418703 + 0.908123i \(0.362485\pi\)
\(68\) 0 0
\(69\) −1.61189 + 1.23226i −0.194048 + 0.148346i
\(70\) 0 0
\(71\) −0.0322101 0.0117235i −0.00382263 0.00139132i 0.340108 0.940386i \(-0.389536\pi\)
−0.343931 + 0.938995i \(0.611759\pi\)
\(72\) 0 0
\(73\) −3.04446 + 2.55461i −0.356327 + 0.298994i −0.803325 0.595541i \(-0.796938\pi\)
0.446998 + 0.894535i \(0.352493\pi\)
\(74\) 0 0
\(75\) 2.94818 7.08158i 0.340426 0.817711i
\(76\) 0 0
\(77\) 1.49547i 0.170425i
\(78\) 0 0
\(79\) 0.893115 + 1.06437i 0.100483 + 0.119751i 0.813943 0.580945i \(-0.197317\pi\)
−0.713459 + 0.700697i \(0.752873\pi\)
\(80\) 0 0
\(81\) 3.13878 8.43493i 0.348753 0.937215i
\(82\) 0 0
\(83\) 10.4856 + 6.05389i 1.15095 + 0.664500i 0.949118 0.314920i \(-0.101978\pi\)
0.201830 + 0.979421i \(0.435311\pi\)
\(84\) 0 0
\(85\) −0.896950 + 5.08686i −0.0972879 + 0.551747i
\(86\) 0 0
\(87\) −13.8150 + 1.79358i −1.48113 + 0.192292i
\(88\) 0 0
\(89\) 4.68075 + 3.92762i 0.496159 + 0.416327i 0.856227 0.516599i \(-0.172802\pi\)
−0.360069 + 0.932926i \(0.617247\pi\)
\(90\) 0 0
\(91\) 0.345207 + 0.948448i 0.0361875 + 0.0994243i
\(92\) 0 0
\(93\) 1.15173 5.15137i 0.119429 0.534172i
\(94\) 0 0
\(95\) −2.03206 + 2.59329i −0.208485 + 0.266066i
\(96\) 0 0
\(97\) 9.54804 1.68358i 0.969457 0.170941i 0.333571 0.942725i \(-0.391746\pi\)
0.635885 + 0.771784i \(0.280635\pi\)
\(98\) 0 0
\(99\) 1.22799 2.60896i 0.123418 0.262211i
\(100\) 0 0
\(101\) 12.0945 14.4137i 1.20345 1.43422i 0.332323 0.943166i \(-0.392168\pi\)
0.871130 0.491053i \(-0.163388\pi\)
\(102\) 0 0
\(103\) −9.92876 + 5.73237i −0.978310 + 0.564828i −0.901759 0.432238i \(-0.857724\pi\)
−0.0765505 + 0.997066i \(0.524391\pi\)
\(104\) 0 0
\(105\) −1.09749 + 1.71592i −0.107104 + 0.167457i
\(106\) 0 0
\(107\) 1.17826 2.04080i 0.113906 0.197292i −0.803436 0.595392i \(-0.796997\pi\)
0.917342 + 0.398100i \(0.130330\pi\)
\(108\) 0 0
\(109\) −2.21678 + 6.09056i −0.212329 + 0.583370i −0.999441 0.0334410i \(-0.989353\pi\)
0.787111 + 0.616811i \(0.211576\pi\)
\(110\) 0 0
\(111\) −6.82032 + 2.13700i −0.647356 + 0.202835i
\(112\) 0 0
\(113\) −10.0387 −0.944358 −0.472179 0.881503i \(-0.656532\pi\)
−0.472179 + 0.881503i \(0.656532\pi\)
\(114\) 0 0
\(115\) 0.885394 0.0825635
\(116\) 0 0
\(117\) −0.176570 + 1.93810i −0.0163239 + 0.179177i
\(118\) 0 0
\(119\) −3.63665 + 9.99161i −0.333371 + 0.915929i
\(120\) 0 0
\(121\) −5.03807 + 8.72620i −0.458007 + 0.793291i
\(122\) 0 0
\(123\) 7.80481 + 4.99192i 0.703736 + 0.450106i
\(124\) 0 0
\(125\) −6.17177 + 3.56327i −0.552020 + 0.318709i
\(126\) 0 0
\(127\) −8.95146 + 10.6679i −0.794313 + 0.946626i −0.999485 0.0321003i \(-0.989780\pi\)
0.205171 + 0.978726i \(0.434225\pi\)
\(128\) 0 0
\(129\) 0.614653 13.5213i 0.0541172 1.19048i
\(130\) 0 0
\(131\) −10.9610 + 1.93273i −0.957671 + 0.168863i −0.630575 0.776128i \(-0.717181\pi\)
−0.327096 + 0.944991i \(0.606070\pi\)
\(132\) 0 0
\(133\) −5.04643 + 4.53083i −0.437581 + 0.392873i
\(134\) 0 0
\(135\) −3.32367 + 2.09235i −0.286056 + 0.180081i
\(136\) 0 0
\(137\) −1.69757 4.66403i −0.145033 0.398475i 0.845812 0.533482i \(-0.179117\pi\)
−0.990845 + 0.135007i \(0.956894\pi\)
\(138\) 0 0
\(139\) 2.76202 + 2.31761i 0.234272 + 0.196577i 0.752364 0.658747i \(-0.228913\pi\)
−0.518093 + 0.855325i \(0.673358\pi\)
\(140\) 0 0
\(141\) −0.704229 5.42432i −0.0593068 0.456810i
\(142\) 0 0
\(143\) −0.108273 + 0.614047i −0.00905425 + 0.0513492i
\(144\) 0 0
\(145\) 5.26475 + 3.03961i 0.437214 + 0.252426i
\(146\) 0 0
\(147\) 5.36888 5.83805i 0.442818 0.481514i
\(148\) 0 0
\(149\) 12.3170 + 14.6788i 1.00904 + 1.20253i 0.979183 + 0.202978i \(0.0650620\pi\)
0.0298610 + 0.999554i \(0.490494\pi\)
\(150\) 0 0
\(151\) 19.2624i 1.56755i −0.621042 0.783777i \(-0.713290\pi\)
0.621042 0.783777i \(-0.286710\pi\)
\(152\) 0 0
\(153\) −14.5489 + 14.4449i −1.17621 + 1.16780i
\(154\) 0 0
\(155\) −1.76455 + 1.48063i −0.141732 + 0.118927i
\(156\) 0 0
\(157\) −0.200940 0.0731363i −0.0160368 0.00583691i 0.333989 0.942577i \(-0.391605\pi\)
−0.350026 + 0.936740i \(0.613827\pi\)
\(158\) 0 0
\(159\) 15.2554 + 19.9552i 1.20983 + 1.58255i
\(160\) 0 0
\(161\) 1.79490 + 0.316489i 0.141458 + 0.0249428i
\(162\) 0 0
\(163\) −7.51668 13.0193i −0.588752 1.01975i −0.994396 0.105717i \(-0.966286\pi\)
0.405645 0.914031i \(-0.367047\pi\)
\(164\) 0 0
\(165\) −1.11718 + 0.579020i −0.0869720 + 0.0450767i
\(166\) 0 0
\(167\) 8.87982 3.23199i 0.687141 0.250099i 0.0252305 0.999682i \(-0.491968\pi\)
0.661911 + 0.749583i \(0.269746\pi\)
\(168\) 0 0
\(169\) 2.18435 + 12.3881i 0.168027 + 0.952929i
\(170\) 0 0
\(171\) −12.5243 + 3.76054i −0.957758 + 0.287575i
\(172\) 0 0
\(173\) 2.33529 + 13.2441i 0.177549 + 1.00693i 0.935161 + 0.354224i \(0.115255\pi\)
−0.757612 + 0.652705i \(0.773634\pi\)
\(174\) 0 0
\(175\) −6.47502 + 2.35672i −0.489466 + 0.178151i
\(176\) 0 0
\(177\) −17.9056 + 9.28026i −1.34586 + 0.697547i
\(178\) 0 0
\(179\) −8.34644 14.4565i −0.623842 1.08053i −0.988764 0.149488i \(-0.952237\pi\)
0.364921 0.931038i \(-0.381096\pi\)
\(180\) 0 0
\(181\) −10.0398 1.77029i −0.746251 0.131584i −0.212424 0.977178i \(-0.568136\pi\)
−0.533828 + 0.845593i \(0.679247\pi\)
\(182\) 0 0
\(183\) −11.3974 14.9087i −0.842523 1.10209i
\(184\) 0 0
\(185\) 2.93084 + 1.06674i 0.215480 + 0.0784281i
\(186\) 0 0
\(187\) −5.03184 + 4.22221i −0.367964 + 0.308759i
\(188\) 0 0
\(189\) −7.48576 + 3.05361i −0.544509 + 0.222118i
\(190\) 0 0
\(191\) 12.0667i 0.873115i 0.899676 + 0.436558i \(0.143802\pi\)
−0.899676 + 0.436558i \(0.856198\pi\)
\(192\) 0 0
\(193\) −2.14990 2.56215i −0.154753 0.184427i 0.683098 0.730327i \(-0.260632\pi\)
−0.837850 + 0.545900i \(0.816188\pi\)
\(194\) 0 0
\(195\) 0.574869 0.625104i 0.0411672 0.0447647i
\(196\) 0 0
\(197\) 5.15098 + 2.97392i 0.366992 + 0.211883i 0.672144 0.740421i \(-0.265374\pi\)
−0.305151 + 0.952304i \(0.598707\pi\)
\(198\) 0 0
\(199\) −1.94088 + 11.0073i −0.137585 + 0.780286i 0.835439 + 0.549583i \(0.185214\pi\)
−0.973024 + 0.230703i \(0.925898\pi\)
\(200\) 0 0
\(201\) −2.08099 16.0288i −0.146782 1.13058i
\(202\) 0 0
\(203\) 9.58634 + 8.04389i 0.672829 + 0.564571i
\(204\) 0 0
\(205\) −1.38276 3.79911i −0.0965764 0.265342i
\(206\) 0 0
\(207\) 2.87145 + 2.02600i 0.199579 + 0.140817i
\(208\) 0 0
\(209\) −4.09933 + 0.865240i −0.283557 + 0.0598499i
\(210\) 0 0
\(211\) 20.9377 3.69188i 1.44141 0.254159i 0.602364 0.798222i \(-0.294226\pi\)
0.839045 + 0.544063i \(0.183115\pi\)
\(212\) 0 0
\(213\) −0.00269607 + 0.0593087i −0.000184731 + 0.00406376i
\(214\) 0 0
\(215\) −3.79664 + 4.52466i −0.258928 + 0.308579i
\(216\) 0 0
\(217\) −4.10641 + 2.37084i −0.278761 + 0.160943i
\(218\) 0 0
\(219\) 5.79895 + 3.70898i 0.391856 + 0.250629i
\(220\) 0 0
\(221\) 2.21662 3.83930i 0.149106 0.258259i
\(222\) 0 0
\(223\) −4.71184 + 12.9457i −0.315528 + 0.866907i 0.675987 + 0.736914i \(0.263718\pi\)
−0.991515 + 0.129993i \(0.958505\pi\)
\(224\) 0 0
\(225\) −13.2313 1.20544i −0.882090 0.0803625i
\(226\) 0 0
\(227\) −16.1886 −1.07448 −0.537238 0.843430i \(-0.680532\pi\)
−0.537238 + 0.843430i \(0.680532\pi\)
\(228\) 0 0
\(229\) −25.6462 −1.69475 −0.847374 0.530997i \(-0.821817\pi\)
−0.847374 + 0.530997i \(0.821817\pi\)
\(230\) 0 0
\(231\) −2.47174 + 0.774466i −0.162629 + 0.0509561i
\(232\) 0 0
\(233\) 3.98107 10.9379i 0.260808 0.716565i −0.738305 0.674467i \(-0.764374\pi\)
0.999113 0.0420981i \(-0.0134042\pi\)
\(234\) 0 0
\(235\) −1.19347 + 2.06715i −0.0778532 + 0.134846i
\(236\) 0 0
\(237\) 1.29669 2.02737i 0.0842293 0.131692i
\(238\) 0 0
\(239\) 13.1831 7.61128i 0.852746 0.492333i −0.00883069 0.999961i \(-0.502811\pi\)
0.861576 + 0.507628i \(0.169478\pi\)
\(240\) 0 0
\(241\) 9.76016 11.6317i 0.628707 0.749264i −0.353834 0.935308i \(-0.615122\pi\)
0.982541 + 0.186044i \(0.0595666\pi\)
\(242\) 0 0
\(243\) −15.5669 0.819603i −0.998617 0.0525776i
\(244\) 0 0
\(245\) −3.40855 + 0.601019i −0.217764 + 0.0383977i
\(246\) 0 0
\(247\) 2.40012 1.49501i 0.152716 0.0951254i
\(248\) 0 0
\(249\) 4.57573 20.4660i 0.289975 1.29698i
\(250\) 0 0
\(251\) 3.71032 + 10.1940i 0.234193 + 0.643441i 1.00000 0.000369965i \(0.000117763\pi\)
−0.765807 + 0.643071i \(0.777660\pi\)
\(252\) 0 0
\(253\) 0.862512 + 0.723733i 0.0542257 + 0.0455007i
\(254\) 0 0
\(255\) 8.87216 1.15186i 0.555596 0.0721320i
\(256\) 0 0
\(257\) −0.00786014 + 0.0445771i −0.000490302 + 0.00278064i −0.985052 0.172258i \(-0.944894\pi\)
0.984562 + 0.175038i \(0.0560049\pi\)
\(258\) 0 0
\(259\) 5.56017 + 3.21017i 0.345492 + 0.199470i
\(260\) 0 0
\(261\) 10.1189 + 21.9049i 0.626345 + 1.35588i
\(262\) 0 0
\(263\) 3.52577 + 4.20185i 0.217408 + 0.259097i 0.863715 0.503981i \(-0.168132\pi\)
−0.646307 + 0.763078i \(0.723687\pi\)
\(264\) 0 0
\(265\) 10.9612i 0.673342i
\(266\) 0 0
\(267\) 4.06760 9.77044i 0.248933 0.597941i
\(268\) 0 0
\(269\) 1.50432 1.26228i 0.0917202 0.0769623i −0.595775 0.803152i \(-0.703155\pi\)
0.687495 + 0.726189i \(0.258710\pi\)
\(270\) 0 0
\(271\) −19.8494 7.22458i −1.20576 0.438862i −0.340531 0.940233i \(-0.610607\pi\)
−0.865232 + 0.501371i \(0.832829\pi\)
\(272\) 0 0
\(273\) 1.38884 1.06174i 0.0840563 0.0642594i
\(274\) 0 0
\(275\) −4.19208 0.739177i −0.252792 0.0445741i
\(276\) 0 0
\(277\) −3.91899 6.78789i −0.235469 0.407845i 0.723940 0.689863i \(-0.242329\pi\)
−0.959409 + 0.282018i \(0.908996\pi\)
\(278\) 0 0
\(279\) −9.11072 + 0.764161i −0.545445 + 0.0457491i
\(280\) 0 0
\(281\) −11.0064 + 4.00600i −0.656587 + 0.238978i −0.648762 0.760991i \(-0.724713\pi\)
−0.00782495 + 0.999969i \(0.502491\pi\)
\(282\) 0 0
\(283\) −1.21905 6.91356i −0.0724648 0.410968i −0.999364 0.0356581i \(-0.988647\pi\)
0.926899 0.375310i \(-0.122464\pi\)
\(284\) 0 0
\(285\) 5.33859 + 2.01562i 0.316231 + 0.119395i
\(286\) 0 0
\(287\) −1.44517 8.19595i −0.0853055 0.483791i
\(288\) 0 0
\(289\) 27.9116 10.1590i 1.64186 0.597587i
\(290\) 0 0
\(291\) −7.72733 14.9093i −0.452984 0.873998i
\(292\) 0 0
\(293\) −1.29095 2.23599i −0.0754180 0.130628i 0.825850 0.563890i \(-0.190696\pi\)
−0.901268 + 0.433262i \(0.857362\pi\)
\(294\) 0 0
\(295\) 8.66705 + 1.52824i 0.504615 + 0.0889773i
\(296\) 0 0
\(297\) −4.94808 0.678535i −0.287117 0.0393726i
\(298\) 0 0
\(299\) −0.714078 0.259903i −0.0412962 0.0150306i
\(300\) 0 0
\(301\) −9.31401 + 7.81539i −0.536851 + 0.450471i
\(302\) 0 0
\(303\) −30.0867 12.5256i −1.72844 0.719577i
\(304\) 0 0
\(305\) 8.18923i 0.468914i
\(306\) 0 0
\(307\) 1.26629 + 1.50910i 0.0722709 + 0.0861290i 0.800968 0.598707i \(-0.204318\pi\)
−0.728698 + 0.684836i \(0.759874\pi\)
\(308\) 0 0
\(309\) 14.6164 + 13.4418i 0.831499 + 0.764677i
\(310\) 0 0
\(311\) −22.4909 12.9851i −1.27534 0.736320i −0.299355 0.954142i \(-0.596771\pi\)
−0.975989 + 0.217822i \(0.930105\pi\)
\(312\) 0 0
\(313\) −2.32842 + 13.2051i −0.131610 + 0.746398i 0.845551 + 0.533895i \(0.179272\pi\)
−0.977161 + 0.212502i \(0.931839\pi\)
\(314\) 0 0
\(315\) 3.40446 + 0.925326i 0.191820 + 0.0521362i
\(316\) 0 0
\(317\) −23.3056 19.5557i −1.30897 1.09836i −0.988519 0.151095i \(-0.951720\pi\)
−0.320454 0.947264i \(-0.603835\pi\)
\(318\) 0 0
\(319\) 2.64407 + 7.26453i 0.148040 + 0.406736i
\(320\) 0 0
\(321\) −3.98326 0.890567i −0.222324 0.0497066i
\(322\) 0 0
\(323\) 29.4927 + 4.18776i 1.64102 + 0.233013i
\(324\) 0 0
\(325\) 2.82930 0.498882i 0.156941 0.0276730i
\(326\) 0 0
\(327\) 11.2146 + 0.509796i 0.620169 + 0.0281918i
\(328\) 0 0
\(329\) −3.15834 + 3.76397i −0.174125 + 0.207514i
\(330\) 0 0
\(331\) 9.22014 5.32325i 0.506785 0.292592i −0.224726 0.974422i \(-0.572149\pi\)
0.731511 + 0.681830i \(0.238815\pi\)
\(332\) 0 0
\(333\) 7.06413 + 10.1660i 0.387112 + 0.557096i
\(334\) 0 0
\(335\) −3.52668 + 6.10839i −0.192683 + 0.333737i
\(336\) 0 0
\(337\) −2.38138 + 6.54278i −0.129722 + 0.356408i −0.987501 0.157610i \(-0.949621\pi\)
0.857780 + 0.514018i \(0.171843\pi\)
\(338\) 0 0
\(339\) 5.19876 + 16.5921i 0.282358 + 0.901158i
\(340\) 0 0
\(341\) −2.92924 −0.158627
\(342\) 0 0
\(343\) −18.0159 −0.972770
\(344\) 0 0
\(345\) −0.458523 1.46340i −0.0246860 0.0787866i
\(346\) 0 0
\(347\) 9.63081 26.4604i 0.517009 1.42047i −0.356790 0.934185i \(-0.616129\pi\)
0.873799 0.486287i \(-0.161649\pi\)
\(348\) 0 0
\(349\) 9.79155 16.9595i 0.524130 0.907819i −0.475476 0.879729i \(-0.657724\pi\)
0.999605 0.0280904i \(-0.00894261\pi\)
\(350\) 0 0
\(351\) 3.29477 0.711853i 0.175862 0.0379959i
\(352\) 0 0
\(353\) −3.55050 + 2.04988i −0.188974 + 0.109104i −0.591502 0.806303i \(-0.701465\pi\)
0.402528 + 0.915408i \(0.368132\pi\)
\(354\) 0 0
\(355\) 0.0166533 0.0198466i 0.000883864 0.00105335i
\(356\) 0 0
\(357\) 18.3976 + 0.836324i 0.973706 + 0.0442629i
\(358\) 0 0
\(359\) 5.52450 0.974118i 0.291572 0.0514120i −0.0259490 0.999663i \(-0.508261\pi\)
0.317521 + 0.948251i \(0.397150\pi\)
\(360\) 0 0
\(361\) 15.3395 + 11.2117i 0.807340 + 0.590087i
\(362\) 0 0
\(363\) 17.0319 + 3.80795i 0.893943 + 0.199865i
\(364\) 0 0
\(365\) −1.02739 2.82273i −0.0537760 0.147748i
\(366\) 0 0
\(367\) 2.28539 + 1.91767i 0.119296 + 0.100101i 0.700484 0.713668i \(-0.252967\pi\)
−0.581188 + 0.813769i \(0.697412\pi\)
\(368\) 0 0
\(369\) 4.20882 15.4851i 0.219103 0.806123i
\(370\) 0 0
\(371\) 3.91814 22.2209i 0.203420 1.15365i
\(372\) 0 0
\(373\) −18.2415 10.5317i −0.944510 0.545313i −0.0531391 0.998587i \(-0.516923\pi\)
−0.891371 + 0.453274i \(0.850256\pi\)
\(374\) 0 0
\(375\) 9.08564 + 8.35548i 0.469180 + 0.431475i
\(376\) 0 0
\(377\) −3.35381 3.99691i −0.172730 0.205852i
\(378\) 0 0
\(379\) 9.54057i 0.490066i −0.969515 0.245033i \(-0.921201\pi\)
0.969515 0.245033i \(-0.0787988\pi\)
\(380\) 0 0
\(381\) 22.2679 + 9.27048i 1.14082 + 0.474941i
\(382\) 0 0
\(383\) −5.96084 + 5.00173i −0.304584 + 0.255577i −0.782249 0.622965i \(-0.785928\pi\)
0.477665 + 0.878542i \(0.341483\pi\)
\(384\) 0 0
\(385\) 1.06216 + 0.386595i 0.0541328 + 0.0197027i
\(386\) 0 0
\(387\) −22.6665 + 5.98640i −1.15220 + 0.304306i
\(388\) 0 0
\(389\) 9.63724 + 1.69931i 0.488627 + 0.0861582i 0.412533 0.910942i \(-0.364644\pi\)
0.0760939 + 0.997101i \(0.475755\pi\)
\(390\) 0 0
\(391\) −4.00269 6.93287i −0.202425 0.350610i
\(392\) 0 0
\(393\) 8.87089 + 17.1157i 0.447477 + 0.863373i
\(394\) 0 0
\(395\) −0.986853 + 0.359185i −0.0496539 + 0.0180726i
\(396\) 0 0
\(397\) −2.05329 11.6448i −0.103052 0.584435i −0.991981 0.126390i \(-0.959661\pi\)
0.888929 0.458045i \(-0.151450\pi\)
\(398\) 0 0
\(399\) 10.1020 + 5.99443i 0.505735 + 0.300097i
\(400\) 0 0
\(401\) −3.59086 20.3648i −0.179319 1.01697i −0.933039 0.359774i \(-0.882854\pi\)
0.753720 0.657195i \(-0.228257\pi\)
\(402\) 0 0
\(403\) 1.85776 0.676169i 0.0925416 0.0336824i
\(404\) 0 0
\(405\) 5.17952 + 4.40984i 0.257372 + 0.219127i
\(406\) 0 0
\(407\) 1.98313 + 3.43488i 0.0982999 + 0.170260i
\(408\) 0 0
\(409\) 3.39761 + 0.599090i 0.168001 + 0.0296231i 0.257016 0.966407i \(-0.417261\pi\)
−0.0890148 + 0.996030i \(0.528372\pi\)
\(410\) 0 0
\(411\) −6.82966 + 5.22115i −0.336882 + 0.257540i
\(412\) 0 0
\(413\) 17.0238 + 6.19617i 0.837688 + 0.304893i
\(414\) 0 0
\(415\) −7.01043 + 5.88245i −0.344128 + 0.288758i
\(416\) 0 0
\(417\) 2.40021 5.76535i 0.117539 0.282331i
\(418\) 0 0
\(419\) 25.3156i 1.23675i 0.785884 + 0.618374i \(0.212208\pi\)
−0.785884 + 0.618374i \(0.787792\pi\)
\(420\) 0 0
\(421\) 20.4536 + 24.3756i 0.996845 + 1.18799i 0.982150 + 0.188102i \(0.0602334\pi\)
0.0146955 + 0.999892i \(0.495322\pi\)
\(422\) 0 0
\(423\) −8.60071 + 3.97307i −0.418181 + 0.193178i
\(424\) 0 0
\(425\) 26.2108 + 15.1328i 1.27141 + 0.734049i
\(426\) 0 0
\(427\) −2.92728 + 16.6014i −0.141661 + 0.803400i
\(428\) 0 0
\(429\) 1.07098 0.139043i 0.0517074 0.00671308i
\(430\) 0 0
\(431\) 25.2345 + 21.1742i 1.21550 + 1.01993i 0.999048 + 0.0436350i \(0.0138938\pi\)
0.216455 + 0.976293i \(0.430551\pi\)
\(432\) 0 0
\(433\) −5.46188 15.0064i −0.262481 0.721161i −0.998999 0.0447423i \(-0.985753\pi\)
0.736517 0.676419i \(-0.236469\pi\)
\(434\) 0 0
\(435\) 2.29744 10.2758i 0.110154 0.492688i
\(436\) 0 0
\(437\) −0.170932 5.10321i −0.00817679 0.244120i
\(438\) 0 0
\(439\) 30.5401 5.38505i 1.45760 0.257014i 0.612011 0.790849i \(-0.290361\pi\)
0.845589 + 0.533835i \(0.179250\pi\)
\(440\) 0 0
\(441\) −12.4296 5.85041i −0.591887 0.278591i
\(442\) 0 0
\(443\) −12.5287 + 14.9311i −0.595257 + 0.709400i −0.976607 0.215031i \(-0.931015\pi\)
0.381350 + 0.924431i \(0.375459\pi\)
\(444\) 0 0
\(445\) −3.99962 + 2.30918i −0.189600 + 0.109466i
\(446\) 0 0
\(447\) 17.8827 27.9594i 0.845823 1.32244i
\(448\) 0 0
\(449\) 6.61607 11.4594i 0.312232 0.540801i −0.666613 0.745404i \(-0.732257\pi\)
0.978845 + 0.204602i \(0.0655901\pi\)
\(450\) 0 0
\(451\) 1.75842 4.83122i 0.0828007 0.227493i
\(452\) 0 0
\(453\) −31.8373 + 9.97551i −1.49585 + 0.468690i
\(454\) 0 0
\(455\) −0.762876 −0.0357642
\(456\) 0 0
\(457\) −15.4038 −0.720559 −0.360279 0.932844i \(-0.617319\pi\)
−0.360279 + 0.932844i \(0.617319\pi\)
\(458\) 0 0
\(459\) 31.4093 + 16.5661i 1.46606 + 0.773238i
\(460\) 0 0
\(461\) −5.65076 + 15.5253i −0.263182 + 0.723087i 0.735766 + 0.677236i \(0.236822\pi\)
−0.998948 + 0.0458511i \(0.985400\pi\)
\(462\) 0 0
\(463\) 4.69170 8.12625i 0.218042 0.377659i −0.736168 0.676799i \(-0.763366\pi\)
0.954209 + 0.299140i \(0.0966998\pi\)
\(464\) 0 0
\(465\) 3.36103 + 2.14970i 0.155864 + 0.0996899i
\(466\) 0 0
\(467\) −18.5458 + 10.7074i −0.858196 + 0.495480i −0.863408 0.504507i \(-0.831674\pi\)
0.00521153 + 0.999986i \(0.498341\pi\)
\(468\) 0 0
\(469\) −9.33287 + 11.1225i −0.430952 + 0.513588i
\(470\) 0 0
\(471\) −0.0168192 + 0.369993i −0.000774989 + 0.0170484i
\(472\) 0 0
\(473\) −7.39703 + 1.30430i −0.340116 + 0.0599716i
\(474\) 0 0
\(475\) 10.2064 + 16.3855i 0.468302 + 0.751820i
\(476\) 0 0
\(477\) 25.0820 35.5486i 1.14842 1.62766i
\(478\) 0 0
\(479\) −11.4165 31.3665i −0.521632 1.43317i −0.868703 0.495333i \(-0.835046\pi\)
0.347071 0.937839i \(-0.387176\pi\)
\(480\) 0 0
\(481\) −2.05061 1.72067i −0.0934998 0.0784557i
\(482\) 0 0
\(483\) −0.406432 3.13054i −0.0184933 0.142444i
\(484\) 0 0
\(485\) −1.27250 + 7.21673i −0.0577815 + 0.327695i
\(486\) 0 0
\(487\) 28.9750 + 16.7288i 1.31298 + 0.758052i 0.982589 0.185791i \(-0.0594846\pi\)
0.330395 + 0.943843i \(0.392818\pi\)
\(488\) 0 0
\(489\) −17.6258 + 19.1660i −0.797066 + 0.866718i
\(490\) 0 0
\(491\) −0.635055 0.756829i −0.0286596 0.0341552i 0.751524 0.659705i \(-0.229319\pi\)
−0.780184 + 0.625550i \(0.784875\pi\)
\(492\) 0 0
\(493\) 54.9658i 2.47554i
\(494\) 0 0
\(495\) 1.53557 + 1.54663i 0.0690188 + 0.0695158i
\(496\) 0 0
\(497\) 0.0408543 0.0342808i 0.00183256 0.00153770i
\(498\) 0 0
\(499\) 4.11402 + 1.49738i 0.184169 + 0.0670319i 0.432458 0.901654i \(-0.357646\pi\)
−0.248290 + 0.968686i \(0.579868\pi\)
\(500\) 0 0
\(501\) −9.94052 13.0030i −0.444110 0.580930i
\(502\) 0 0
\(503\) −31.7905 5.60552i −1.41747 0.249938i −0.588167 0.808740i \(-0.700150\pi\)
−0.829301 + 0.558802i \(0.811261\pi\)
\(504\) 0 0
\(505\) 7.11080 + 12.3163i 0.316426 + 0.548067i
\(506\) 0 0
\(507\) 19.3440 10.0258i 0.859097 0.445261i
\(508\) 0 0
\(509\) 21.2608 7.73831i 0.942370 0.342994i 0.175268 0.984521i \(-0.443921\pi\)
0.767101 + 0.641526i \(0.221698\pi\)
\(510\) 0 0
\(511\) −1.07375 6.08956i −0.0475000 0.269386i
\(512\) 0 0
\(513\) 12.7015 + 18.7529i 0.560785 + 0.827962i
\(514\) 0 0
\(515\) −1.50474 8.53380i −0.0663067 0.376044i
\(516\) 0 0
\(517\) −2.85234 + 1.03817i −0.125446 + 0.0456585i
\(518\) 0 0
\(519\) 20.6807 10.7186i 0.907781 0.470493i
\(520\) 0 0
\(521\) 4.86213 + 8.42145i 0.213014 + 0.368950i 0.952656 0.304049i \(-0.0983388\pi\)
−0.739643 + 0.673000i \(0.765005\pi\)
\(522\) 0 0
\(523\) −33.5671 5.91879i −1.46779 0.258810i −0.618101 0.786099i \(-0.712098\pi\)
−0.849686 + 0.527288i \(0.823209\pi\)
\(524\) 0 0
\(525\) 7.24847 + 9.48155i 0.316349 + 0.413809i
\(526\) 0 0
\(527\) 19.5709 + 7.12324i 0.852523 + 0.310293i
\(528\) 0 0
\(529\) 16.5678 13.9021i 0.720341 0.604438i
\(530\) 0 0
\(531\) 24.6114 + 24.7886i 1.06804 + 1.07573i
\(532\) 0 0
\(533\) 3.46992i 0.150299i
\(534\) 0 0
\(535\) 1.14489 + 1.36443i 0.0494980 + 0.0589894i
\(536\) 0 0
\(537\) −19.5715 + 21.2818i −0.844572 + 0.918376i
\(538\) 0 0
\(539\) −3.81174 2.20071i −0.164183 0.0947911i
\(540\) 0 0
\(541\) 0.180608 1.02428i 0.00776495 0.0440372i −0.980679 0.195623i \(-0.937327\pi\)
0.988444 + 0.151586i \(0.0484381\pi\)
\(542\) 0 0
\(543\) 2.27338 + 17.5107i 0.0975603 + 0.751457i
\(544\) 0 0
\(545\) −3.75277 3.14895i −0.160751 0.134886i
\(546\) 0 0
\(547\) −8.86889 24.3671i −0.379207 1.04186i −0.971686 0.236276i \(-0.924073\pi\)
0.592480 0.805586i \(-0.298149\pi\)
\(548\) 0 0
\(549\) −18.7390 + 26.5587i −0.799760 + 1.13350i
\(550\) 0 0
\(551\) 16.5032 30.9317i 0.703060 1.31773i
\(552\) 0 0
\(553\) −2.12897 + 0.375395i −0.0905330 + 0.0159634i
\(554\) 0 0
\(555\) 0.245319 5.39658i 0.0104132 0.229072i
\(556\) 0 0
\(557\) −2.42914 + 2.89494i −0.102926 + 0.122662i −0.815048 0.579393i \(-0.803290\pi\)
0.712122 + 0.702055i \(0.247734\pi\)
\(558\) 0 0
\(559\) 4.39021 2.53469i 0.185686 0.107206i
\(560\) 0 0
\(561\) 9.58440 + 6.13013i 0.404654 + 0.258814i
\(562\) 0 0
\(563\) −5.99208 + 10.3786i −0.252536 + 0.437406i −0.964223 0.265091i \(-0.914598\pi\)
0.711687 + 0.702496i \(0.247931\pi\)
\(564\) 0 0
\(565\) 2.59510 7.12998i 0.109177 0.299960i
\(566\) 0 0
\(567\) 8.92374 + 10.7912i 0.374762 + 0.453188i
\(568\) 0 0
\(569\) 11.2148 0.470147 0.235074 0.971978i \(-0.424467\pi\)
0.235074 + 0.971978i \(0.424467\pi\)
\(570\) 0 0
\(571\) −16.2525 −0.680144 −0.340072 0.940399i \(-0.610452\pi\)
−0.340072 + 0.940399i \(0.610452\pi\)
\(572\) 0 0
\(573\) 19.9440 6.24902i 0.833174 0.261057i
\(574\) 0 0
\(575\) 1.77435 4.87499i 0.0739956 0.203301i
\(576\) 0 0
\(577\) −4.02000 + 6.96284i −0.167355 + 0.289867i −0.937489 0.348015i \(-0.886856\pi\)
0.770134 + 0.637882i \(0.220189\pi\)
\(578\) 0 0
\(579\) −3.12138 + 4.88025i −0.129720 + 0.202816i
\(580\) 0 0
\(581\) −16.3145 + 9.41916i −0.676838 + 0.390772i
\(582\) 0 0
\(583\) 8.95984 10.6779i 0.371079 0.442234i
\(584\) 0 0
\(585\) −1.33089 0.626428i −0.0550257 0.0258996i
\(586\) 0 0
\(587\) 19.5628 3.44945i 0.807444 0.142374i 0.245336 0.969438i \(-0.421102\pi\)
0.562108 + 0.827064i \(0.309991\pi\)
\(588\) 0 0
\(589\) 8.87470 + 9.88463i 0.365676 + 0.407289i
\(590\) 0 0
\(591\) 2.24779 10.0537i 0.0924617 0.413556i
\(592\) 0 0
\(593\) −7.64203 20.9963i −0.313821 0.862215i −0.991876 0.127205i \(-0.959399\pi\)
0.678056 0.735010i \(-0.262823\pi\)
\(594\) 0 0
\(595\) −6.15644 5.16587i −0.252390 0.211780i
\(596\) 0 0
\(597\) 19.1982 2.49246i 0.785729 0.102010i
\(598\) 0 0
\(599\) −2.89198 + 16.4012i −0.118163 + 0.670136i 0.866972 + 0.498356i \(0.166063\pi\)
−0.985135 + 0.171780i \(0.945048\pi\)
\(600\) 0 0
\(601\) 17.9204 + 10.3464i 0.730990 + 0.422037i 0.818784 0.574101i \(-0.194648\pi\)
−0.0877940 + 0.996139i \(0.527982\pi\)
\(602\) 0 0
\(603\) −25.4150 + 11.7404i −1.03498 + 0.478106i
\(604\) 0 0
\(605\) −4.89540 5.83411i −0.199026 0.237191i
\(606\) 0 0
\(607\) 39.3916i 1.59886i −0.600761 0.799428i \(-0.705136\pi\)
0.600761 0.799428i \(-0.294864\pi\)
\(608\) 0 0
\(609\) 8.33058 20.0102i 0.337572 0.810854i
\(610\) 0 0
\(611\) 1.56934 1.31683i 0.0634888 0.0532734i
\(612\) 0 0
\(613\) −26.4005 9.60900i −1.06631 0.388104i −0.251512 0.967854i \(-0.580928\pi\)
−0.814794 + 0.579750i \(0.803150\pi\)
\(614\) 0 0
\(615\) −5.56314 + 4.25292i −0.224328 + 0.171494i
\(616\) 0 0
\(617\) 20.3648 + 3.59086i 0.819854 + 0.144562i 0.567817 0.823155i \(-0.307788\pi\)
0.252038 + 0.967717i \(0.418899\pi\)
\(618\) 0 0
\(619\) −16.8830 29.2423i −0.678586 1.17535i −0.975407 0.220412i \(-0.929260\pi\)
0.296821 0.954933i \(-0.404074\pi\)
\(620\) 0 0
\(621\) 1.86156 5.79519i 0.0747019 0.232553i
\(622\) 0 0
\(623\) −8.93358 + 3.25156i −0.357916 + 0.130271i
\(624\) 0 0
\(625\) 2.90984 + 16.5025i 0.116394 + 0.660101i
\(626\) 0 0
\(627\) 3.55302 + 6.32736i 0.141894 + 0.252690i
\(628\) 0 0
\(629\) −4.89690 27.7717i −0.195252 1.10733i
\(630\) 0 0
\(631\) 35.0060 12.7411i 1.39357 0.507217i 0.467304 0.884096i \(-0.345225\pi\)
0.926262 + 0.376880i \(0.123003\pi\)
\(632\) 0 0
\(633\) −16.9451 32.6942i −0.673506 1.29948i
\(634\) 0 0
\(635\) −5.26287 9.11556i −0.208851 0.361740i
\(636\) 0 0
\(637\) 2.92545 + 0.515836i 0.115911 + 0.0204382i
\(638\) 0 0
\(639\) 0.0994226 0.0262583i 0.00393310 0.00103876i
\(640\) 0 0
\(641\) −7.37099 2.68282i −0.291137 0.105965i 0.192323 0.981332i \(-0.438398\pi\)
−0.483460 + 0.875367i \(0.660620\pi\)
\(642\) 0 0
\(643\) −29.9819 + 25.1578i −1.18237 + 0.992126i −0.182410 + 0.983223i \(0.558390\pi\)
−0.999960 + 0.00890393i \(0.997166\pi\)
\(644\) 0 0
\(645\) 9.44461 + 3.93195i 0.371881 + 0.154820i
\(646\) 0 0
\(647\) 6.21339i 0.244274i −0.992513 0.122137i \(-0.961025\pi\)
0.992513 0.122137i \(-0.0389747\pi\)
\(648\) 0 0
\(649\) 7.19386 + 8.57331i 0.282384 + 0.336532i
\(650\) 0 0
\(651\) 6.04516 + 5.55935i 0.236929 + 0.217888i
\(652\) 0 0
\(653\) −23.3831 13.5002i −0.915050 0.528304i −0.0329976 0.999455i \(-0.510505\pi\)
−0.882053 + 0.471151i \(0.843839\pi\)
\(654\) 0 0
\(655\) 1.46082 8.28473i 0.0570790 0.323711i
\(656\) 0 0
\(657\) 3.12714 11.5054i 0.122001 0.448868i
\(658\) 0 0
\(659\) −23.3482 19.5915i −0.909517 0.763176i 0.0625097 0.998044i \(-0.480090\pi\)
−0.972027 + 0.234869i \(0.924534\pi\)
\(660\) 0 0
\(661\) −11.2133 30.8082i −0.436146 1.19830i −0.941980 0.335670i \(-0.891037\pi\)
0.505834 0.862631i \(-0.331185\pi\)
\(662\) 0 0
\(663\) −7.49360 1.67540i −0.291027 0.0650671i
\(664\) 0 0
\(665\) −1.91347 4.75550i −0.0742013 0.184410i
\(666\) 0 0
\(667\) −9.27861 + 1.63607i −0.359269 + 0.0633489i
\(668\) 0 0
\(669\) 23.8370 + 1.08359i 0.921591 + 0.0418939i
\(670\) 0 0
\(671\) −6.69399 + 7.97759i −0.258419 + 0.307971i
\(672\) 0 0
\(673\) 26.7750 15.4586i 1.03210 0.595884i 0.114516 0.993421i \(-0.463468\pi\)
0.917586 + 0.397537i \(0.130135\pi\)
\(674\) 0 0
\(675\) 4.85980 + 22.4933i 0.187054 + 0.865766i
\(676\) 0 0
\(677\) −19.6720 + 34.0729i −0.756057 + 1.30953i 0.188791 + 0.982017i \(0.439543\pi\)
−0.944847 + 0.327511i \(0.893790\pi\)
\(678\) 0 0
\(679\) −5.15932 + 14.1751i −0.197996 + 0.543991i
\(680\) 0 0
\(681\) 8.38366 + 26.7568i 0.321263 + 1.02532i
\(682\) 0 0
\(683\) −12.0176 −0.459840 −0.229920 0.973210i \(-0.573846\pi\)
−0.229920 + 0.973210i \(0.573846\pi\)
\(684\) 0 0
\(685\) 3.75147 0.143336
\(686\) 0 0
\(687\) 13.2815 + 42.3885i 0.506720 + 1.61722i
\(688\) 0 0
\(689\) −3.21761 + 8.84031i −0.122581 + 0.336789i
\(690\) 0 0
\(691\) 17.5214 30.3479i 0.666544 1.15449i −0.312320 0.949977i \(-0.601106\pi\)
0.978864 0.204512i \(-0.0655606\pi\)
\(692\) 0 0
\(693\) 2.56010 + 3.68427i 0.0972503 + 0.139954i
\(694\) 0 0
\(695\) −2.36010 + 1.36260i −0.0895237 + 0.0516865i
\(696\) 0 0
\(697\) −23.4968 + 28.0024i −0.890006 + 1.06067i
\(698\) 0 0
\(699\) −20.1400 0.915530i −0.761766 0.0346285i
\(700\) 0 0
\(701\) −2.95841 + 0.521647i −0.111738 + 0.0197023i −0.229237 0.973371i \(-0.573623\pi\)
0.117500 + 0.993073i \(0.462512\pi\)
\(702\) 0 0
\(703\) 5.58262 17.0986i 0.210552 0.644887i
\(704\) 0 0
\(705\) 4.03468 + 0.902063i 0.151955 + 0.0339737i
\(706\) 0 0
\(707\) 10.0127 + 27.5097i 0.376567 + 1.03461i
\(708\) 0 0
\(709\) 2.36012 + 1.98037i 0.0886360 + 0.0743744i 0.686029 0.727574i \(-0.259352\pi\)
−0.597393 + 0.801949i \(0.703797\pi\)
\(710\) 0 0
\(711\) −4.02239 1.09328i −0.150852 0.0410011i
\(712\) 0 0
\(713\) 0.619918 3.51573i 0.0232161 0.131665i
\(714\) 0 0
\(715\) −0.408138 0.235639i −0.0152635 0.00881239i
\(716\) 0 0
\(717\) −19.4073 17.8476i −0.724777 0.666532i
\(718\) 0 0
\(719\) −7.13781 8.50651i −0.266195 0.317239i 0.616345 0.787476i \(-0.288613\pi\)
−0.882540 + 0.470237i \(0.844168\pi\)
\(720\) 0 0
\(721\) 17.8378i 0.664316i
\(722\) 0 0
\(723\) −24.2796 10.1080i −0.902969 0.375921i
\(724\) 0 0
\(725\) 27.2868 22.8964i 1.01341 0.850349i
\(726\) 0 0
\(727\) −13.8709 5.04860i −0.514444 0.187242i 0.0717355 0.997424i \(-0.477146\pi\)
−0.586179 + 0.810182i \(0.699368\pi\)
\(728\) 0 0
\(729\) 6.70703 + 26.1537i 0.248409 + 0.968655i
\(730\) 0 0
\(731\) 52.5931 + 9.27357i 1.94522 + 0.342996i
\(732\) 0 0
\(733\) −18.1447 31.4276i −0.670191 1.16080i −0.977850 0.209308i \(-0.932879\pi\)
0.307659 0.951497i \(-0.400454\pi\)
\(734\) 0 0
\(735\) 2.75857 + 5.32245i 0.101751 + 0.196322i
\(736\) 0 0
\(737\) −8.42862 + 3.06777i −0.310472 + 0.113003i
\(738\) 0 0
\(739\) 2.94942 + 16.7270i 0.108496 + 0.615312i 0.989766 + 0.142699i \(0.0455780\pi\)
−0.881270 + 0.472613i \(0.843311\pi\)
\(740\) 0 0
\(741\) −3.71394 3.19273i −0.136435 0.117288i
\(742\) 0 0
\(743\) 4.59818 + 26.0776i 0.168691 + 0.956693i 0.945177 + 0.326559i \(0.105889\pi\)
−0.776486 + 0.630134i \(0.783000\pi\)
\(744\) 0 0
\(745\) −13.6097 + 4.95352i −0.498620 + 0.181483i
\(746\) 0 0
\(747\) −36.1962 + 3.03595i −1.32435 + 0.111080i
\(748\) 0 0
\(749\) 1.83324 + 3.17526i 0.0669850 + 0.116021i
\(750\) 0 0
\(751\) −46.8929 8.26849i −1.71115 0.301722i −0.769581 0.638549i \(-0.779535\pi\)
−0.941566 + 0.336827i \(0.890646\pi\)
\(752\) 0 0
\(753\) 14.9274 11.4117i 0.543984 0.415866i
\(754\) 0 0
\(755\) 13.6812 + 4.97954i 0.497909 + 0.181224i
\(756\) 0 0
\(757\) −12.6519 + 10.6162i −0.459843 + 0.385854i −0.843073 0.537799i \(-0.819256\pi\)
0.383230 + 0.923653i \(0.374812\pi\)
\(758\) 0 0
\(759\) 0.749527 1.80038i 0.0272061 0.0653496i
\(760\) 0 0
\(761\) 19.1974i 0.695906i −0.937512 0.347953i \(-0.886877\pi\)
0.937512 0.347953i \(-0.113123\pi\)
\(762\) 0 0
\(763\) −6.48211 7.72508i −0.234668 0.279667i
\(764\) 0 0
\(765\) −6.49847 14.0675i −0.234953 0.508613i
\(766\) 0 0
\(767\) −6.54145 3.77671i −0.236198 0.136369i
\(768\) 0 0
\(769\) −5.25863 + 29.8231i −0.189631 + 1.07545i 0.730229 + 0.683203i \(0.239413\pi\)
−0.919860 + 0.392248i \(0.871698\pi\)
\(770\) 0 0
\(771\) 0.0777483 0.0100939i 0.00280004 0.000363524i
\(772\) 0 0
\(773\) 21.9958 + 18.4567i 0.791134 + 0.663840i 0.946026 0.324091i \(-0.105058\pi\)
−0.154892 + 0.987931i \(0.549503\pi\)
\(774\) 0 0
\(775\) 4.61619 + 12.6829i 0.165818 + 0.455582i
\(776\) 0 0
\(777\) 2.42635 10.8524i 0.0870449 0.389328i
\(778\) 0 0
\(779\) −21.6303 + 8.70339i −0.774985 + 0.311831i
\(780\) 0 0
\(781\) 0.0324458 0.00572106i 0.00116100 0.000204716i
\(782\) 0 0
\(783\) 30.9645 28.0687i 1.10658 1.00309i
\(784\) 0 0
\(785\) 0.103890 0.123812i 0.00370800 0.00441903i
\(786\) 0 0
\(787\) −22.1812 + 12.8063i −0.790673 + 0.456495i −0.840200 0.542277i \(-0.817562\pi\)
0.0495262 + 0.998773i \(0.484229\pi\)
\(788\) 0 0
\(789\) 5.11899 8.00348i 0.182241 0.284932i
\(790\) 0 0
\(791\) 7.80951 13.5265i 0.277674 0.480946i
\(792\) 0 0
\(793\) 2.40391 6.60469i 0.0853653 0.234539i