Properties

Label 912.2.br
Level $912$
Weight $2$
Character orbit 912.br
Rep. character $\chi_{912}(221,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $624$
Newform subspaces $1$
Sturm bound $320$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.br (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 912 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(320\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(912, [\chi])\).

Total New Old
Modular forms 656 656 0
Cusp forms 624 624 0
Eisenstein series 32 32 0

Trace form

\( 624 q - 6 q^{3} - 4 q^{4} - 2 q^{6} - 24 q^{10} - 12 q^{13} - 12 q^{15} + 12 q^{21} - 12 q^{22} + 14 q^{24} + 12 q^{28} - 56 q^{30} - 12 q^{33} - 12 q^{34} - 18 q^{36} - 12 q^{40} + 30 q^{42} - 4 q^{43}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(912, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
912.2.br.a 912.br 912.ar $624$ $7.282$ None 912.2.br.a \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$