Properties

Label 912.2.bo.d
Level $912$
Weight $2$
Character orbit 912.bo
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(289,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{18} q^{3} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{5} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - \zeta_{18}^{3} + 3 \zeta_{18}^{2} - \zeta_{18} + 1) q^{7} + \zeta_{18}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{18} q^{3} + ( - 2 \zeta_{18}^{4} - \zeta_{18}^{3} - \zeta_{18}^{2} + 1) q^{5} + ( - 2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - \zeta_{18}^{3} + 3 \zeta_{18}^{2} - \zeta_{18} + 1) q^{7} + \zeta_{18}^{2} q^{9} + ( - \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{2} - \zeta_{18}) q^{11} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{4} + \zeta_{18}^{3} - 2 \zeta_{18}^{2} + \zeta_{18} + 1) q^{13} + (2 \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}) q^{15} + (2 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 2 \zeta_{18}) q^{17} + ( - 3 \zeta_{18}^{4} + 5 \zeta_{18}) q^{19} + (2 \zeta_{18}^{5} + \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - \zeta_{18} - 2) q^{21} + (2 \zeta_{18}^{5} + 3 \zeta_{18}^{4} + 3 \zeta_{18}^{3} + 3 \zeta_{18} - 6) q^{23} + (\zeta_{18}^{5} + \zeta_{18}^{4} + 3 \zeta_{18}^{3} - \zeta_{18}^{2} - 4 \zeta_{18} - 4) q^{25} - \zeta_{18}^{3} q^{27} + ( - \zeta_{18}^{3} + 2 \zeta_{18}^{2} - \zeta_{18}) q^{29} + (\zeta_{18}^{5} + \zeta_{18}^{4} - 5 \zeta_{18}^{3} - \zeta_{18} + 5) q^{31} + (2 \zeta_{18}^{5} + 3 \zeta_{18}^{3} + \zeta_{18}^{2} - 1) q^{33} + (4 \zeta_{18}^{5} - 4 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 7 \zeta_{18}) q^{35} + ( - 4 \zeta_{18}^{4} + 4 \zeta_{18}^{2} + 4 \zeta_{18} - 1) q^{37} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} - \zeta_{18}^{2} - \zeta_{18} + 2) q^{39} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} - 2 \zeta_{18}^{2} - 3 \zeta_{18} - 3) q^{41} + (2 \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 5 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 3) q^{43} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} + 2) q^{45} + ( - 4 \zeta_{18}^{4} + 3 \zeta_{18}^{3} + 3 \zeta_{18}^{2} + 3 \zeta_{18} - 4) q^{47} + (2 \zeta_{18}^{5} - \zeta_{18}^{4} - 8 \zeta_{18}^{3} - \zeta_{18}^{2} + 2 \zeta_{18}) q^{49} + ( - 2 \zeta_{18}^{5} + \zeta_{18}^{4} - \zeta_{18}^{3} + 2 \zeta_{18}^{2}) q^{51} + ( - 9 \zeta_{18}^{5} + 2 \zeta_{18}^{4} + 2 \zeta_{18}^{3} - 2 \zeta_{18}) q^{53} + (8 \zeta_{18}^{5} + 4 \zeta_{18}^{4} + 7 \zeta_{18}^{3} - 7 \zeta_{18}^{2} - 4 \zeta_{18} - 8) q^{55} + (3 \zeta_{18}^{5} - 5 \zeta_{18}^{2}) q^{57} + ( - 4 \zeta_{18}^{5} + 6 \zeta_{18}^{4} + \zeta_{18}^{3} - \zeta_{18}^{2} - 6 \zeta_{18} + 4) q^{59} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} + \zeta_{18}^{3} + 2 \zeta_{18} - 3) q^{61} + ( - \zeta_{18}^{5} + \zeta_{18}^{4} - 3 \zeta_{18}^{3} + \zeta_{18}^{2} + 2 \zeta_{18} + 2) q^{63} + (3 \zeta_{18}^{5} - 5 \zeta_{18}^{4} + 4 \zeta_{18}^{3} - 5 \zeta_{18}^{2} + 3 \zeta_{18}) q^{65} + (6 \zeta_{18}^{4} - 11 \zeta_{18}^{3} - 4 \zeta_{18}^{2} - 11 \zeta_{18} + 6) q^{67} + ( - 3 \zeta_{18}^{5} - 3 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 6 \zeta_{18} + 2) q^{69} + (2 \zeta_{18}^{5} - 7 \zeta_{18}^{4} + 5 \zeta_{18}^{3} + 3 \zeta_{18}^{2} - 3) q^{71} + (2 \zeta_{18}^{5} - 2 \zeta_{18}^{3} + \zeta_{18}^{2} - 5 \zeta_{18} + 3) q^{73} + ( - \zeta_{18}^{5} - 3 \zeta_{18}^{4} + 4 \zeta_{18}^{2} + 4 \zeta_{18} + 1) q^{75} + (10 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 6 \zeta_{18}^{2} - 6 \zeta_{18} - 7) q^{77} + ( - \zeta_{18}^{5} + \zeta_{18}^{3} - 4 \zeta_{18}^{2} + 5 \zeta_{18} - 5) q^{79} + \zeta_{18}^{4} q^{81} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18}^{3} - 3 \zeta_{18}^{2} + 4 \zeta_{18} - 1) q^{83} + (3 \zeta_{18}^{4} - 2 \zeta_{18}^{3} + 5 \zeta_{18}^{2} - 2 \zeta_{18} + 3) q^{85} + (\zeta_{18}^{4} - 2 \zeta_{18}^{3} + \zeta_{18}^{2}) q^{87} + (\zeta_{18}^{5} - 7 \zeta_{18}^{4} - \zeta_{18}^{2} + 7 \zeta_{18} + 7) q^{89} + (5 \zeta_{18}^{5} - 2 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 6 \zeta_{18} + 8) q^{91} + ( - \zeta_{18}^{5} + 5 \zeta_{18}^{4} - \zeta_{18}^{3} + \zeta_{18}^{2} - 5 \zeta_{18} + 1) q^{93} + ( - 4 \zeta_{18}^{5} - 5 \zeta_{18}^{4} - 2 \zeta_{18}^{3} - 6 \zeta_{18}^{2} + 2 \zeta_{18} - 3) q^{95} + ( - 7 \zeta_{18}^{5} - 4 \zeta_{18}^{4} - 8 \zeta_{18}^{3} + 8 \zeta_{18}^{2} + 4 \zeta_{18} + 7) q^{97} + ( - 3 \zeta_{18}^{4} - 3 \zeta_{18}^{3} + \zeta_{18} + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{5} + 3 q^{7} + 9 q^{13} + 3 q^{15} - 3 q^{17} - 15 q^{21} - 27 q^{23} - 15 q^{25} - 3 q^{27} - 3 q^{29} + 15 q^{31} + 3 q^{33} - 12 q^{35} - 6 q^{37} + 12 q^{39} - 15 q^{41} - 3 q^{43} + 6 q^{45} - 15 q^{47} - 24 q^{49} - 3 q^{51} + 6 q^{53} - 27 q^{55} + 27 q^{59} - 15 q^{61} + 3 q^{63} + 12 q^{65} + 3 q^{67} + 6 q^{69} - 3 q^{71} + 12 q^{73} + 6 q^{75} - 42 q^{77} - 27 q^{79} - 3 q^{83} + 12 q^{85} - 6 q^{87} + 42 q^{89} + 42 q^{91} + 3 q^{93} - 24 q^{95} + 18 q^{97} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 + 0.342020i
0.939693 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
0 0.173648 + 0.984808i 0 −0.0923963 + 0.0775297i 0 −2.14543 + 3.71599i 0 −0.939693 + 0.342020i 0
385.1 0 0.173648 0.984808i 0 −0.0923963 0.0775297i 0 −2.14543 3.71599i 0 −0.939693 0.342020i 0
481.1 0 −0.939693 0.342020i 0 −0.613341 3.47843i 0 1.85844 3.21891i 0 0.766044 + 0.642788i 0
529.1 0 −0.939693 + 0.342020i 0 −0.613341 + 3.47843i 0 1.85844 + 3.21891i 0 0.766044 0.642788i 0
625.1 0 0.766044 + 0.642788i 0 2.20574 0.802823i 0 1.78699 + 3.09516i 0 0.173648 + 0.984808i 0
769.1 0 0.766044 0.642788i 0 2.20574 + 0.802823i 0 1.78699 3.09516i 0 0.173648 0.984808i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 769.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.bo.d 6
4.b odd 2 1 114.2.i.c 6
12.b even 2 1 342.2.u.b 6
19.e even 9 1 inner 912.2.bo.d 6
76.k even 18 1 2166.2.a.p 3
76.l odd 18 1 114.2.i.c 6
76.l odd 18 1 2166.2.a.r 3
228.u odd 18 1 6498.2.a.bu 3
228.v even 18 1 342.2.u.b 6
228.v even 18 1 6498.2.a.bp 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.i.c 6 4.b odd 2 1
114.2.i.c 6 76.l odd 18 1
342.2.u.b 6 12.b even 2 1
342.2.u.b 6 228.v even 18 1
912.2.bo.d 6 1.a even 1 1 trivial
912.2.bo.d 6 19.e even 9 1 inner
2166.2.a.p 3 76.k even 18 1
2166.2.a.r 3 76.l odd 18 1
6498.2.a.bp 3 228.v even 18 1
6498.2.a.bu 3 228.u odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} - 3T_{5}^{5} + 12T_{5}^{4} - 46T_{5}^{3} + 60T_{5}^{2} + 12T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$5$ \( T^{6} - 3 T^{5} + 12 T^{4} - 46 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} - 3 T^{5} + 27 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$11$ \( T^{6} + 21 T^{4} - 74 T^{3} + \cdots + 1369 \) Copy content Toggle raw display
$13$ \( T^{6} - 9 T^{5} + 36 T^{4} - 28 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} + 3 T^{5} + 18 T^{4} + 24 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$19$ \( T^{6} - 107T^{3} + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} + 27 T^{5} + 378 T^{4} + \cdots + 157609 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + 12 T^{4} + 46 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{6} - 15 T^{5} + 153 T^{4} + \cdots + 11881 \) Copy content Toggle raw display
$37$ \( (T^{3} + 3 T^{2} - 45 T + 17)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 15 T^{5} + 87 T^{4} + \cdots + 2809 \) Copy content Toggle raw display
$43$ \( T^{6} + 3 T^{5} - 3 T^{4} + \cdots + 63001 \) Copy content Toggle raw display
$47$ \( T^{6} + 15 T^{5} + 51 T^{4} + \cdots + 5041 \) Copy content Toggle raw display
$53$ \( T^{6} - 6 T^{5} - 30 T^{4} + \cdots + 395641 \) Copy content Toggle raw display
$59$ \( T^{6} - 27 T^{5} + 198 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$61$ \( T^{6} + 15 T^{5} + 84 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$67$ \( T^{6} - 3 T^{5} + 72 T^{4} + \cdots + 7017201 \) Copy content Toggle raw display
$71$ \( T^{6} + 3 T^{5} - 87 T^{4} + \cdots + 26569 \) Copy content Toggle raw display
$73$ \( T^{6} - 12 T^{5} + 54 T^{4} + \cdots + 3249 \) Copy content Toggle raw display
$79$ \( T^{6} + 27 T^{5} + 351 T^{4} + \cdots + 32761 \) Copy content Toggle raw display
$83$ \( T^{6} + 3 T^{5} + 45 T^{4} + \cdots + 2601 \) Copy content Toggle raw display
$89$ \( T^{6} - 42 T^{5} + 756 T^{4} + \cdots + 239121 \) Copy content Toggle raw display
$97$ \( T^{6} - 18 T^{5} + 171 T^{4} + \cdots + 218089 \) Copy content Toggle raw display
show more
show less