Properties

Label 912.2.bo.f
Level $912$
Weight $2$
Character orbit 912.bo
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{18} q^{3} + ( 1 - \zeta_{18}^{2} + \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{5} + ( -1 + \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} ) q^{7} + \zeta_{18}^{2} q^{9} +O(q^{10})\) \( q -\zeta_{18} q^{3} + ( 1 - \zeta_{18}^{2} + \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{5} + ( -1 + \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} ) q^{7} + \zeta_{18}^{2} q^{9} + ( -\zeta_{18} - \zeta_{18}^{5} ) q^{11} + ( -1 - \zeta_{18} + 2 \zeta_{18}^{2} + \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{13} + ( 2 - \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{15} + ( -2 + 2 \zeta_{18} - 3 \zeta_{18}^{2} + 3 \zeta_{18}^{3} - 2 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{17} + ( 2 + \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{19} + ( \zeta_{18} - \zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{21} + ( 2 - 5 \zeta_{18} + 3 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{23} + ( -\zeta_{18}^{2} + 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{25} -\zeta_{18}^{3} q^{27} + ( 2 - 5 \zeta_{18} - 2 \zeta_{18}^{2} - 5 \zeta_{18}^{3} + 2 \zeta_{18}^{4} ) q^{29} + ( -3 - 3 \zeta_{18} + 3 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{31} + ( -1 + \zeta_{18}^{2} + \zeta_{18}^{3} ) q^{33} + ( -4 + 3 \zeta_{18} - 2 \zeta_{18}^{2} + 2 \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{35} + ( -3 - 2 \zeta_{18} - 2 \zeta_{18}^{2} + 6 \zeta_{18}^{4} - 4 \zeta_{18}^{5} ) q^{37} + ( -2 + \zeta_{18} + \zeta_{18}^{2} - \zeta_{18}^{4} ) q^{39} + ( -1 + 3 \zeta_{18} - 4 \zeta_{18}^{2} - 3 \zeta_{18}^{3} + 3 \zeta_{18}^{5} ) q^{41} + ( 1 - \zeta_{18}^{2} - 3 \zeta_{18}^{3} - 5 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{43} + ( -2 \zeta_{18} + \zeta_{18}^{2} + \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{45} + ( 3 \zeta_{18} - \zeta_{18}^{2} + 3 \zeta_{18}^{3} ) q^{47} + ( -2 \zeta_{18} + 3 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 3 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{49} + ( 2 + 2 \zeta_{18} - 2 \zeta_{18}^{2} + \zeta_{18}^{3} - 3 \zeta_{18}^{4} + 2 \zeta_{18}^{5} ) q^{51} + ( -2 - 6 \zeta_{18} + 8 \zeta_{18}^{3} + 8 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{53} + ( 2 + \zeta_{18}^{2} - \zeta_{18}^{3} - 2 \zeta_{18}^{5} ) q^{55} + ( 2 - 2 \zeta_{18} - \zeta_{18}^{2} - 2 \zeta_{18}^{4} - \zeta_{18}^{5} ) q^{57} + ( -6 - 4 \zeta_{18} - 3 \zeta_{18}^{2} + 3 \zeta_{18}^{3} + 4 \zeta_{18}^{4} + 6 \zeta_{18}^{5} ) q^{59} + ( 1 - \zeta_{18}^{3} - \zeta_{18}^{4} + 11 \zeta_{18}^{5} ) q^{61} + ( -\zeta_{18}^{2} + \zeta_{18}^{3} - \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{63} + ( -3 \zeta_{18} + 3 \zeta_{18}^{2} + 3 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{65} + ( -4 + \zeta_{18} + 4 \zeta_{18}^{2} + \zeta_{18}^{3} - 4 \zeta_{18}^{4} ) q^{67} + ( 2 - 2 \zeta_{18} + 5 \zeta_{18}^{2} - 2 \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{69} + ( -7 + 7 \zeta_{18}^{2} + \zeta_{18}^{3} + 5 \zeta_{18}^{4} - 6 \zeta_{18}^{5} ) q^{71} + ( 7 - \zeta_{18} + 5 \zeta_{18}^{2} - 2 \zeta_{18}^{3} + 2 \zeta_{18}^{5} ) q^{73} + ( 1 - 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{75} + q^{77} + ( 5 - 5 \zeta_{18} + 10 \zeta_{18}^{2} + 5 \zeta_{18}^{3} - 5 \zeta_{18}^{5} ) q^{79} + \zeta_{18}^{4} q^{81} + ( 9 - 2 \zeta_{18} - \zeta_{18}^{2} - 9 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{5} ) q^{83} + ( -7 + 8 \zeta_{18} - 9 \zeta_{18}^{2} + 8 \zeta_{18}^{3} - 7 \zeta_{18}^{4} ) q^{85} + ( -2 \zeta_{18} + 5 \zeta_{18}^{2} + 2 \zeta_{18}^{3} + 5 \zeta_{18}^{4} - 2 \zeta_{18}^{5} ) q^{87} + ( -7 - 7 \zeta_{18} - 5 \zeta_{18}^{2} + 4 \zeta_{18}^{3} + 3 \zeta_{18}^{4} + 5 \zeta_{18}^{5} ) q^{89} + ( 2 - 2 \zeta_{18} + \zeta_{18}^{5} ) q^{91} + ( 3 + 3 \zeta_{18} + 3 \zeta_{18}^{2} - 3 \zeta_{18}^{3} - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{5} ) q^{93} + ( -3 + 2 \zeta_{18} - 10 \zeta_{18}^{2} + 6 \zeta_{18}^{3} - \zeta_{18}^{4} + 8 \zeta_{18}^{5} ) q^{95} + ( -1 + 4 \zeta_{18} - 4 \zeta_{18}^{4} + \zeta_{18}^{5} ) q^{97} + ( \zeta_{18} - \zeta_{18}^{3} - \zeta_{18}^{4} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 9q^{5} - 3q^{7} + O(q^{10}) \) \( 6q + 9q^{5} - 3q^{7} - 3q^{13} + 9q^{15} - 3q^{17} + 18q^{19} + 3q^{21} + 21q^{23} + 9q^{25} - 3q^{27} - 3q^{29} - 9q^{31} - 3q^{33} - 18q^{35} - 18q^{37} - 12q^{39} - 15q^{41} - 3q^{43} + 9q^{47} + 12q^{49} + 15q^{51} + 12q^{53} + 9q^{55} + 12q^{57} - 27q^{59} + 3q^{61} + 3q^{63} - 21q^{67} + 6q^{69} - 39q^{71} + 36q^{73} + 6q^{75} + 6q^{77} + 45q^{79} + 27q^{83} - 18q^{85} + 6q^{87} - 30q^{89} + 12q^{91} + 9q^{93} - 6q^{97} - 3q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 + 0.342020i
0.939693 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
0 0.173648 + 0.984808i 0 0.907604 0.761570i 0 0.266044 0.460802i 0 −0.939693 + 0.342020i 0
385.1 0 0.173648 0.984808i 0 0.907604 + 0.761570i 0 0.266044 + 0.460802i 0 −0.939693 0.342020i 0
481.1 0 −0.939693 0.342020i 0 0.386659 + 2.19285i 0 −0.326352 + 0.565258i 0 0.766044 + 0.642788i 0
529.1 0 −0.939693 + 0.342020i 0 0.386659 2.19285i 0 −0.326352 0.565258i 0 0.766044 0.642788i 0
625.1 0 0.766044 + 0.642788i 0 3.20574 1.16679i 0 −1.43969 2.49362i 0 0.173648 + 0.984808i 0
769.1 0 0.766044 0.642788i 0 3.20574 + 1.16679i 0 −1.43969 + 2.49362i 0 0.173648 0.984808i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 769.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.bo.f 6
4.b odd 2 1 114.2.i.d 6
12.b even 2 1 342.2.u.a 6
19.e even 9 1 inner 912.2.bo.f 6
76.k even 18 1 2166.2.a.u 3
76.l odd 18 1 114.2.i.d 6
76.l odd 18 1 2166.2.a.o 3
228.u odd 18 1 6498.2.a.bn 3
228.v even 18 1 342.2.u.a 6
228.v even 18 1 6498.2.a.bs 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.i.d 6 4.b odd 2 1
114.2.i.d 6 76.l odd 18 1
342.2.u.a 6 12.b even 2 1
342.2.u.a 6 228.v even 18 1
912.2.bo.f 6 1.a even 1 1 trivial
912.2.bo.f 6 19.e even 9 1 inner
2166.2.a.o 3 76.l odd 18 1
2166.2.a.u 3 76.k even 18 1
6498.2.a.bn 3 228.u odd 18 1
6498.2.a.bs 3 228.v even 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 9 T_{5}^{5} + 36 T_{5}^{4} - 90 T_{5}^{3} + 162 T_{5}^{2} - 162 T_{5} + 81 \) acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \)
$3$ \( 1 + T^{3} + T^{6} \)
$5$ \( 81 - 162 T + 162 T^{2} - 90 T^{3} + 36 T^{4} - 9 T^{5} + T^{6} \)
$7$ \( 1 + 3 T^{2} + 2 T^{3} + 9 T^{4} + 3 T^{5} + T^{6} \)
$11$ \( 1 + 3 T + 9 T^{2} + 2 T^{3} + 3 T^{4} + T^{6} \)
$13$ \( 9 - 27 T + 9 T^{2} + 24 T^{3} + 18 T^{4} + 3 T^{5} + T^{6} \)
$17$ \( 289 + 663 T + 591 T^{2} + 244 T^{3} + 48 T^{4} + 3 T^{5} + T^{6} \)
$19$ \( 6859 - 6498 T + 3078 T^{2} - 883 T^{3} + 162 T^{4} - 18 T^{5} + T^{6} \)
$23$ \( 72361 - 32280 T + 7674 T^{2} - 1396 T^{3} + 210 T^{4} - 21 T^{5} + T^{6} \)
$29$ \( 45369 - 15336 T + 1386 T^{2} - 84 T^{3} + 18 T^{4} + 3 T^{5} + T^{6} \)
$31$ \( 729 + 243 T^{2} + 54 T^{3} + 81 T^{4} + 9 T^{5} + T^{6} \)
$37$ \( ( -361 - 57 T + 9 T^{2} + T^{3} )^{2} \)
$41$ \( 11881 + 12099 T + 5376 T^{2} + 1288 T^{3} + 177 T^{4} + 15 T^{5} + T^{6} \)
$43$ \( 3249 - 513 T - 504 T^{2} - 84 T^{3} + 99 T^{4} + 3 T^{5} + T^{6} \)
$47$ \( 2809 - 3339 T + 1530 T^{2} - 352 T^{3} + 63 T^{4} - 9 T^{5} + T^{6} \)
$53$ \( 94249 + 81048 T + 16962 T^{2} - 1351 T^{3} + 174 T^{4} - 12 T^{5} + T^{6} \)
$59$ \( 289 + 459 T + 1701 T^{2} + 1232 T^{3} + 324 T^{4} + 27 T^{5} + T^{6} \)
$61$ \( 1682209 + 38910 T + 8979 T^{2} - 1207 T^{3} - 60 T^{4} - 3 T^{5} + T^{6} \)
$67$ \( 9 + 54 T + 144 T^{2} + 24 T^{3} + 126 T^{4} + 21 T^{5} + T^{6} \)
$71$ \( 201601 + 57921 T + 16386 T^{2} + 3592 T^{3} + 561 T^{4} + 39 T^{5} + T^{6} \)
$73$ \( 1369 + 999 T + 12330 T^{2} - 4148 T^{3} + 558 T^{4} - 36 T^{5} + T^{6} \)
$79$ \( 4515625 - 1434375 T + 213750 T^{2} - 19000 T^{3} + 1125 T^{4} - 45 T^{5} + T^{6} \)
$83$ \( 253009 - 111666 T + 35703 T^{2} - 4988 T^{3} + 507 T^{4} - 27 T^{5} + T^{6} \)
$89$ \( 11449 - 7383 T + 2580 T^{2} - 62 T^{3} + 246 T^{4} + 30 T^{5} + T^{6} \)
$97$ \( 2809 - 1113 T + 276 T^{2} + 35 T^{3} + 3 T^{4} + 6 T^{5} + T^{6} \)
show more
show less