# Properties

 Label 912.2.bo.f.529.1 Level $912$ Weight $2$ Character 912.529 Analytic conductor $7.282$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$912 = 2^{4} \cdot 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 912.bo (of order $$9$$, degree $$6$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$7.28235666434$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ Defining polynomial: $$x^{6} - x^{3} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 114) Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

## Embedding invariants

 Embedding label 529.1 Root $$0.939693 - 0.342020i$$ of defining polynomial Character $$\chi$$ $$=$$ 912.529 Dual form 912.2.bo.f.481.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.939693 + 0.342020i) q^{3} +(0.386659 - 2.19285i) q^{5} +(-0.326352 - 0.565258i) q^{7} +(0.766044 - 0.642788i) q^{9} +O(q^{10})$$ $$q+(-0.939693 + 0.342020i) q^{3} +(0.386659 - 2.19285i) q^{5} +(-0.326352 - 0.565258i) q^{7} +(0.766044 - 0.642788i) q^{9} +(-0.766044 + 1.32683i) q^{11} +(0.439693 + 0.160035i) q^{13} +(0.386659 + 2.19285i) q^{15} +(-1.61334 - 1.35375i) q^{17} +(2.23396 - 3.74292i) q^{19} +(0.500000 + 0.419550i) q^{21} +(-1.02481 - 5.81201i) q^{23} +(0.0393628 + 0.0143269i) q^{25} +(-0.500000 + 0.866025i) q^{27} +(-6.38326 + 5.35619i) q^{29} +(-4.31908 - 7.48086i) q^{31} +(0.266044 - 1.50881i) q^{33} +(-1.36571 + 0.497079i) q^{35} -4.67499 q^{37} -0.467911 q^{39} +(-3.26604 + 1.18874i) q^{41} +(-1.78699 + 10.1345i) q^{43} +(-1.11334 - 1.92836i) q^{45} +(3.55303 - 2.98135i) q^{47} +(3.28699 - 5.69323i) q^{49} +(1.97906 + 0.720317i) q^{51} +(-2.07532 - 11.7697i) q^{53} +(2.61334 + 2.19285i) q^{55} +(-0.819078 + 4.28125i) q^{57} +(-10.9042 - 9.14971i) q^{59} +(-1.58378 - 8.98205i) q^{61} +(-0.613341 - 0.223238i) q^{63} +(0.520945 - 0.902302i) q^{65} +(-0.190722 + 0.160035i) q^{67} +(2.95084 + 5.11100i) q^{69} +(0.772441 - 4.38073i) q^{71} +(8.54323 - 3.10948i) q^{73} -0.0418891 q^{75} +1.00000 q^{77} +(11.3302 - 4.12386i) q^{79} +(0.173648 - 0.984808i) q^{81} +(1.85457 + 3.21221i) q^{83} +(-3.59240 + 3.01438i) q^{85} +(4.16637 - 7.21637i) q^{87} +(-15.7554 - 5.73448i) q^{89} +(-0.0530334 - 0.300767i) q^{91} +(6.61721 + 5.55250i) q^{93} +(-7.34389 - 6.34597i) q^{95} +(1.89053 + 1.58634i) q^{97} +(0.266044 + 1.50881i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q + 9q^{5} - 3q^{7} + O(q^{10})$$ $$6q + 9q^{5} - 3q^{7} - 3q^{13} + 9q^{15} - 3q^{17} + 18q^{19} + 3q^{21} + 21q^{23} + 9q^{25} - 3q^{27} - 3q^{29} - 9q^{31} - 3q^{33} - 18q^{35} - 18q^{37} - 12q^{39} - 15q^{41} - 3q^{43} + 9q^{47} + 12q^{49} + 15q^{51} + 12q^{53} + 9q^{55} + 12q^{57} - 27q^{59} + 3q^{61} + 3q^{63} - 21q^{67} + 6q^{69} - 39q^{71} + 36q^{73} + 6q^{75} + 6q^{77} + 45q^{79} + 27q^{83} - 18q^{85} + 6q^{87} - 30q^{89} + 12q^{91} + 9q^{93} - 6q^{97} - 3q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/912\mathbb{Z}\right)^\times$$.

 $$n$$ $$97$$ $$229$$ $$305$$ $$799$$ $$\chi(n)$$ $$e\left(\frac{2}{9}\right)$$ $$1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −0.939693 + 0.342020i −0.542532 + 0.197465i
$$4$$ 0 0
$$5$$ 0.386659 2.19285i 0.172919 0.980674i −0.767599 0.640930i $$-0.778549\pi$$
0.940518 0.339743i $$-0.110340\pi$$
$$6$$ 0 0
$$7$$ −0.326352 0.565258i −0.123349 0.213647i 0.797737 0.603005i $$-0.206030\pi$$
−0.921087 + 0.389358i $$0.872697\pi$$
$$8$$ 0 0
$$9$$ 0.766044 0.642788i 0.255348 0.214263i
$$10$$ 0 0
$$11$$ −0.766044 + 1.32683i −0.230971 + 0.400054i −0.958094 0.286453i $$-0.907524\pi$$
0.727123 + 0.686507i $$0.240857\pi$$
$$12$$ 0 0
$$13$$ 0.439693 + 0.160035i 0.121949 + 0.0443857i 0.402274 0.915519i $$-0.368220\pi$$
−0.280325 + 0.959905i $$0.590442\pi$$
$$14$$ 0 0
$$15$$ 0.386659 + 2.19285i 0.0998350 + 0.566192i
$$16$$ 0 0
$$17$$ −1.61334 1.35375i −0.391293 0.328333i 0.425824 0.904806i $$-0.359984\pi$$
−0.817116 + 0.576473i $$0.804429\pi$$
$$18$$ 0 0
$$19$$ 2.23396 3.74292i 0.512505 0.858685i
$$20$$ 0 0
$$21$$ 0.500000 + 0.419550i 0.109109 + 0.0915533i
$$22$$ 0 0
$$23$$ −1.02481 5.81201i −0.213689 1.21189i −0.883168 0.469058i $$-0.844594\pi$$
0.669479 0.742831i $$-0.266517\pi$$
$$24$$ 0 0
$$25$$ 0.0393628 + 0.0143269i 0.00787257 + 0.00286538i
$$26$$ 0 0
$$27$$ −0.500000 + 0.866025i −0.0962250 + 0.166667i
$$28$$ 0 0
$$29$$ −6.38326 + 5.35619i −1.18534 + 0.994619i −0.185412 + 0.982661i $$0.559362\pi$$
−0.999928 + 0.0119582i $$0.996193\pi$$
$$30$$ 0 0
$$31$$ −4.31908 7.48086i −0.775729 1.34360i −0.934384 0.356268i $$-0.884049\pi$$
0.158654 0.987334i $$-0.449284\pi$$
$$32$$ 0 0
$$33$$ 0.266044 1.50881i 0.0463124 0.262651i
$$34$$ 0 0
$$35$$ −1.36571 + 0.497079i −0.230848 + 0.0840218i
$$36$$ 0 0
$$37$$ −4.67499 −0.768564 −0.384282 0.923216i $$-0.625551\pi$$
−0.384282 + 0.923216i $$0.625551\pi$$
$$38$$ 0 0
$$39$$ −0.467911 −0.0749257
$$40$$ 0 0
$$41$$ −3.26604 + 1.18874i −0.510070 + 0.185650i −0.584218 0.811597i $$-0.698599\pi$$
0.0741475 + 0.997247i $$0.476376\pi$$
$$42$$ 0 0
$$43$$ −1.78699 + 10.1345i −0.272513 + 1.54550i 0.474238 + 0.880396i $$0.342723\pi$$
−0.746752 + 0.665103i $$0.768388\pi$$
$$44$$ 0 0
$$45$$ −1.11334 1.92836i −0.165967 0.287463i
$$46$$ 0 0
$$47$$ 3.55303 2.98135i 0.518263 0.434874i −0.345763 0.938322i $$-0.612380\pi$$
0.864026 + 0.503448i $$0.167935\pi$$
$$48$$ 0 0
$$49$$ 3.28699 5.69323i 0.469570 0.813319i
$$50$$ 0 0
$$51$$ 1.97906 + 0.720317i 0.277123 + 0.100865i
$$52$$ 0 0
$$53$$ −2.07532 11.7697i −0.285067 1.61670i −0.705045 0.709163i $$-0.749073\pi$$
0.419977 0.907535i $$-0.362038\pi$$
$$54$$ 0 0
$$55$$ 2.61334 + 2.19285i 0.352383 + 0.295684i
$$56$$ 0 0
$$57$$ −0.819078 + 4.28125i −0.108490 + 0.567066i
$$58$$ 0 0
$$59$$ −10.9042 9.14971i −1.41961 1.19119i −0.951551 0.307492i $$-0.900510\pi$$
−0.468055 0.883699i $$-0.655045\pi$$
$$60$$ 0 0
$$61$$ −1.58378 8.98205i −0.202782 1.15003i −0.900892 0.434043i $$-0.857086\pi$$
0.698110 0.715991i $$-0.254025\pi$$
$$62$$ 0 0
$$63$$ −0.613341 0.223238i −0.0772737 0.0281253i
$$64$$ 0 0
$$65$$ 0.520945 0.902302i 0.0646152 0.111917i
$$66$$ 0 0
$$67$$ −0.190722 + 0.160035i −0.0233004 + 0.0195514i −0.654363 0.756180i $$-0.727063\pi$$
0.631063 + 0.775732i $$0.282619\pi$$
$$68$$ 0 0
$$69$$ 2.95084 + 5.11100i 0.355239 + 0.615292i
$$70$$ 0 0
$$71$$ 0.772441 4.38073i 0.0916719 0.519897i −0.904045 0.427438i $$-0.859416\pi$$
0.995716 0.0924590i $$-0.0294727\pi$$
$$72$$ 0 0
$$73$$ 8.54323 3.10948i 0.999910 0.363937i 0.210360 0.977624i $$-0.432536\pi$$
0.789550 + 0.613687i $$0.210314\pi$$
$$74$$ 0 0
$$75$$ −0.0418891 −0.00483693
$$76$$ 0 0
$$77$$ 1.00000 0.113961
$$78$$ 0 0
$$79$$ 11.3302 4.12386i 1.27475 0.463971i 0.386057 0.922475i $$-0.373837\pi$$
0.888692 + 0.458504i $$0.151615\pi$$
$$80$$ 0 0
$$81$$ 0.173648 0.984808i 0.0192942 0.109423i
$$82$$ 0 0
$$83$$ 1.85457 + 3.21221i 0.203566 + 0.352586i 0.949675 0.313238i $$-0.101414\pi$$
−0.746109 + 0.665824i $$0.768080\pi$$
$$84$$ 0 0
$$85$$ −3.59240 + 3.01438i −0.389650 + 0.326955i
$$86$$ 0 0
$$87$$ 4.16637 7.21637i 0.446682 0.773676i
$$88$$ 0 0
$$89$$ −15.7554 5.73448i −1.67007 0.607854i −0.678169 0.734906i $$-0.737226\pi$$
−0.991896 + 0.127051i $$0.959449\pi$$
$$90$$ 0 0
$$91$$ −0.0530334 0.300767i −0.00555941 0.0315290i
$$92$$ 0 0
$$93$$ 6.61721 + 5.55250i 0.686173 + 0.575767i
$$94$$ 0 0
$$95$$ −7.34389 6.34597i −0.753468 0.651083i
$$96$$ 0 0
$$97$$ 1.89053 + 1.58634i 0.191954 + 0.161069i 0.733700 0.679474i $$-0.237792\pi$$
−0.541746 + 0.840543i $$0.682236\pi$$
$$98$$ 0 0
$$99$$ 0.266044 + 1.50881i 0.0267385 + 0.151641i
$$100$$ 0 0
$$101$$ 5.39306 + 1.96291i 0.536629 + 0.195317i 0.596096 0.802913i $$-0.296718\pi$$
−0.0594668 + 0.998230i $$0.518940\pi$$
$$102$$ 0 0
$$103$$ −6.90420 + 11.9584i −0.680291 + 1.17830i 0.294601 + 0.955620i $$0.404813\pi$$
−0.974892 + 0.222678i $$0.928520\pi$$
$$104$$ 0 0
$$105$$ 1.11334 0.934204i 0.108651 0.0911690i
$$106$$ 0 0
$$107$$ 0.956767 + 1.65717i 0.0924941 + 0.160205i 0.908560 0.417754i $$-0.137183\pi$$
−0.816066 + 0.577959i $$0.803849\pi$$
$$108$$ 0 0
$$109$$ −2.05169 + 11.6357i −0.196516 + 1.11450i 0.713727 + 0.700424i $$0.247006\pi$$
−0.910243 + 0.414074i $$0.864105\pi$$
$$110$$ 0 0
$$111$$ 4.39306 1.59894i 0.416970 0.151765i
$$112$$ 0 0
$$113$$ 5.39693 0.507700 0.253850 0.967244i $$-0.418303\pi$$
0.253850 + 0.967244i $$0.418303\pi$$
$$114$$ 0 0
$$115$$ −13.1411 −1.22542
$$116$$ 0 0
$$117$$ 0.439693 0.160035i 0.0406496 0.0147952i
$$118$$ 0 0
$$119$$ −0.238703 + 1.35375i −0.0218819 + 0.124098i
$$120$$ 0 0
$$121$$ 4.32635 + 7.49346i 0.393305 + 0.681224i
$$122$$ 0 0
$$123$$ 2.66250 2.23411i 0.240070 0.201443i
$$124$$ 0 0
$$125$$ 5.61334 9.72259i 0.502072 0.869615i
$$126$$ 0 0
$$127$$ 9.09152 + 3.30904i 0.806742 + 0.293630i 0.712277 0.701898i $$-0.247664\pi$$
0.0944646 + 0.995528i $$0.469886\pi$$
$$128$$ 0 0
$$129$$ −1.78699 10.1345i −0.157336 0.892295i
$$130$$ 0 0
$$131$$ 1.45677 + 1.22237i 0.127278 + 0.106799i 0.704205 0.709997i $$-0.251304\pi$$
−0.576927 + 0.816796i $$0.695748\pi$$
$$132$$ 0 0
$$133$$ −2.84477 0.0412527i −0.246673 0.00357706i
$$134$$ 0 0
$$135$$ 1.70574 + 1.43128i 0.146806 + 0.123185i
$$136$$ 0 0
$$137$$ −0.308811 1.75135i −0.0263835 0.149628i 0.968770 0.247960i $$-0.0797603\pi$$
−0.995154 + 0.0983323i $$0.968649\pi$$
$$138$$ 0 0
$$139$$ −0.705737 0.256867i −0.0598598 0.0217872i 0.311917 0.950109i $$-0.399029\pi$$
−0.371777 + 0.928322i $$0.621251\pi$$
$$140$$ 0 0
$$141$$ −2.31908 + 4.01676i −0.195302 + 0.338272i
$$142$$ 0 0
$$143$$ −0.549163 + 0.460802i −0.0459233 + 0.0385342i
$$144$$ 0 0
$$145$$ 9.27719 + 16.0686i 0.770429 + 1.33442i
$$146$$ 0 0
$$147$$ −1.14156 + 6.47410i −0.0941542 + 0.533975i
$$148$$ 0 0
$$149$$ 5.61721 2.04450i 0.460180 0.167492i −0.101519 0.994834i $$-0.532370\pi$$
0.561699 + 0.827342i $$0.310148\pi$$
$$150$$ 0 0
$$151$$ 16.5749 1.34885 0.674424 0.738345i $$-0.264392\pi$$
0.674424 + 0.738345i $$0.264392\pi$$
$$152$$ 0 0
$$153$$ −2.10607 −0.170265
$$154$$ 0 0
$$155$$ −18.0744 + 6.57856i −1.45177 + 0.528403i
$$156$$ 0 0
$$157$$ −2.90033 + 16.4486i −0.231472 + 1.31274i 0.618447 + 0.785826i $$0.287762\pi$$
−0.849919 + 0.526914i $$0.823349\pi$$
$$158$$ 0 0
$$159$$ 5.97565 + 10.3501i 0.473900 + 0.820819i
$$160$$ 0 0
$$161$$ −2.95084 + 2.47605i −0.232559 + 0.195140i
$$162$$ 0 0
$$163$$ −7.92855 + 13.7326i −0.621012 + 1.07562i 0.368286 + 0.929713i $$0.379945\pi$$
−0.989298 + 0.145911i $$0.953389\pi$$
$$164$$ 0 0
$$165$$ −3.20574 1.16679i −0.249566 0.0908347i
$$166$$ 0 0
$$167$$ 0.393056 + 2.22913i 0.0304156 + 0.172495i 0.996232 0.0867333i $$-0.0276428\pi$$
−0.965816 + 0.259229i $$0.916532\pi$$
$$168$$ 0 0
$$169$$ −9.79086 8.21551i −0.753143 0.631962i
$$170$$ 0 0
$$171$$ −0.694593 4.30320i −0.0531168 0.329074i
$$172$$ 0 0
$$173$$ 7.16637 + 6.01330i 0.544849 + 0.457183i 0.873192 0.487376i $$-0.162046\pi$$
−0.328343 + 0.944559i $$0.606490\pi$$
$$174$$ 0 0
$$175$$ −0.00474774 0.0269258i −0.000358895 0.00203540i
$$176$$ 0 0
$$177$$ 13.3760 + 4.86846i 1.00540 + 0.365936i
$$178$$ 0 0
$$179$$ −7.88919 + 13.6645i −0.589665 + 1.02133i 0.404611 + 0.914489i $$0.367407\pi$$
−0.994276 + 0.106841i $$0.965926\pi$$
$$180$$ 0 0
$$181$$ 5.36437 4.50124i 0.398731 0.334575i −0.421272 0.906934i $$-0.638416\pi$$
0.820003 + 0.572360i $$0.193972\pi$$
$$182$$ 0 0
$$183$$ 4.56031 + 7.89868i 0.337108 + 0.583888i
$$184$$ 0 0
$$185$$ −1.80763 + 10.2516i −0.132900 + 0.753711i
$$186$$ 0 0
$$187$$ 3.03209 1.10359i 0.221728 0.0807025i
$$188$$ 0 0
$$189$$ 0.652704 0.0474772
$$190$$ 0 0
$$191$$ −4.39187 −0.317785 −0.158892 0.987296i $$-0.550792\pi$$
−0.158892 + 0.987296i $$0.550792\pi$$
$$192$$ 0 0
$$193$$ −4.56418 + 1.66122i −0.328537 + 0.119578i −0.501022 0.865434i $$-0.667042\pi$$
0.172485 + 0.985012i $$0.444820\pi$$
$$194$$ 0 0
$$195$$ −0.180922 + 1.02606i −0.0129561 + 0.0734777i
$$196$$ 0 0
$$197$$ −10.1420 17.5665i −0.722589 1.25156i −0.959959 0.280142i $$-0.909618\pi$$
0.237369 0.971420i $$-0.423715\pi$$
$$198$$ 0 0
$$199$$ 17.2062 14.4377i 1.21972 1.02346i 0.220876 0.975302i $$-0.429108\pi$$
0.998840 0.0481609i $$-0.0153360\pi$$
$$200$$ 0 0
$$201$$ 0.124485 0.215615i 0.00878051 0.0152083i
$$202$$ 0 0
$$203$$ 5.11081 + 1.86018i 0.358709 + 0.130559i
$$204$$ 0 0
$$205$$ 1.34389 + 7.62159i 0.0938615 + 0.532315i
$$206$$ 0 0
$$207$$ −4.52094 3.79352i −0.314227 0.263668i
$$208$$ 0 0
$$209$$ 3.25490 + 5.83132i 0.225146 + 0.403361i
$$210$$ 0 0
$$211$$ 7.62836 + 6.40095i 0.525158 + 0.440660i 0.866425 0.499307i $$-0.166412\pi$$
−0.341268 + 0.939966i $$0.610856\pi$$
$$212$$ 0 0
$$213$$ 0.772441 + 4.38073i 0.0529268 + 0.300163i
$$214$$ 0 0
$$215$$ 21.5326 + 7.83721i 1.46851 + 0.534493i
$$216$$ 0 0
$$217$$ −2.81908 + 4.88279i −0.191371 + 0.331465i
$$218$$ 0 0
$$219$$ −6.96451 + 5.84392i −0.470618 + 0.394895i
$$220$$ 0 0
$$221$$ −0.492726 0.853427i −0.0331443 0.0574077i
$$222$$ 0 0
$$223$$ −0.333626 + 1.89209i −0.0223412 + 0.126703i −0.993939 0.109937i $$-0.964935\pi$$
0.971597 + 0.236640i $$0.0760463\pi$$
$$224$$ 0 0
$$225$$ 0.0393628 0.0143269i 0.00262419 0.000955127i
$$226$$ 0 0
$$227$$ −0.901674 −0.0598462 −0.0299231 0.999552i $$-0.509526\pi$$
−0.0299231 + 0.999552i $$0.509526\pi$$
$$228$$ 0 0
$$229$$ −0.354103 −0.0233998 −0.0116999 0.999932i $$-0.503724\pi$$
−0.0116999 + 0.999932i $$0.503724\pi$$
$$230$$ 0 0
$$231$$ −0.939693 + 0.342020i −0.0618272 + 0.0225033i
$$232$$ 0 0
$$233$$ −2.90033 + 16.4486i −0.190007 + 1.07758i 0.729345 + 0.684146i $$0.239825\pi$$
−0.919352 + 0.393437i $$0.871286\pi$$
$$234$$ 0 0
$$235$$ −5.16385 8.94405i −0.336852 0.583445i
$$236$$ 0 0
$$237$$ −9.23648 + 7.75033i −0.599974 + 0.503438i
$$238$$ 0 0
$$239$$ 5.02734 8.70761i 0.325192 0.563248i −0.656359 0.754448i $$-0.727905\pi$$
0.981551 + 0.191200i $$0.0612378\pi$$
$$240$$ 0 0
$$241$$ 21.7062 + 7.90041i 1.39822 + 0.508910i 0.927649 0.373452i $$-0.121826\pi$$
0.470570 + 0.882363i $$0.344048\pi$$
$$242$$ 0 0
$$243$$ 0.173648 + 0.984808i 0.0111395 + 0.0631754i
$$244$$ 0 0
$$245$$ −11.2135 9.40923i −0.716403 0.601133i
$$246$$ 0 0
$$247$$ 1.58125 1.28822i 0.100613 0.0819676i
$$248$$ 0 0
$$249$$ −2.84137 2.38419i −0.180064 0.151092i
$$250$$ 0 0
$$251$$ −2.11200 11.9777i −0.133308 0.756027i −0.976023 0.217667i $$-0.930155\pi$$
0.842715 0.538360i $$-0.180956\pi$$
$$252$$ 0 0
$$253$$ 8.49660 + 3.09251i 0.534176 + 0.194424i
$$254$$ 0 0
$$255$$ 2.34477 4.06126i 0.146835 0.254326i
$$256$$ 0 0
$$257$$ −3.02300 + 2.53660i −0.188570 + 0.158229i −0.732185 0.681106i $$-0.761499\pi$$
0.543615 + 0.839334i $$0.317055\pi$$
$$258$$ 0 0
$$259$$ 1.52569 + 2.64258i 0.0948019 + 0.164202i
$$260$$ 0 0
$$261$$ −1.44697 + 8.20616i −0.0895650 + 0.507948i
$$262$$ 0 0
$$263$$ 8.52229 3.10186i 0.525507 0.191269i −0.0656242 0.997844i $$-0.520904\pi$$
0.591131 + 0.806576i $$0.298682\pi$$
$$264$$ 0 0
$$265$$ −26.6117 −1.63475
$$266$$ 0 0
$$267$$ 16.7665 1.02609
$$268$$ 0 0
$$269$$ 26.3234 9.58094i 1.60497 0.584160i 0.624531 0.781000i $$-0.285290\pi$$
0.980436 + 0.196840i $$0.0630678\pi$$
$$270$$ 0 0
$$271$$ 2.92350 16.5800i 0.177590 1.00716i −0.757522 0.652809i $$-0.773590\pi$$
0.935112 0.354352i $$-0.115299\pi$$
$$272$$ 0 0
$$273$$ 0.152704 + 0.264490i 0.00924205 + 0.0160077i
$$274$$ 0 0
$$275$$ −0.0491630 + 0.0412527i −0.00296464 + 0.00248763i
$$276$$ 0 0
$$277$$ 9.57532 16.5849i 0.575325 0.996493i −0.420681 0.907209i $$-0.638209\pi$$
0.996006 0.0892840i $$-0.0284579\pi$$
$$278$$ 0 0
$$279$$ −8.11721 2.95442i −0.485965 0.176877i
$$280$$ 0 0
$$281$$ −0.687319 3.89798i −0.0410020 0.232534i 0.957419 0.288701i $$-0.0932232\pi$$
−0.998421 + 0.0561668i $$0.982112\pi$$
$$282$$ 0 0
$$283$$ 5.03802 + 4.22740i 0.299479 + 0.251293i 0.780127 0.625621i $$-0.215154\pi$$
−0.480648 + 0.876913i $$0.659599\pi$$
$$284$$ 0 0
$$285$$ 9.07145 + 3.45150i 0.537346 + 0.204449i
$$286$$ 0 0
$$287$$ 1.73783 + 1.45821i 0.102581 + 0.0860754i
$$288$$ 0 0
$$289$$ −2.18180 12.3736i −0.128341 0.727859i
$$290$$ 0 0
$$291$$ −2.31908 0.844075i −0.135947 0.0494806i
$$292$$ 0 0
$$293$$ −10.8478 + 18.7889i −0.633733 + 1.09766i 0.353049 + 0.935605i $$0.385145\pi$$
−0.986782 + 0.162053i $$0.948188\pi$$
$$294$$ 0 0
$$295$$ −24.2802 + 20.3735i −1.41365 + 1.18619i
$$296$$ 0 0
$$297$$ −0.766044 1.32683i −0.0444504 0.0769904i
$$298$$ 0 0
$$299$$ 0.479522 2.71951i 0.0277315 0.157273i
$$300$$ 0 0
$$301$$ 6.31180 2.29731i 0.363806 0.132415i
$$302$$ 0 0
$$303$$ −5.73917 −0.329707
$$304$$ 0 0
$$305$$ −20.3087 −1.16287
$$306$$ 0 0
$$307$$ 16.7271 6.08818i 0.954669 0.347471i 0.182727 0.983164i $$-0.441508\pi$$
0.771942 + 0.635693i $$0.219285\pi$$
$$308$$ 0 0
$$309$$ 2.39780 13.5986i 0.136406 0.773598i
$$310$$ 0 0
$$311$$ −0.812681 1.40761i −0.0460829 0.0798180i 0.842064 0.539378i $$-0.181341\pi$$
−0.888147 + 0.459560i $$0.848007\pi$$
$$312$$ 0 0
$$313$$ 23.0371 19.3305i 1.30214 1.09262i 0.312364 0.949962i $$-0.398879\pi$$
0.989772 0.142660i $$-0.0455654\pi$$
$$314$$ 0 0
$$315$$ −0.726682 + 1.25865i −0.0409439 + 0.0709169i
$$316$$ 0 0
$$317$$ 10.6493 + 3.87603i 0.598124 + 0.217699i 0.623299 0.781984i $$-0.285792\pi$$
−0.0251747 + 0.999683i $$0.508014\pi$$
$$318$$ 0 0
$$319$$ −2.21688 12.5726i −0.124122 0.703928i
$$320$$ 0 0
$$321$$ −1.46585 1.23000i −0.0818159 0.0686517i
$$322$$ 0 0
$$323$$ −8.67112 + 3.01438i −0.482474 + 0.167724i
$$324$$ 0 0
$$325$$ 0.0150147 + 0.0125989i 0.000832868 + 0.000698859i
$$326$$ 0 0
$$327$$ −2.05169 11.6357i −0.113459 0.643456i
$$328$$ 0 0
$$329$$ −2.84477 1.03541i −0.156837 0.0570841i
$$330$$ 0 0
$$331$$ −16.0621 + 27.8204i −0.882854 + 1.52915i −0.0347000 + 0.999398i $$0.511048\pi$$
−0.848154 + 0.529750i $$0.822286\pi$$
$$332$$ 0 0
$$333$$ −3.58125 + 3.00503i −0.196251 + 0.164674i
$$334$$ 0 0
$$335$$ 0.277189 + 0.480105i 0.0151444 + 0.0262309i
$$336$$ 0 0
$$337$$ 5.26739 29.8728i 0.286933 1.62728i −0.411365 0.911471i $$-0.634948\pi$$
0.698298 0.715807i $$-0.253941\pi$$
$$338$$ 0 0
$$339$$ −5.07145 + 1.84586i −0.275443 + 0.100253i
$$340$$ 0 0
$$341$$ 13.2344 0.716684
$$342$$ 0 0
$$343$$ −8.85978 −0.478383
$$344$$ 0 0
$$345$$ 12.3486 4.49454i 0.664828 0.241978i
$$346$$ 0 0
$$347$$ −0.747626 + 4.24000i −0.0401347 + 0.227615i −0.998277 0.0586772i $$-0.981312\pi$$
0.958142 + 0.286292i $$0.0924228\pi$$
$$348$$ 0 0
$$349$$ 1.33022 + 2.30401i 0.0712052 + 0.123331i 0.899430 0.437065i $$-0.143982\pi$$
−0.828225 + 0.560396i $$0.810649\pi$$
$$350$$ 0 0
$$351$$ −0.358441 + 0.300767i −0.0191321 + 0.0160538i
$$352$$ 0 0
$$353$$ −18.0963 + 31.3437i −0.963167 + 1.66825i −0.248706 + 0.968579i $$0.580005\pi$$
−0.714461 + 0.699675i $$0.753328\pi$$
$$354$$ 0 0
$$355$$ −9.30763 3.38770i −0.493998 0.179800i
$$356$$ 0 0
$$357$$ −0.238703 1.35375i −0.0126335 0.0716482i
$$358$$ 0 0
$$359$$ −1.43376 1.20307i −0.0756711 0.0634956i 0.604168 0.796857i $$-0.293506\pi$$
−0.679839 + 0.733362i $$0.737950\pi$$
$$360$$ 0 0
$$361$$ −9.01889 16.7230i −0.474678 0.880159i
$$362$$ 0 0
$$363$$ −6.62836 5.56185i −0.347898 0.291921i
$$364$$ 0 0
$$365$$ −3.51532 19.9364i −0.184000 1.04352i
$$366$$ 0 0
$$367$$ 3.32635 + 1.21069i 0.173634 + 0.0631977i 0.427374 0.904075i $$-0.359439\pi$$
−0.253740 + 0.967272i $$0.581661\pi$$
$$368$$ 0 0
$$369$$ −1.73783 + 3.01000i −0.0904676 + 0.156694i
$$370$$ 0 0
$$371$$ −5.97565 + 5.01417i −0.310240 + 0.260323i
$$372$$ 0 0
$$373$$ −8.25924 14.3054i −0.427647 0.740707i 0.569016 0.822326i $$-0.307324\pi$$
−0.996664 + 0.0816196i $$0.973991\pi$$
$$374$$ 0 0
$$375$$ −1.94949 + 11.0561i −0.100671 + 0.570936i
$$376$$ 0 0
$$377$$ −3.66385 + 1.33353i −0.188698 + 0.0686804i
$$378$$ 0 0
$$379$$ 3.56893 0.183323 0.0916617 0.995790i $$-0.470782\pi$$
0.0916617 + 0.995790i $$0.470782\pi$$
$$380$$ 0 0
$$381$$ −9.67499 −0.495665
$$382$$ 0 0
$$383$$ −11.3366 + 4.12619i −0.579274 + 0.210839i −0.615005 0.788523i $$-0.710846\pi$$
0.0357313 + 0.999361i $$0.488624\pi$$
$$384$$ 0 0
$$385$$ 0.386659 2.19285i 0.0197060 0.111758i
$$386$$ 0 0
$$387$$ 5.14543 + 8.91215i 0.261557 + 0.453030i
$$388$$ 0 0
$$389$$ 14.4743 12.1454i 0.733877 0.615796i −0.197309 0.980341i $$-0.563220\pi$$
0.931185 + 0.364546i $$0.118776\pi$$
$$390$$ 0 0
$$391$$ −6.21466 + 10.7641i −0.314289 + 0.544364i
$$392$$ 0 0
$$393$$ −1.78699 0.650411i −0.0901417 0.0328089i
$$394$$ 0 0
$$395$$ −4.66209 26.4400i −0.234575 1.33034i
$$396$$ 0 0
$$397$$ 13.9743 + 11.7258i 0.701350 + 0.588503i 0.922157 0.386815i $$-0.126425\pi$$
−0.220807 + 0.975318i $$0.570869\pi$$
$$398$$ 0 0
$$399$$ 2.68732 0.934204i 0.134534 0.0467687i
$$400$$ 0 0
$$401$$ 25.9577 + 21.7811i 1.29627 + 1.08770i 0.990777 + 0.135500i $$0.0432642\pi$$
0.305488 + 0.952196i $$0.401180\pi$$
$$402$$ 0 0
$$403$$ −0.701867 3.98048i −0.0349625 0.198282i
$$404$$ 0 0
$$405$$ −2.09240 0.761570i −0.103972 0.0378427i
$$406$$ 0 0
$$407$$ 3.58125 6.20291i 0.177516 0.307467i
$$408$$ 0 0
$$409$$ −0.132474 + 0.111159i −0.00655043 + 0.00549647i −0.646057 0.763289i $$-0.723583\pi$$
0.639507 + 0.768786i $$0.279139\pi$$
$$410$$ 0 0
$$411$$ 0.889185 + 1.54011i 0.0438603 + 0.0759682i
$$412$$ 0 0
$$413$$ −1.61334 + 9.14971i −0.0793873 + 0.450228i
$$414$$ 0 0
$$415$$ 7.76099 2.82477i 0.380972 0.138663i
$$416$$ 0 0
$$417$$ 0.751030 0.0367781
$$418$$ 0 0
$$419$$ 36.5800 1.78705 0.893524 0.449015i $$-0.148225\pi$$
0.893524 + 0.449015i $$0.148225\pi$$
$$420$$ 0 0
$$421$$ −34.6400 + 12.6079i −1.68825 + 0.614472i −0.994403 0.105652i $$-0.966307\pi$$
−0.693845 + 0.720124i $$0.744085\pi$$
$$422$$ 0 0
$$423$$ 0.805407 4.56769i 0.0391602 0.222089i
$$424$$ 0 0
$$425$$ −0.0441106 0.0764018i −0.00213968 0.00370603i
$$426$$ 0 0
$$427$$ −4.56031 + 3.82655i −0.220689 + 0.185180i
$$428$$ 0 0
$$429$$ 0.358441 0.620838i 0.0173057 0.0299743i
$$430$$ 0 0
$$431$$ −17.7763 6.47005i −0.856255 0.311651i −0.123667 0.992324i $$-0.539465\pi$$
−0.732588 + 0.680673i $$0.761688\pi$$
$$432$$ 0 0
$$433$$ 3.86659 + 21.9285i 0.185817 + 1.05382i 0.924902 + 0.380206i $$0.124147\pi$$
−0.739085 + 0.673612i $$0.764742\pi$$
$$434$$ 0 0
$$435$$ −14.2135 11.9265i −0.681484 0.571833i
$$436$$ 0 0
$$437$$ −24.0433 9.14798i −1.15015 0.437607i
$$438$$ 0 0
$$439$$ −25.6156 21.4941i −1.22257 1.02586i −0.998686 0.0512387i $$-0.983683\pi$$
−0.223880 0.974617i $$-0.571872\pi$$
$$440$$ 0 0
$$441$$ −1.14156 6.47410i −0.0543600 0.308291i
$$442$$ 0 0
$$443$$ 32.7904 + 11.9347i 1.55792 + 0.567037i 0.970259 0.242069i $$-0.0778262\pi$$
0.587662 + 0.809106i $$0.300048\pi$$
$$444$$ 0 0
$$445$$ −18.6668 + 32.3319i −0.884893 + 1.53268i
$$446$$ 0 0
$$447$$ −4.57919 + 3.84240i −0.216588 + 0.181739i
$$448$$ 0 0
$$449$$ 4.09152 + 7.08672i 0.193091 + 0.334443i 0.946273 0.323369i $$-0.104815\pi$$
−0.753182 + 0.657812i $$0.771482\pi$$
$$450$$ 0 0
$$451$$ 0.924678 5.24411i 0.0435414 0.246935i
$$452$$ 0 0
$$453$$ −15.5753 + 5.66895i −0.731792 + 0.266351i
$$454$$ 0 0
$$455$$ −0.680045 −0.0318810
$$456$$ 0 0
$$457$$ −41.0259 −1.91911 −0.959556 0.281519i $$-0.909162\pi$$
−0.959556 + 0.281519i $$0.909162\pi$$
$$458$$ 0 0
$$459$$ 1.97906 0.720317i 0.0923744 0.0336215i
$$460$$ 0 0
$$461$$ −0.802719 + 4.55245i −0.0373863 + 0.212029i −0.997778 0.0666248i $$-0.978777\pi$$
0.960392 + 0.278653i $$0.0898880\pi$$
$$462$$ 0 0
$$463$$ 2.75624 + 4.77396i 0.128094 + 0.221865i 0.922938 0.384949i $$-0.125781\pi$$
−0.794844 + 0.606813i $$0.792448\pi$$
$$464$$ 0 0
$$465$$ 14.7344 12.3636i 0.683292 0.573350i
$$466$$ 0 0
$$467$$ 5.58466 9.67291i 0.258427 0.447609i −0.707394 0.706820i $$-0.750129\pi$$
0.965821 + 0.259211i $$0.0834625\pi$$
$$468$$ 0 0
$$469$$ 0.152704 + 0.0555796i 0.00705120 + 0.00256643i
$$470$$ 0 0
$$471$$ −2.90033 16.4486i −0.133640 0.757911i
$$472$$ 0 0
$$473$$ −12.0778 10.1345i −0.555340 0.465986i
$$474$$ 0 0
$$475$$ 0.141559 0.115326i 0.00649519 0.00529153i
$$476$$ 0 0
$$477$$ −9.15523 7.68215i −0.419189 0.351741i
$$478$$ 0 0
$$479$$ −1.50459 8.53293i −0.0687463 0.389879i −0.999694 0.0247276i $$-0.992128\pi$$
0.930948 0.365152i $$-0.118983\pi$$
$$480$$ 0 0
$$481$$ −2.05556 0.748163i −0.0937255 0.0341133i
$$482$$ 0 0
$$483$$ 1.92602 3.33597i 0.0876370 0.151792i
$$484$$ 0 0
$$485$$ 4.20961 3.53228i 0.191148 0.160393i
$$486$$ 0 0
$$487$$ −0.0471036 0.0815859i −0.00213447 0.00369701i 0.864956 0.501847i $$-0.167346\pi$$
−0.867091 + 0.498150i $$0.834013\pi$$
$$488$$ 0 0
$$489$$ 2.75356 15.6162i 0.124520 0.706189i
$$490$$ 0 0
$$491$$ −26.3075 + 9.57516i −1.18724 + 0.432121i −0.858754 0.512388i $$-0.828761\pi$$
−0.328488 + 0.944508i $$0.606539\pi$$
$$492$$ 0 0
$$493$$ 17.5493 0.790382
$$494$$ 0 0
$$495$$ 3.41147 0.153334
$$496$$ 0 0
$$497$$ −2.72833 + 0.993031i −0.122382 + 0.0445435i
$$498$$ 0 0
$$499$$ 6.42144 36.4178i 0.287463 1.63028i −0.408890 0.912584i $$-0.634084\pi$$
0.696353 0.717700i $$-0.254805\pi$$
$$500$$ 0 0
$$501$$ −1.13176 1.96026i −0.0505633 0.0875781i
$$502$$ 0 0
$$503$$ 17.3084 14.5235i 0.771743 0.647570i −0.169411 0.985545i $$-0.554187\pi$$
0.941155 + 0.337976i $$0.109742\pi$$
$$504$$ 0 0
$$505$$ 6.38965 11.0672i 0.284336 0.492484i
$$506$$ 0 0
$$507$$ 12.0103 + 4.37138i 0.533395 + 0.194140i
$$508$$ 0 0
$$509$$ −7.71869 43.7749i −0.342125 1.94029i −0.340377 0.940289i $$-0.610555\pi$$
−0.00174780 0.999998i $$-0.500556\pi$$
$$510$$ 0 0
$$511$$ −4.54576 3.81435i −0.201093 0.168737i
$$512$$ 0 0
$$513$$ 2.12449 + 3.80612i 0.0937983 + 0.168044i
$$514$$ 0 0
$$515$$ 23.5535 + 19.7637i 1.03789 + 0.870894i
$$516$$ 0 0
$$517$$ 1.23396 + 6.99811i 0.0542693 + 0.307777i
$$518$$ 0 0
$$519$$ −8.79086 3.19961i −0.385876 0.140447i
$$520$$ 0 0
$$521$$ 12.1322 21.0136i 0.531522 0.920624i −0.467801 0.883834i $$-0.654953\pi$$
0.999323 0.0367899i $$-0.0117132\pi$$
$$522$$ 0 0
$$523$$ 18.5462 15.5621i 0.810970 0.680485i −0.139869 0.990170i $$-0.544668\pi$$
0.950839 + 0.309685i $$0.100224\pi$$
$$524$$ 0 0
$$525$$ 0.0136706 + 0.0236781i 0.000596633 + 0.00103340i
$$526$$ 0 0
$$527$$ −3.15910 + 17.9161i −0.137613 + 0.780440i
$$528$$ 0 0
$$529$$ −11.1163 + 4.04601i −0.483319 + 0.175914i
$$530$$ 0 0
$$531$$ −14.2344 −0.617721
$$532$$ 0 0
$$533$$ −1.62630 −0.0704427
$$534$$ 0 0
$$535$$ 4.00387 1.45729i 0.173102 0.0630041i
$$536$$ 0 0
$$537$$ 2.73989 15.5387i 0.118235 0.670543i
$$538$$ 0 0
$$539$$ 5.03596 + 8.72254i 0.216914 + 0.375706i
$$540$$ 0 0
$$541$$ 26.2219 22.0028i 1.12737 0.945975i 0.128416 0.991720i $$-0.459011\pi$$
0.998953 + 0.0457455i $$0.0145663\pi$$
$$542$$ 0 0
$$543$$ −3.50134 + 6.06451i −0.150257 + 0.260253i
$$544$$ 0 0
$$545$$ 24.7221 + 8.99811i 1.05898 + 0.385437i
$$546$$ 0 0
$$547$$ −4.39218 24.9093i −0.187796 1.06504i −0.922310 0.386451i $$-0.873701\pi$$
0.734514 0.678593i $$-0.237410\pi$$
$$548$$ 0 0
$$549$$ −6.98680 5.86262i −0.298189 0.250210i
$$550$$ 0 0
$$551$$ 5.78787 + 35.8575i 0.246571 + 1.52758i
$$552$$ 0 0
$$553$$ −6.02869 5.05867i −0.256366 0.215116i
$$554$$ 0 0
$$555$$ −1.80763 10.2516i −0.0767296 0.435155i
$$556$$ 0 0
$$557$$ 10.2369 + 3.72594i 0.433753 + 0.157873i 0.549663 0.835386i $$-0.314756\pi$$
−0.115910 + 0.993260i $$0.536978\pi$$
$$558$$ 0 0
$$559$$ −2.40760 + 4.17009i −0.101831 + 0.176376i
$$560$$ 0 0
$$561$$ −2.47178 + 2.07407i −0.104359 + 0.0875673i
$$562$$ 0 0
$$563$$ 8.64337 + 14.9708i 0.364275 + 0.630942i 0.988659 0.150175i $$-0.0479836\pi$$
−0.624385 + 0.781117i $$0.714650\pi$$
$$564$$ 0 0
$$565$$ 2.08677 11.8347i 0.0877911 0.497888i
$$566$$ 0 0
$$567$$ −0.613341 + 0.223238i −0.0257579 + 0.00937511i
$$568$$ 0 0
$$569$$ 6.47834 0.271586 0.135793 0.990737i $$-0.456642\pi$$
0.135793 + 0.990737i $$0.456642\pi$$
$$570$$ 0 0
$$571$$ −38.5476 −1.61317 −0.806583 0.591121i $$-0.798686\pi$$
−0.806583 + 0.591121i $$0.798686\pi$$
$$572$$ 0 0
$$573$$ 4.12701 1.50211i 0.172408 0.0627515i
$$574$$ 0 0
$$575$$ 0.0429285 0.243460i 0.00179024 0.0101530i
$$576$$ 0 0
$$577$$ 5.72756 + 9.92042i 0.238441 + 0.412993i 0.960267 0.279082i $$-0.0900302\pi$$
−0.721826 + 0.692075i $$0.756697\pi$$
$$578$$ 0 0
$$579$$ 3.72075 3.12208i 0.154629 0.129749i
$$580$$ 0 0
$$581$$ 1.21048 2.09662i 0.0502194 0.0869825i
$$582$$ 0 0
$$583$$ 17.2062 + 6.26255i 0.712608 + 0.259368i
$$584$$ 0 0
$$585$$ −0.180922 1.02606i −0.00748021 0.0424224i
$$586$$ 0 0
$$587$$ −32.7467 27.4778i −1.35160 1.13413i −0.978479 0.206348i $$-0.933842\pi$$
−0.373124 0.927781i $$-0.621714\pi$$
$$588$$ 0 0
$$589$$ −37.6489 0.545955i −1.55130 0.0224957i
$$590$$ 0 0
$$591$$ 15.5385 + 13.0383i 0.639168 + 0.536326i
$$592$$ 0 0
$$593$$ 5.68092 + 32.2181i 0.233288 + 1.32304i 0.846190 + 0.532881i $$0.178891\pi$$
−0.612903 + 0.790158i $$0.709998\pi$$
$$594$$ 0 0
$$595$$ 2.87629 + 1.04688i 0.117916 + 0.0429180i
$$596$$ 0 0
$$597$$ −11.2306 + 19.4519i −0.459636 + 0.796113i
$$598$$ 0 0
$$599$$ −7.05896 + 5.92317i −0.288421 + 0.242014i −0.775506 0.631341i $$-0.782505\pi$$
0.487084 + 0.873355i $$0.338061\pi$$
$$600$$ 0 0
$$601$$ −4.83884 8.38112i −0.197380 0.341873i 0.750298 0.661100i $$-0.229910\pi$$
−0.947678 + 0.319227i $$0.896577\pi$$
$$602$$ 0 0
$$603$$ −0.0432332 + 0.245188i −0.00176059 + 0.00998482i
$$604$$ 0 0
$$605$$ 18.1049 6.58964i 0.736068 0.267907i
$$606$$ 0 0
$$607$$ −36.4766 −1.48054 −0.740269 0.672310i $$-0.765302\pi$$
−0.740269 + 0.672310i $$0.765302\pi$$
$$608$$ 0 0
$$609$$ −5.43882 −0.220392
$$610$$ 0 0
$$611$$ 2.03936 0.742267i 0.0825038 0.0300289i
$$612$$ 0 0
$$613$$ −2.02987 + 11.5119i −0.0819856 + 0.464963i 0.915981 + 0.401222i $$0.131414\pi$$
−0.997966 + 0.0637414i $$0.979697\pi$$
$$614$$ 0 0
$$615$$ −3.86959 6.70232i −0.156037 0.270264i
$$616$$ 0 0
$$617$$ 13.6459 11.4503i 0.549363 0.460970i −0.325362 0.945589i $$-0.605486\pi$$
0.874725 + 0.484619i $$0.161042\pi$$
$$618$$ 0 0
$$619$$ 13.9932 24.2369i 0.562434 0.974164i −0.434849 0.900503i $$-0.643198\pi$$
0.997283 0.0736609i $$-0.0234683\pi$$
$$620$$ 0 0
$$621$$ 5.54576 + 2.01849i 0.222544 + 0.0809993i
$$622$$ 0 0
$$623$$ 1.90033 + 10.7773i 0.0761351 + 0.431784i
$$624$$ 0 0
$$625$$ −18.9893 15.9339i −0.759573 0.637357i
$$626$$ 0 0
$$627$$ −5.05303 4.36640i −0.201799 0.174377i
$$628$$ 0 0
$$629$$ 7.54236 + 6.32879i 0.300733 + 0.252345i
$$630$$ 0 0
$$631$$ 0.653170 + 3.70431i 0.0260023 + 0.147466i 0.995045 0.0994276i $$-0.0317012\pi$$
−0.969042 + 0.246894i $$0.920590\pi$$
$$632$$ 0 0
$$633$$ −9.35756 3.40587i −0.371930 0.135371i
$$634$$ 0 0
$$635$$ 10.7716 18.6569i 0.427456 0.740376i
$$636$$ 0 0
$$637$$ 2.35638 1.97724i 0.0933632 0.0783410i
$$638$$ 0 0
$$639$$ −2.22416 3.85235i −0.0879862 0.152397i
$$640$$ 0 0
$$641$$ 2.91329 16.5221i 0.115068 0.652582i −0.871649 0.490131i $$-0.836949\pi$$
0.986717 0.162451i $$-0.0519400\pi$$
$$642$$ 0 0
$$643$$ −20.8396 + 7.58500i −0.821834 + 0.299123i −0.718503 0.695524i $$-0.755172\pi$$
−0.103331 + 0.994647i $$0.532950\pi$$
$$644$$ 0 0
$$645$$ −22.9145 −0.902256
$$646$$ 0 0
$$647$$ −16.6759 −0.655598 −0.327799 0.944747i $$-0.606307\pi$$
−0.327799 + 0.944747i $$0.606307\pi$$
$$648$$ 0 0
$$649$$ 20.4932 7.45891i 0.804428 0.292788i
$$650$$ 0 0
$$651$$ 0.979055 5.55250i 0.0383722 0.217620i
$$652$$ 0 0
$$653$$ 13.4033 + 23.2152i 0.524513 + 0.908482i 0.999593 + 0.0285398i $$0.00908575\pi$$
−0.475080 + 0.879943i $$0.657581\pi$$
$$654$$ 0 0
$$655$$ 3.24376 2.72183i 0.126744 0.106351i
$$656$$ 0 0
$$657$$ 4.54576 7.87349i 0.177347 0.307174i
$$658$$ 0 0
$$659$$ −16.6116 6.04612i −0.647096 0.235524i −0.00244038 0.999997i $$-0.500777\pi$$
−0.644655 + 0.764474i $$0.722999\pi$$
$$660$$ 0 0
$$661$$ 1.50593 + 8.54055i 0.0585739 + 0.332189i 0.999987 0.00506615i $$-0.00161261\pi$$
−0.941413 + 0.337255i $$0.890502\pi$$
$$662$$ 0 0
$$663$$ 0.754900 + 0.633436i 0.0293179 + 0.0246006i
$$664$$ 0 0
$$665$$ −1.19042 + 6.22221i −0.0461624 + 0.241287i
$$666$$ 0 0
$$667$$ 37.6719 + 31.6105i 1.45866 + 1.22396i
$$668$$ 0 0
$$669$$ −0.333626 1.89209i −0.0128987 0.0731523i
$$670$$ 0 0
$$671$$ 13.1309 + 4.77925i 0.506912 + 0.184501i
$$672$$ 0 0
$$673$$ −1.08243 + 1.87483i −0.0417248 + 0.0722694i −0.886134 0.463430i $$-0.846619\pi$$
0.844409 + 0.535699i $$0.179952\pi$$
$$674$$ 0 0
$$675$$ −0.0320889 + 0.0269258i −0.00123510 + 0.00103637i
$$676$$ 0 0
$$677$$ −6.37686 11.0450i −0.245083 0.424496i 0.717072 0.696999i $$-0.245482\pi$$
−0.962155 + 0.272503i $$0.912148\pi$$
$$678$$ 0 0
$$679$$ 0.279715 1.58634i 0.0107345 0.0608782i
$$680$$ 0 0
$$681$$ 0.847296 0.308391i 0.0324685 0.0118176i
$$682$$ 0 0
$$683$$ 25.2608 0.966579 0.483289 0.875461i $$-0.339442\pi$$
0.483289 + 0.875461i $$0.339442\pi$$
$$684$$ 0 0
$$685$$ −3.95987 −0.151299
$$686$$ 0 0
$$687$$ 0.332748 0.121111i 0.0126951 0.00462065i
$$688$$ 0 0
$$689$$ 0.971066 5.50719i 0.0369947 0.209807i
$$690$$ 0 0
$$691$$ 7.64796 + 13.2466i 0.290942 + 0.503926i 0.974033 0.226407i $$-0.0726980\pi$$
−0.683091 + 0.730333i $$0.739365\pi$$
$$692$$ 0 0
$$693$$ 0.766044 0.642788i 0.0290996 0.0244175i
$$694$$ 0 0
$$695$$ −0.836152 + 1.44826i −0.0317171 + 0.0549355i
$$696$$ 0 0
$$697$$ 6.87851 + 2.50357i 0.260542 + 0.0948296i
$$698$$ 0 0
$$699$$ −2.90033 16.4486i −0.109701 0.622143i
$$700$$ 0 0
$$701$$ 30.5369 + 25.6235i 1.15336 + 0.967786i 0.999793 0.0203518i $$-0.00647861\pi$$
0.153570 + 0.988138i $$0.450923\pi$$
$$702$$ 0 0
$$703$$ −10.4437 + 17.4981i −0.393893 + 0.659954i
$$704$$ 0 0
$$705$$ 7.91147 + 6.63852i 0.297963 + 0.250021i
$$706$$ 0 0
$$707$$ −0.650482 3.68907i −0.0244639 0.138742i
$$708$$ 0 0
$$709$$ −22.4351 8.16571i −0.842568 0.306670i −0.115562 0.993300i $$-0.536867\pi$$
−0.727006 + 0.686631i $$0.759089\pi$$
$$710$$ 0 0
$$711$$ 6.02869 10.4420i 0.226093 0.391605i
$$712$$ 0 0
$$713$$ −39.0526 + 32.7690i −1.46253 + 1.22721i
$$714$$ 0 0
$$715$$ 0.798133 + 1.38241i 0.0298485 + 0.0516991i
$$716$$ 0 0
$$717$$ −1.74598 + 9.90193i −0.0652047 + 0.369794i
$$718$$ 0 0
$$719$$ −34.3050 + 12.4860i −1.27936 + 0.465649i −0.890221 0.455530i $$-0.849450\pi$$
−0.389140 + 0.921179i $$0.627228\pi$$
$$720$$ 0 0
$$721$$ 9.01279 0.335654
$$722$$ 0 0
$$723$$ −23.0993 −0.859071
$$724$$ 0 0
$$725$$ −0.328001 + 0.119382i −0.0121816 + 0.00443375i
$$726$$ 0 0
$$727$$ −5.59580 + 31.7354i −0.207537 + 1.17700i 0.685861 + 0.727733i $$0.259426\pi$$
−0.893398 + 0.449267i $$0.851685\pi$$
$$728$$ 0 0
$$729$$ −0.500000 0.866025i −0.0185185 0.0320750i
$$730$$ 0 0
$$731$$ 16.6027 13.9313i 0.614072 0.515267i
$$732$$ 0 0
$$733$$ 3.48767 6.04083i 0.128820 0.223123i −0.794400 0.607396i $$-0.792214\pi$$
0.923220 + 0.384272i $$0.125548\pi$$
$$734$$ 0 0
$$735$$ 13.7554 + 5.00654i 0.507374 + 0.184669i
$$736$$ 0 0
$$737$$ −0.0662372 0.375650i −0.00243988 0.0138372i
$$738$$ 0 0
$$739$$ −18.6682 15.6645i −0.686720 0.576227i 0.231241 0.972896i $$-0.425721\pi$$
−0.917961 + 0.396670i $$0.870166\pi$$
$$740$$ 0 0
$$741$$ −1.04529 + 1.75135i −0.0383998 + 0.0643376i
$$742$$ 0 0
$$743$$ 29.1536 + 24.4628i 1.06954 + 0.897453i 0.995011 0.0997653i $$-0.0318092\pi$$
0.0745322 + 0.997219i $$0.476254\pi$$
$$744$$ 0 0
$$745$$ −2.31134 13.1082i −0.0846808 0.480249i
$$746$$ 0 0
$$747$$ 3.48545 + 1.26860i 0.127526 + 0.0464157i
$$748$$ 0 0
$$749$$ 0.624485 1.08164i 0.0228182 0.0395223i
$$750$$ 0 0
$$751$$ 2.24897 1.88711i 0.0820661 0.0688616i −0.600832 0.799376i $$-0.705164\pi$$
0.682898 + 0.730514i $$0.260719\pi$$
$$752$$ 0 0
$$753$$ 6.08125 + 10.5330i 0.221613 + 0.383845i
$$754$$ 0 0
$$755$$ 6.40884 36.3463i 0.233242 1.32278i
$$756$$ 0 0
$$757$$ −10.6800 + 3.88722i −0.388173 + 0.141283i −0.528732 0.848789i $$-0.677332\pi$$
0.140559 + 0.990072i $$0.455110\pi$$
$$758$$ 0 0
$$759$$ −9.04189 −0.328200
$$760$$ 0 0
$$761$$ 10.4976 0.380538 0.190269 0.981732i $$-0.439064\pi$$
0.190269 + 0.981732i $$0.439064\pi$$
$$762$$ 0 0
$$763$$ 7.24675 2.63760i 0.262350 0.0954876i
$$764$$ 0 0
$$765$$ −0.814330 + 4.61830i −0.0294422 + 0.166975i
$$766$$ 0 0
$$767$$ −3.33022 5.76811i −0.120247 0.208275i
$$768$$ 0 0
$$769$$ 5.93036 4.97616i 0.213854 0.179445i −0.529568 0.848268i $$-0.677646\pi$$
0.743422 + 0.668823i $$0.233201\pi$$
$$770$$ 0 0
$$771$$ 1.97313 3.41755i 0.0710604 0.123080i
$$772$$ 0 0
$$773$$ 5.78224 + 2.10456i 0.207973 + 0.0756959i 0.443906 0.896073i $$-0.353592\pi$$
−0.235933 + 0.971769i $$0.575815\pi$$
$$774$$ 0 0
$$775$$ −0.0628336 0.356347i −0.00225705 0.0128004i
$$776$$ 0 0
$$777$$ −2.33750 1.96139i −0.0838572 0.0703646i
$$778$$ 0 0
$$779$$ −2.84683 + 14.8801i −0.101998 + 0.533136i
$$780$$ 0 0
$$781$$ 5.22075 + 4.38073i 0.186813 + 0.156755i
$$782$$ 0 0
$$783$$ −1.44697 8.20616i −0.0517104 0.293264i
$$784$$ 0 0
$$785$$ 34.9479 + 12.7200i 1.24734 + 0.453996i
$$786$$ 0 0
$$787$$ −4.02600 + 6.97323i −0.143511 + 0.248569i −0.928817 0.370540i $$-0.879173\pi$$
0.785305 + 0.619109i $$0.212506\pi$$
$$788$$ 0 0
$$789$$ −6.94743 + 5.82959i −0.247335 + 0.207539i
$$790$$ 0 0
$$791$$ −1.76130 3.05066i −0.0626245 0.108469i
$$792$$ 0 0
$$793$$ 0.741067 4.20280i 0.0263161 0.149246i