Properties

Label 912.2.bo.c.289.1
Level $912$
Weight $2$
Character 912.289
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(289,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 289.1
Root \(-0.173648 - 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 912.289
Dual form 912.2.bo.c.385.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{3} +(-2.97178 + 2.49362i) q^{5} +(0.613341 - 1.06234i) q^{7} +(-0.939693 + 0.342020i) q^{9} +(-1.06031 - 1.83651i) q^{11} +(0.0851223 - 0.482753i) q^{13} +(2.97178 + 2.49362i) q^{15} +(5.19846 + 1.89209i) q^{17} +(-2.77719 - 3.35965i) q^{19} +(-1.15270 - 0.419550i) q^{21} +(6.85117 + 5.74881i) q^{23} +(1.74510 - 9.89695i) q^{25} +(0.500000 + 0.866025i) q^{27} +(7.96451 - 2.89884i) q^{29} +(1.20574 - 2.08840i) q^{31} +(-1.62449 + 1.36310i) q^{33} +(0.826352 + 4.68647i) q^{35} +1.69459 q^{37} -0.490200 q^{39} +(0.277189 + 1.57202i) q^{41} +(5.08512 - 4.26692i) q^{43} +(1.93969 - 3.35965i) q^{45} +(2.03936 - 0.742267i) q^{47} +(2.74763 + 4.75903i) q^{49} +(0.960637 - 5.44804i) q^{51} +(6.80793 + 5.71253i) q^{53} +(7.73055 + 2.81369i) q^{55} +(-2.82635 + 3.31839i) q^{57} +(-10.7306 - 3.90560i) q^{59} +(0.0320889 + 0.0269258i) q^{61} +(-0.213011 + 1.20805i) q^{63} +(0.950837 + 1.64690i) q^{65} +(4.20574 - 1.53076i) q^{67} +(4.47178 - 7.74535i) q^{69} +(-2.02094 + 1.69577i) q^{71} +(-2.66772 - 15.1294i) q^{73} -10.0496 q^{75} -2.60132 q^{77} +(0.809278 + 4.58964i) q^{79} +(0.766044 - 0.642788i) q^{81} +(6.24035 - 10.8086i) q^{83} +(-20.1668 + 7.34013i) q^{85} +(-4.23783 - 7.34013i) q^{87} +(1.46838 - 8.32759i) q^{89} +(-0.460637 - 0.386520i) q^{91} +(-2.26604 - 0.824773i) q^{93} +(16.6309 + 3.05888i) q^{95} +(13.5103 + 4.91734i) q^{97} +(1.62449 + 1.36310i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - 3 q^{7} - 12 q^{11} - 21 q^{13} + 3 q^{15} + 3 q^{17} - 6 q^{19} - 9 q^{21} + 15 q^{23} + 9 q^{25} + 3 q^{27} + 15 q^{29} - 3 q^{31} + 3 q^{33} + 6 q^{35} + 6 q^{37} - 9 q^{41} + 9 q^{43}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.173648 0.984808i −0.100256 0.568579i
\(4\) 0 0
\(5\) −2.97178 + 2.49362i −1.32902 + 1.11518i −0.344716 + 0.938707i \(0.612025\pi\)
−0.984305 + 0.176474i \(0.943531\pi\)
\(6\) 0 0
\(7\) 0.613341 1.06234i 0.231821 0.401526i −0.726523 0.687142i \(-0.758865\pi\)
0.958344 + 0.285616i \(0.0921983\pi\)
\(8\) 0 0
\(9\) −0.939693 + 0.342020i −0.313231 + 0.114007i
\(10\) 0 0
\(11\) −1.06031 1.83651i −0.319695 0.553727i 0.660730 0.750624i \(-0.270247\pi\)
−0.980424 + 0.196897i \(0.936914\pi\)
\(12\) 0 0
\(13\) 0.0851223 0.482753i 0.0236087 0.133891i −0.970725 0.240192i \(-0.922790\pi\)
0.994334 + 0.106301i \(0.0339006\pi\)
\(14\) 0 0
\(15\) 2.97178 + 2.49362i 0.767311 + 0.643850i
\(16\) 0 0
\(17\) 5.19846 + 1.89209i 1.26081 + 0.458898i 0.884042 0.467408i \(-0.154812\pi\)
0.376771 + 0.926306i \(0.377034\pi\)
\(18\) 0 0
\(19\) −2.77719 3.35965i −0.637131 0.770756i
\(20\) 0 0
\(21\) −1.15270 0.419550i −0.251541 0.0915533i
\(22\) 0 0
\(23\) 6.85117 + 5.74881i 1.42857 + 1.19871i 0.946554 + 0.322546i \(0.104539\pi\)
0.482013 + 0.876164i \(0.339906\pi\)
\(24\) 0 0
\(25\) 1.74510 9.89695i 0.349020 1.97939i
\(26\) 0 0
\(27\) 0.500000 + 0.866025i 0.0962250 + 0.166667i
\(28\) 0 0
\(29\) 7.96451 2.89884i 1.47897 0.538302i 0.528451 0.848964i \(-0.322773\pi\)
0.950521 + 0.310662i \(0.100551\pi\)
\(30\) 0 0
\(31\) 1.20574 2.08840i 0.216557 0.375087i −0.737196 0.675679i \(-0.763851\pi\)
0.953753 + 0.300591i \(0.0971840\pi\)
\(32\) 0 0
\(33\) −1.62449 + 1.36310i −0.282787 + 0.237286i
\(34\) 0 0
\(35\) 0.826352 + 4.68647i 0.139679 + 0.792159i
\(36\) 0 0
\(37\) 1.69459 0.278589 0.139295 0.990251i \(-0.455516\pi\)
0.139295 + 0.990251i \(0.455516\pi\)
\(38\) 0 0
\(39\) −0.490200 −0.0784948
\(40\) 0 0
\(41\) 0.277189 + 1.57202i 0.0432896 + 0.245508i 0.998772 0.0495401i \(-0.0157756\pi\)
−0.955483 + 0.295048i \(0.904664\pi\)
\(42\) 0 0
\(43\) 5.08512 4.26692i 0.775474 0.650700i −0.166631 0.986019i \(-0.553289\pi\)
0.942104 + 0.335320i \(0.108844\pi\)
\(44\) 0 0
\(45\) 1.93969 3.35965i 0.289152 0.500826i
\(46\) 0 0
\(47\) 2.03936 0.742267i 0.297472 0.108271i −0.188973 0.981982i \(-0.560516\pi\)
0.486444 + 0.873711i \(0.338294\pi\)
\(48\) 0 0
\(49\) 2.74763 + 4.75903i 0.392518 + 0.679861i
\(50\) 0 0
\(51\) 0.960637 5.44804i 0.134516 0.762879i
\(52\) 0 0
\(53\) 6.80793 + 5.71253i 0.935142 + 0.784677i 0.976733 0.214458i \(-0.0687984\pi\)
−0.0415917 + 0.999135i \(0.513243\pi\)
\(54\) 0 0
\(55\) 7.73055 + 2.81369i 1.04239 + 0.379398i
\(56\) 0 0
\(57\) −2.82635 + 3.31839i −0.374359 + 0.439532i
\(58\) 0 0
\(59\) −10.7306 3.90560i −1.39700 0.508466i −0.469713 0.882819i \(-0.655643\pi\)
−0.927286 + 0.374353i \(0.877865\pi\)
\(60\) 0 0
\(61\) 0.0320889 + 0.0269258i 0.00410856 + 0.00344749i 0.644840 0.764318i \(-0.276924\pi\)
−0.640731 + 0.767765i \(0.721369\pi\)
\(62\) 0 0
\(63\) −0.213011 + 1.20805i −0.0268369 + 0.152199i
\(64\) 0 0
\(65\) 0.950837 + 1.64690i 0.117937 + 0.204273i
\(66\) 0 0
\(67\) 4.20574 1.53076i 0.513813 0.187012i −0.0720836 0.997399i \(-0.522965\pi\)
0.585896 + 0.810386i \(0.300743\pi\)
\(68\) 0 0
\(69\) 4.47178 7.74535i 0.538339 0.932431i
\(70\) 0 0
\(71\) −2.02094 + 1.69577i −0.239842 + 0.201251i −0.754783 0.655974i \(-0.772258\pi\)
0.514941 + 0.857225i \(0.327814\pi\)
\(72\) 0 0
\(73\) −2.66772 15.1294i −0.312233 1.77076i −0.587334 0.809345i \(-0.699822\pi\)
0.275101 0.961415i \(-0.411289\pi\)
\(74\) 0 0
\(75\) −10.0496 −1.16043
\(76\) 0 0
\(77\) −2.60132 −0.296448
\(78\) 0 0
\(79\) 0.809278 + 4.58964i 0.0910509 + 0.516375i 0.995886 + 0.0906133i \(0.0288827\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(80\) 0 0
\(81\) 0.766044 0.642788i 0.0851160 0.0714208i
\(82\) 0 0
\(83\) 6.24035 10.8086i 0.684968 1.18640i −0.288479 0.957486i \(-0.593150\pi\)
0.973447 0.228913i \(-0.0735170\pi\)
\(84\) 0 0
\(85\) −20.1668 + 7.34013i −2.18740 + 0.796149i
\(86\) 0 0
\(87\) −4.23783 7.34013i −0.454343 0.786945i
\(88\) 0 0
\(89\) 1.46838 8.32759i 0.155648 0.882722i −0.802543 0.596594i \(-0.796520\pi\)
0.958191 0.286129i \(-0.0923685\pi\)
\(90\) 0 0
\(91\) −0.460637 0.386520i −0.0482879 0.0405184i
\(92\) 0 0
\(93\) −2.26604 0.824773i −0.234978 0.0855249i
\(94\) 0 0
\(95\) 16.6309 + 3.05888i 1.70629 + 0.313834i
\(96\) 0 0
\(97\) 13.5103 + 4.91734i 1.37176 + 0.499280i 0.919670 0.392693i \(-0.128456\pi\)
0.452090 + 0.891972i \(0.350679\pi\)
\(98\) 0 0
\(99\) 1.62449 + 1.36310i 0.163267 + 0.136997i
\(100\) 0 0
\(101\) 0.988856 5.60808i 0.0983948 0.558025i −0.895259 0.445546i \(-0.853010\pi\)
0.993654 0.112479i \(-0.0358792\pi\)
\(102\) 0 0
\(103\) −0.156574 0.271194i −0.0154277 0.0267216i 0.858208 0.513301i \(-0.171578\pi\)
−0.873636 + 0.486580i \(0.838244\pi\)
\(104\) 0 0
\(105\) 4.47178 1.62760i 0.436401 0.158837i
\(106\) 0 0
\(107\) −8.41400 + 14.5735i −0.813412 + 1.40887i 0.0970504 + 0.995279i \(0.469059\pi\)
−0.910462 + 0.413592i \(0.864274\pi\)
\(108\) 0 0
\(109\) −7.97565 + 6.69237i −0.763929 + 0.641012i −0.939146 0.343517i \(-0.888382\pi\)
0.175217 + 0.984530i \(0.443937\pi\)
\(110\) 0 0
\(111\) −0.294263 1.66885i −0.0279302 0.158400i
\(112\) 0 0
\(113\) −17.3824 −1.63520 −0.817598 0.575789i \(-0.804695\pi\)
−0.817598 + 0.575789i \(0.804695\pi\)
\(114\) 0 0
\(115\) −34.6955 −3.23537
\(116\) 0 0
\(117\) 0.0851223 + 0.482753i 0.00786956 + 0.0446305i
\(118\) 0 0
\(119\) 5.19846 4.36203i 0.476542 0.399866i
\(120\) 0 0
\(121\) 3.25150 5.63176i 0.295591 0.511978i
\(122\) 0 0
\(123\) 1.50000 0.545955i 0.135250 0.0492271i
\(124\) 0 0
\(125\) 9.79473 + 16.9650i 0.876067 + 1.51739i
\(126\) 0 0
\(127\) 0.283119 1.60565i 0.0251227 0.142478i −0.969666 0.244432i \(-0.921398\pi\)
0.994789 + 0.101954i \(0.0325095\pi\)
\(128\) 0 0
\(129\) −5.08512 4.26692i −0.447720 0.375682i
\(130\) 0 0
\(131\) 5.60354 + 2.03952i 0.489584 + 0.178194i 0.575003 0.818151i \(-0.305001\pi\)
−0.0854195 + 0.996345i \(0.527223\pi\)
\(132\) 0 0
\(133\) −5.27244 + 0.889704i −0.457179 + 0.0771471i
\(134\) 0 0
\(135\) −3.64543 1.32683i −0.313749 0.114195i
\(136\) 0 0
\(137\) −0.0150147 0.0125989i −0.00128280 0.00107639i 0.642146 0.766582i \(-0.278044\pi\)
−0.643429 + 0.765506i \(0.722489\pi\)
\(138\) 0 0
\(139\) −0.780592 + 4.42696i −0.0662090 + 0.375490i 0.933642 + 0.358208i \(0.116612\pi\)
−0.999851 + 0.0172815i \(0.994499\pi\)
\(140\) 0 0
\(141\) −1.08512 1.87949i −0.0913838 0.158281i
\(142\) 0 0
\(143\) −0.976834 + 0.355538i −0.0816870 + 0.0297316i
\(144\) 0 0
\(145\) −16.4402 + 28.4752i −1.36528 + 2.36474i
\(146\) 0 0
\(147\) 4.20961 3.53228i 0.347203 0.291338i
\(148\) 0 0
\(149\) 2.08899 + 11.8473i 0.171137 + 0.970566i 0.942509 + 0.334181i \(0.108460\pi\)
−0.771372 + 0.636385i \(0.780429\pi\)
\(150\) 0 0
\(151\) −0.0591253 −0.00481155 −0.00240578 0.999997i \(-0.500766\pi\)
−0.00240578 + 0.999997i \(0.500766\pi\)
\(152\) 0 0
\(153\) −5.53209 −0.447243
\(154\) 0 0
\(155\) 1.62449 + 9.21291i 0.130482 + 0.739999i
\(156\) 0 0
\(157\) 9.92649 8.32931i 0.792220 0.664752i −0.154074 0.988059i \(-0.549239\pi\)
0.946294 + 0.323308i \(0.104795\pi\)
\(158\) 0 0
\(159\) 4.44356 7.69648i 0.352397 0.610370i
\(160\) 0 0
\(161\) 10.3093 3.75227i 0.812485 0.295720i
\(162\) 0 0
\(163\) 7.53596 + 13.0527i 0.590262 + 1.02236i 0.994197 + 0.107576i \(0.0343089\pi\)
−0.403935 + 0.914788i \(0.632358\pi\)
\(164\) 0 0
\(165\) 1.42855 8.10170i 0.111212 0.630716i
\(166\) 0 0
\(167\) 1.48680 + 1.24757i 0.115052 + 0.0965399i 0.698499 0.715612i \(-0.253852\pi\)
−0.583447 + 0.812151i \(0.698296\pi\)
\(168\) 0 0
\(169\) 11.9902 + 4.36408i 0.922323 + 0.335698i
\(170\) 0 0
\(171\) 3.75877 + 2.20718i 0.287440 + 0.168787i
\(172\) 0 0
\(173\) −15.1027 5.49692i −1.14823 0.417923i −0.303354 0.952878i \(-0.598106\pi\)
−0.844881 + 0.534955i \(0.820329\pi\)
\(174\) 0 0
\(175\) −9.44356 7.92409i −0.713866 0.599005i
\(176\) 0 0
\(177\) −1.98293 + 11.2457i −0.149046 + 0.845281i
\(178\) 0 0
\(179\) 7.38713 + 12.7949i 0.552140 + 0.956334i 0.998120 + 0.0612912i \(0.0195218\pi\)
−0.445980 + 0.895043i \(0.647145\pi\)
\(180\) 0 0
\(181\) 17.1275 6.23389i 1.27308 0.463362i 0.384939 0.922942i \(-0.374222\pi\)
0.888136 + 0.459580i \(0.152000\pi\)
\(182\) 0 0
\(183\) 0.0209445 0.0362770i 0.00154826 0.00268167i
\(184\) 0 0
\(185\) −5.03596 + 4.22567i −0.370251 + 0.310678i
\(186\) 0 0
\(187\) −2.03714 11.5532i −0.148971 0.844854i
\(188\) 0 0
\(189\) 1.22668 0.0892280
\(190\) 0 0
\(191\) −1.29086 −0.0934033 −0.0467017 0.998909i \(-0.514871\pi\)
−0.0467017 + 0.998909i \(0.514871\pi\)
\(192\) 0 0
\(193\) −1.58378 8.98205i −0.114003 0.646542i −0.987239 0.159245i \(-0.949094\pi\)
0.873236 0.487297i \(-0.162017\pi\)
\(194\) 0 0
\(195\) 1.45677 1.22237i 0.104321 0.0875359i
\(196\) 0 0
\(197\) −9.31180 + 16.1285i −0.663439 + 1.14911i 0.316268 + 0.948670i \(0.397570\pi\)
−0.979706 + 0.200439i \(0.935763\pi\)
\(198\) 0 0
\(199\) 7.92262 2.88360i 0.561620 0.204413i −0.0455821 0.998961i \(-0.514514\pi\)
0.607202 + 0.794548i \(0.292292\pi\)
\(200\) 0 0
\(201\) −2.23783 3.87603i −0.157844 0.273394i
\(202\) 0 0
\(203\) 1.80541 10.2390i 0.126715 0.718635i
\(204\) 0 0
\(205\) −4.74376 3.98048i −0.331318 0.278009i
\(206\) 0 0
\(207\) −8.40420 3.05888i −0.584132 0.212607i
\(208\) 0 0
\(209\) −3.22534 + 8.66258i −0.223101 + 0.599203i
\(210\) 0 0
\(211\) −1.37939 0.502055i −0.0949608 0.0345629i 0.294103 0.955774i \(-0.404979\pi\)
−0.389064 + 0.921211i \(0.627201\pi\)
\(212\) 0 0
\(213\) 2.02094 + 1.69577i 0.138473 + 0.116193i
\(214\) 0 0
\(215\) −4.47178 + 25.3607i −0.304973 + 1.72959i
\(216\) 0 0
\(217\) −1.47906 2.56180i −0.100405 0.173906i
\(218\) 0 0
\(219\) −14.4363 + 5.25438i −0.975514 + 0.355058i
\(220\) 0 0
\(221\) 1.35591 2.34851i 0.0912087 0.157978i
\(222\) 0 0
\(223\) −20.1229 + 16.8851i −1.34753 + 1.13071i −0.367906 + 0.929863i \(0.619925\pi\)
−0.979622 + 0.200848i \(0.935630\pi\)
\(224\) 0 0
\(225\) 1.74510 + 9.89695i 0.116340 + 0.659797i
\(226\) 0 0
\(227\) −18.3678 −1.21912 −0.609558 0.792742i \(-0.708653\pi\)
−0.609558 + 0.792742i \(0.708653\pi\)
\(228\) 0 0
\(229\) 3.87164 0.255845 0.127923 0.991784i \(-0.459169\pi\)
0.127923 + 0.991784i \(0.459169\pi\)
\(230\) 0 0
\(231\) 0.451714 + 2.56180i 0.0297206 + 0.168554i
\(232\) 0 0
\(233\) 12.5988 10.5716i 0.825374 0.692571i −0.128850 0.991664i \(-0.541128\pi\)
0.954224 + 0.299093i \(0.0966840\pi\)
\(234\) 0 0
\(235\) −4.20961 + 7.29125i −0.274605 + 0.475629i
\(236\) 0 0
\(237\) 4.37939 1.59397i 0.284472 0.103539i
\(238\) 0 0
\(239\) 1.65270 + 2.86257i 0.106905 + 0.185164i 0.914515 0.404553i \(-0.132573\pi\)
−0.807610 + 0.589717i \(0.799239\pi\)
\(240\) 0 0
\(241\) 0.523633 2.96967i 0.0337302 0.191293i −0.963287 0.268474i \(-0.913481\pi\)
0.997017 + 0.0771806i \(0.0245918\pi\)
\(242\) 0 0
\(243\) −0.766044 0.642788i −0.0491418 0.0412348i
\(244\) 0 0
\(245\) −20.0326 7.29125i −1.27983 0.465821i
\(246\) 0 0
\(247\) −1.85828 + 1.05471i −0.118239 + 0.0671099i
\(248\) 0 0
\(249\) −11.7280 4.26865i −0.743233 0.270515i
\(250\) 0 0
\(251\) 2.70780 + 2.27211i 0.170915 + 0.143414i 0.724233 0.689556i \(-0.242194\pi\)
−0.553318 + 0.832970i \(0.686639\pi\)
\(252\) 0 0
\(253\) 3.29339 18.6777i 0.207053 1.17426i
\(254\) 0 0
\(255\) 10.7306 + 18.5859i 0.671973 + 1.16389i
\(256\) 0 0
\(257\) 4.41875 1.60829i 0.275634 0.100323i −0.200505 0.979693i \(-0.564258\pi\)
0.476139 + 0.879370i \(0.342036\pi\)
\(258\) 0 0
\(259\) 1.03936 1.80023i 0.0645829 0.111861i
\(260\) 0 0
\(261\) −6.49273 + 5.44804i −0.401890 + 0.337225i
\(262\) 0 0
\(263\) −3.65745 20.7424i −0.225528 1.27903i −0.861673 0.507464i \(-0.830583\pi\)
0.636145 0.771570i \(-0.280528\pi\)
\(264\) 0 0
\(265\) −34.4766 −2.11788
\(266\) 0 0
\(267\) −8.45605 −0.517502
\(268\) 0 0
\(269\) 1.75015 + 9.92561i 0.106709 + 0.605175i 0.990524 + 0.137339i \(0.0438550\pi\)
−0.883815 + 0.467836i \(0.845034\pi\)
\(270\) 0 0
\(271\) 7.47952 6.27606i 0.454349 0.381244i −0.386698 0.922206i \(-0.626384\pi\)
0.841047 + 0.540963i \(0.181940\pi\)
\(272\) 0 0
\(273\) −0.300660 + 0.520758i −0.0181967 + 0.0315177i
\(274\) 0 0
\(275\) −20.0262 + 7.28893i −1.20762 + 0.439539i
\(276\) 0 0
\(277\) −8.42855 14.5987i −0.506422 0.877149i −0.999972 0.00743188i \(-0.997634\pi\)
0.493550 0.869717i \(-0.335699\pi\)
\(278\) 0 0
\(279\) −0.418748 + 2.37484i −0.0250698 + 0.142178i
\(280\) 0 0
\(281\) −8.98158 7.53644i −0.535796 0.449586i 0.334301 0.942466i \(-0.391500\pi\)
−0.870097 + 0.492880i \(0.835944\pi\)
\(282\) 0 0
\(283\) −20.2456 7.36878i −1.20347 0.438029i −0.339039 0.940772i \(-0.610102\pi\)
−0.864435 + 0.502744i \(0.832324\pi\)
\(284\) 0 0
\(285\) 0.124485 16.9094i 0.00737386 1.00163i
\(286\) 0 0
\(287\) 1.84002 + 0.669713i 0.108613 + 0.0395319i
\(288\) 0 0
\(289\) 10.4213 + 8.74449i 0.613016 + 0.514382i
\(290\) 0 0
\(291\) 2.49660 14.1589i 0.146353 0.830010i
\(292\) 0 0
\(293\) 5.56031 + 9.63073i 0.324837 + 0.562634i 0.981479 0.191568i \(-0.0613573\pi\)
−0.656643 + 0.754202i \(0.728024\pi\)
\(294\) 0 0
\(295\) 41.6279 15.1513i 2.42367 0.882145i
\(296\) 0 0
\(297\) 1.06031 1.83651i 0.0615253 0.106565i
\(298\) 0 0
\(299\) 3.35844 2.81807i 0.194224 0.162973i
\(300\) 0 0
\(301\) −1.41400 8.01919i −0.0815016 0.462219i
\(302\) 0 0
\(303\) −5.69459 −0.327146
\(304\) 0 0
\(305\) −0.162504 −0.00930494
\(306\) 0 0
\(307\) −4.34817 24.6597i −0.248163 1.40740i −0.813030 0.582222i \(-0.802183\pi\)
0.564866 0.825182i \(-0.308928\pi\)
\(308\) 0 0
\(309\) −0.239885 + 0.201288i −0.0136466 + 0.0114509i
\(310\) 0 0
\(311\) 0.0282185 0.0488759i 0.00160012 0.00277150i −0.865224 0.501385i \(-0.832824\pi\)
0.866824 + 0.498614i \(0.166157\pi\)
\(312\) 0 0
\(313\) −12.9338 + 4.70750i −0.731059 + 0.266084i −0.680613 0.732643i \(-0.738287\pi\)
−0.0504462 + 0.998727i \(0.516064\pi\)
\(314\) 0 0
\(315\) −2.37939 4.12122i −0.134063 0.232204i
\(316\) 0 0
\(317\) 1.89347 10.7384i 0.106348 0.603128i −0.884326 0.466870i \(-0.845381\pi\)
0.990673 0.136257i \(-0.0435074\pi\)
\(318\) 0 0
\(319\) −13.7686 11.5532i −0.770892 0.646855i
\(320\) 0 0
\(321\) 15.8131 + 5.75552i 0.882604 + 0.321242i
\(322\) 0 0
\(323\) −8.08037 22.7197i −0.449604 1.26416i
\(324\) 0 0
\(325\) −4.62923 1.68490i −0.256784 0.0934616i
\(326\) 0 0
\(327\) 7.97565 + 6.69237i 0.441055 + 0.370089i
\(328\) 0 0
\(329\) 0.462286 2.62175i 0.0254867 0.144542i
\(330\) 0 0
\(331\) 4.29561 + 7.44021i 0.236108 + 0.408951i 0.959594 0.281388i \(-0.0907948\pi\)
−0.723486 + 0.690339i \(0.757461\pi\)
\(332\) 0 0
\(333\) −1.59240 + 0.579585i −0.0872628 + 0.0317611i
\(334\) 0 0
\(335\) −8.68139 + 15.0366i −0.474315 + 0.821538i
\(336\) 0 0
\(337\) −1.76991 + 1.48513i −0.0964134 + 0.0809005i −0.689720 0.724076i \(-0.742267\pi\)
0.593307 + 0.804976i \(0.297822\pi\)
\(338\) 0 0
\(339\) 3.01842 + 17.1183i 0.163938 + 0.929738i
\(340\) 0 0
\(341\) −5.11381 −0.276928
\(342\) 0 0
\(343\) 15.3277 0.827618
\(344\) 0 0
\(345\) 6.02481 + 34.1684i 0.324365 + 1.83957i
\(346\) 0 0
\(347\) 2.51707 2.11208i 0.135124 0.113382i −0.572721 0.819750i \(-0.694112\pi\)
0.707845 + 0.706368i \(0.249668\pi\)
\(348\) 0 0
\(349\) −14.6741 + 25.4163i −0.785487 + 1.36050i 0.143220 + 0.989691i \(0.454254\pi\)
−0.928707 + 0.370813i \(0.879079\pi\)
\(350\) 0 0
\(351\) 0.460637 0.167658i 0.0245870 0.00894893i
\(352\) 0 0
\(353\) 3.86959 + 6.70232i 0.205957 + 0.356728i 0.950437 0.310916i \(-0.100636\pi\)
−0.744480 + 0.667645i \(0.767303\pi\)
\(354\) 0 0
\(355\) 1.77719 10.0789i 0.0943234 0.534935i
\(356\) 0 0
\(357\) −5.19846 4.36203i −0.275132 0.230863i
\(358\) 0 0
\(359\) 2.69459 + 0.980752i 0.142215 + 0.0517621i 0.412147 0.911117i \(-0.364779\pi\)
−0.269932 + 0.962879i \(0.587001\pi\)
\(360\) 0 0
\(361\) −3.57444 + 18.6607i −0.188129 + 0.982144i
\(362\) 0 0
\(363\) −6.11081 2.22415i −0.320735 0.116738i
\(364\) 0 0
\(365\) 45.6548 + 38.3089i 2.38968 + 2.00518i
\(366\) 0 0
\(367\) 3.98798 22.6169i 0.208171 1.18060i −0.684201 0.729294i \(-0.739849\pi\)
0.892372 0.451301i \(-0.149040\pi\)
\(368\) 0 0
\(369\) −0.798133 1.38241i −0.0415492 0.0719653i
\(370\) 0 0
\(371\) 10.2442 3.72859i 0.531854 0.193579i
\(372\) 0 0
\(373\) 11.5954 20.0838i 0.600387 1.03990i −0.392376 0.919805i \(-0.628347\pi\)
0.992762 0.120095i \(-0.0383199\pi\)
\(374\) 0 0
\(375\) 15.0064 12.5919i 0.774927 0.650241i
\(376\) 0 0
\(377\) −0.721467 4.09164i −0.0371574 0.210730i
\(378\) 0 0
\(379\) 33.5185 1.72173 0.860864 0.508835i \(-0.169924\pi\)
0.860864 + 0.508835i \(0.169924\pi\)
\(380\) 0 0
\(381\) −1.63041 −0.0835287
\(382\) 0 0
\(383\) −1.16860 6.62744i −0.0597125 0.338646i 0.940286 0.340385i \(-0.110558\pi\)
−0.999998 + 0.00173918i \(0.999446\pi\)
\(384\) 0 0
\(385\) 7.73055 6.48670i 0.393985 0.330593i
\(386\) 0 0
\(387\) −3.31908 + 5.74881i −0.168718 + 0.292229i
\(388\) 0 0
\(389\) 17.8751 6.50601i 0.906304 0.329868i 0.153528 0.988144i \(-0.450937\pi\)
0.752776 + 0.658277i \(0.228714\pi\)
\(390\) 0 0
\(391\) 24.7383 + 42.8480i 1.25107 + 2.16692i
\(392\) 0 0
\(393\) 1.03549 5.87257i 0.0522337 0.296232i
\(394\) 0 0
\(395\) −13.8498 11.6214i −0.696860 0.584735i
\(396\) 0 0
\(397\) 25.2913 + 9.20529i 1.26934 + 0.462000i 0.886891 0.461978i \(-0.152860\pi\)
0.382444 + 0.923979i \(0.375082\pi\)
\(398\) 0 0
\(399\) 1.79174 + 5.03785i 0.0896990 + 0.252208i
\(400\) 0 0
\(401\) 5.35756 + 1.94999i 0.267544 + 0.0973780i 0.472309 0.881433i \(-0.343421\pi\)
−0.204765 + 0.978811i \(0.565643\pi\)
\(402\) 0 0
\(403\) −0.905544 0.759842i −0.0451084 0.0378504i
\(404\) 0 0
\(405\) −0.673648 + 3.82045i −0.0334738 + 0.189840i
\(406\) 0 0
\(407\) −1.79679 3.11213i −0.0890635 0.154263i
\(408\) 0 0
\(409\) 0.758770 0.276170i 0.0375188 0.0136557i −0.323193 0.946333i \(-0.604756\pi\)
0.360711 + 0.932677i \(0.382534\pi\)
\(410\) 0 0
\(411\) −0.00980018 + 0.0169744i −0.000483407 + 0.000837286i
\(412\) 0 0
\(413\) −10.7306 + 9.00400i −0.528016 + 0.443058i
\(414\) 0 0
\(415\) 8.40760 + 47.6819i 0.412713 + 2.34061i
\(416\) 0 0
\(417\) 4.49525 0.220133
\(418\) 0 0
\(419\) 19.1215 0.934149 0.467074 0.884218i \(-0.345308\pi\)
0.467074 + 0.884218i \(0.345308\pi\)
\(420\) 0 0
\(421\) −4.86618 27.5975i −0.237163 1.34502i −0.838010 0.545655i \(-0.816281\pi\)
0.600847 0.799364i \(-0.294830\pi\)
\(422\) 0 0
\(423\) −1.66250 + 1.39501i −0.0808337 + 0.0678275i
\(424\) 0 0
\(425\) 27.7977 48.1471i 1.34839 2.33548i
\(426\) 0 0
\(427\) 0.0482857 0.0175745i 0.00233671 0.000850492i
\(428\) 0 0
\(429\) 0.519762 + 0.900255i 0.0250944 + 0.0434647i
\(430\) 0 0
\(431\) 1.56923 8.89955i 0.0755872 0.428676i −0.923406 0.383824i \(-0.874607\pi\)
0.998994 0.0448525i \(-0.0142818\pi\)
\(432\) 0 0
\(433\) 1.12061 + 0.940307i 0.0538533 + 0.0451883i 0.669317 0.742977i \(-0.266587\pi\)
−0.615464 + 0.788165i \(0.711031\pi\)
\(434\) 0 0
\(435\) 30.8974 + 11.2457i 1.48142 + 0.539192i
\(436\) 0 0
\(437\) 0.286989 38.9830i 0.0137285 1.86481i
\(438\) 0 0
\(439\) −5.08987 1.85256i −0.242926 0.0884179i 0.217688 0.976018i \(-0.430149\pi\)
−0.460614 + 0.887601i \(0.652371\pi\)
\(440\) 0 0
\(441\) −4.20961 3.53228i −0.200457 0.168204i
\(442\) 0 0
\(443\) 4.94310 28.0337i 0.234854 1.33192i −0.608068 0.793885i \(-0.708055\pi\)
0.842922 0.538036i \(-0.180834\pi\)
\(444\) 0 0
\(445\) 16.4021 + 28.4093i 0.777536 + 1.34673i
\(446\) 0 0
\(447\) 11.3045 4.11451i 0.534686 0.194610i
\(448\) 0 0
\(449\) 11.3824 19.7149i 0.537168 0.930402i −0.461887 0.886939i \(-0.652828\pi\)
0.999055 0.0434631i \(-0.0138391\pi\)
\(450\) 0 0
\(451\) 2.59311 2.17588i 0.122105 0.102458i
\(452\) 0 0
\(453\) 0.0102670 + 0.0582271i 0.000482386 + 0.00273575i
\(454\) 0 0
\(455\) 2.33275 0.109361
\(456\) 0 0
\(457\) −1.13011 −0.0528643 −0.0264322 0.999651i \(-0.508415\pi\)
−0.0264322 + 0.999651i \(0.508415\pi\)
\(458\) 0 0
\(459\) 0.960637 + 5.44804i 0.0448387 + 0.254293i
\(460\) 0 0
\(461\) −9.94562 + 8.34537i −0.463214 + 0.388683i −0.844312 0.535852i \(-0.819990\pi\)
0.381098 + 0.924535i \(0.375546\pi\)
\(462\) 0 0
\(463\) −15.3123 + 26.5216i −0.711622 + 1.23256i 0.252627 + 0.967564i \(0.418706\pi\)
−0.964248 + 0.265001i \(0.914628\pi\)
\(464\) 0 0
\(465\) 8.79086 3.19961i 0.407666 0.148378i
\(466\) 0 0
\(467\) 5.52869 + 9.57596i 0.255837 + 0.443123i 0.965123 0.261799i \(-0.0843156\pi\)
−0.709285 + 0.704921i \(0.750982\pi\)
\(468\) 0 0
\(469\) 0.953363 5.40679i 0.0440222 0.249662i
\(470\) 0 0
\(471\) −9.92649 8.32931i −0.457388 0.383794i
\(472\) 0 0
\(473\) −13.2280 4.81461i −0.608225 0.221376i
\(474\) 0 0
\(475\) −38.0967 + 21.6228i −1.74800 + 0.992122i
\(476\) 0 0
\(477\) −8.35117 3.03958i −0.382374 0.139173i
\(478\) 0 0
\(479\) 13.5116 + 11.3376i 0.617361 + 0.518028i 0.896973 0.442086i \(-0.145761\pi\)
−0.279612 + 0.960113i \(0.590206\pi\)
\(480\) 0 0
\(481\) 0.144248 0.818069i 0.00657713 0.0373007i
\(482\) 0 0
\(483\) −5.48545 9.50108i −0.249597 0.432314i
\(484\) 0 0
\(485\) −52.4115 + 19.0762i −2.37989 + 0.866207i
\(486\) 0 0
\(487\) −7.64677 + 13.2446i −0.346508 + 0.600170i −0.985627 0.168938i \(-0.945966\pi\)
0.639118 + 0.769109i \(0.279299\pi\)
\(488\) 0 0
\(489\) 11.5458 9.68804i 0.522117 0.438108i
\(490\) 0 0
\(491\) 0.308811 + 1.75135i 0.0139364 + 0.0790375i 0.990983 0.133990i \(-0.0427789\pi\)
−0.977046 + 0.213027i \(0.931668\pi\)
\(492\) 0 0
\(493\) 46.8881 2.11173
\(494\) 0 0
\(495\) −8.22668 −0.369762
\(496\) 0 0
\(497\) 0.561956 + 3.18701i 0.0252072 + 0.142957i
\(498\) 0 0
\(499\) 0.0825961 0.0693063i 0.00369751 0.00310258i −0.640937 0.767594i \(-0.721454\pi\)
0.644634 + 0.764491i \(0.277010\pi\)
\(500\) 0 0
\(501\) 0.970437 1.68085i 0.0433559 0.0750947i
\(502\) 0 0
\(503\) −22.2615 + 8.10251i −0.992589 + 0.361273i −0.786722 0.617307i \(-0.788224\pi\)
−0.205867 + 0.978580i \(0.566001\pi\)
\(504\) 0 0
\(505\) 11.0458 + 19.1318i 0.491530 + 0.851355i
\(506\) 0 0
\(507\) 2.21570 12.5659i 0.0984027 0.558069i
\(508\) 0 0
\(509\) −2.73783 2.29731i −0.121352 0.101826i 0.580092 0.814551i \(-0.303017\pi\)
−0.701444 + 0.712724i \(0.747461\pi\)
\(510\) 0 0
\(511\) −17.7087 6.44545i −0.783388 0.285130i
\(512\) 0 0
\(513\) 1.52094 4.08494i 0.0671513 0.180354i
\(514\) 0 0
\(515\) 1.14156 + 0.415494i 0.0503031 + 0.0183088i
\(516\) 0 0
\(517\) −3.52553 2.95827i −0.155053 0.130105i
\(518\) 0 0
\(519\) −2.79086 + 15.8278i −0.122505 + 0.694761i
\(520\) 0 0
\(521\) −17.0608 29.5501i −0.747446 1.29461i −0.949043 0.315146i \(-0.897946\pi\)
0.201597 0.979469i \(-0.435387\pi\)
\(522\) 0 0
\(523\) 16.0376 5.83721i 0.701276 0.255243i 0.0333202 0.999445i \(-0.489392\pi\)
0.667955 + 0.744201i \(0.267170\pi\)
\(524\) 0 0
\(525\) −6.16385 + 10.6761i −0.269012 + 0.465943i
\(526\) 0 0
\(527\) 10.2194 8.57510i 0.445164 0.373537i
\(528\) 0 0
\(529\) 9.89574 + 56.1216i 0.430250 + 2.44007i
\(530\) 0 0
\(531\) 11.4192 0.495552
\(532\) 0 0
\(533\) 0.782490 0.0338934
\(534\) 0 0
\(535\) −11.3362 64.2905i −0.490105 2.77952i
\(536\) 0 0
\(537\) 11.3177 9.49671i 0.488396 0.409813i
\(538\) 0 0
\(539\) 5.82666 10.0921i 0.250972 0.434696i
\(540\) 0 0
\(541\) −24.7841 + 9.02066i −1.06555 + 0.387828i −0.814511 0.580149i \(-0.802994\pi\)
−0.251039 + 0.967977i \(0.580772\pi\)
\(542\) 0 0
\(543\) −9.11334 15.7848i −0.391091 0.677389i
\(544\) 0 0
\(545\) 7.01367 39.7765i 0.300433 1.70384i
\(546\) 0 0
\(547\) 26.7317 + 22.4306i 1.14297 + 0.959063i 0.999532 0.0305971i \(-0.00974088\pi\)
0.143435 + 0.989660i \(0.454185\pi\)
\(548\) 0 0
\(549\) −0.0393628 0.0143269i −0.00167997 0.000611457i
\(550\) 0 0
\(551\) −31.8580 18.7073i −1.35720 0.796957i
\(552\) 0 0
\(553\) 5.37211 + 1.95529i 0.228445 + 0.0831473i
\(554\) 0 0
\(555\) 5.03596 + 4.22567i 0.213765 + 0.179370i
\(556\) 0 0
\(557\) −5.65957 + 32.0970i −0.239804 + 1.35999i 0.592454 + 0.805604i \(0.298159\pi\)
−0.832258 + 0.554389i \(0.812952\pi\)
\(558\) 0 0
\(559\) −1.62701 2.81807i −0.0688152 0.119192i
\(560\) 0 0
\(561\) −11.0239 + 4.01239i −0.465431 + 0.169403i
\(562\) 0 0
\(563\) −2.39780 + 4.15312i −0.101055 + 0.175033i −0.912120 0.409924i \(-0.865555\pi\)
0.811064 + 0.584957i \(0.198889\pi\)
\(564\) 0 0
\(565\) 51.6566 43.3451i 2.17321 1.82354i
\(566\) 0 0
\(567\) −0.213011 1.20805i −0.00894562 0.0507331i
\(568\) 0 0
\(569\) −32.7006 −1.37088 −0.685440 0.728129i \(-0.740390\pi\)
−0.685440 + 0.728129i \(0.740390\pi\)
\(570\) 0 0
\(571\) 10.9531 0.458371 0.229186 0.973383i \(-0.426394\pi\)
0.229186 + 0.973383i \(0.426394\pi\)
\(572\) 0 0
\(573\) 0.224155 + 1.27125i 0.00936423 + 0.0531072i
\(574\) 0 0
\(575\) 68.8517 57.7734i 2.87131 2.40932i
\(576\) 0 0
\(577\) 9.15136 15.8506i 0.380976 0.659870i −0.610226 0.792227i \(-0.708921\pi\)
0.991202 + 0.132357i \(0.0422547\pi\)
\(578\) 0 0
\(579\) −8.57057 + 3.11943i −0.356181 + 0.129639i
\(580\) 0 0
\(581\) −7.65493 13.2587i −0.317580 0.550064i
\(582\) 0 0
\(583\) 3.27260 18.5599i 0.135537 0.768671i
\(584\) 0 0
\(585\) −1.45677 1.22237i −0.0602299 0.0505389i
\(586\) 0 0
\(587\) −5.34137 1.94410i −0.220462 0.0802415i 0.229428 0.973326i \(-0.426314\pi\)
−0.449890 + 0.893084i \(0.648537\pi\)
\(588\) 0 0
\(589\) −10.3648 + 1.74903i −0.427076 + 0.0720673i
\(590\) 0 0
\(591\) 17.5005 + 6.36965i 0.719873 + 0.262012i
\(592\) 0 0
\(593\) −8.05097 6.75557i −0.330614 0.277418i 0.462336 0.886705i \(-0.347011\pi\)
−0.792950 + 0.609287i \(0.791456\pi\)
\(594\) 0 0
\(595\) −4.57145 + 25.9260i −0.187411 + 1.06286i
\(596\) 0 0
\(597\) −4.21554 7.30152i −0.172530 0.298832i
\(598\) 0 0
\(599\) −42.0146 + 15.2921i −1.71667 + 0.624817i −0.997543 0.0700613i \(-0.977681\pi\)
−0.719128 + 0.694878i \(0.755458\pi\)
\(600\) 0 0
\(601\) −16.4363 + 28.4685i −0.670450 + 1.16125i 0.307326 + 0.951604i \(0.400566\pi\)
−0.977777 + 0.209650i \(0.932768\pi\)
\(602\) 0 0
\(603\) −3.42855 + 2.87689i −0.139621 + 0.117156i
\(604\) 0 0
\(605\) 4.38073 + 24.8444i 0.178102 + 1.01007i
\(606\) 0 0
\(607\) −29.9486 −1.21558 −0.607788 0.794099i \(-0.707943\pi\)
−0.607788 + 0.794099i \(0.707943\pi\)
\(608\) 0 0
\(609\) −10.3969 −0.421305
\(610\) 0 0
\(611\) −0.184736 1.04769i −0.00747363 0.0423850i
\(612\) 0 0
\(613\) 4.47384 3.75400i 0.180697 0.151623i −0.547953 0.836509i \(-0.684593\pi\)
0.728650 + 0.684887i \(0.240148\pi\)
\(614\) 0 0
\(615\) −3.09627 + 5.36289i −0.124854 + 0.216253i
\(616\) 0 0
\(617\) 11.8135 4.29975i 0.475592 0.173101i −0.0930920 0.995658i \(-0.529675\pi\)
0.568684 + 0.822556i \(0.307453\pi\)
\(618\) 0 0
\(619\) 4.14290 + 7.17572i 0.166517 + 0.288417i 0.937193 0.348811i \(-0.113414\pi\)
−0.770676 + 0.637228i \(0.780081\pi\)
\(620\) 0 0
\(621\) −1.55303 + 8.80769i −0.0623211 + 0.353440i
\(622\) 0 0
\(623\) −7.94609 6.66756i −0.318353 0.267130i
\(624\) 0 0
\(625\) −24.1942 8.80596i −0.967767 0.352238i
\(626\) 0 0
\(627\) 9.09105 + 1.67210i 0.363062 + 0.0667771i
\(628\) 0 0
\(629\) 8.80928 + 3.20631i 0.351249 + 0.127844i
\(630\) 0 0
\(631\) −5.23055 4.38895i −0.208225 0.174722i 0.532711 0.846297i \(-0.321173\pi\)
−0.740936 + 0.671576i \(0.765618\pi\)
\(632\) 0 0
\(633\) −0.254900 + 1.44561i −0.0101314 + 0.0574578i
\(634\) 0 0
\(635\) 3.16250 + 5.47762i 0.125500 + 0.217373i
\(636\) 0 0
\(637\) 2.53132 0.921324i 0.100294 0.0365042i
\(638\) 0 0
\(639\) 1.31908 2.28471i 0.0521819 0.0903817i
\(640\) 0 0
\(641\) 29.6544 24.8830i 1.17128 0.982818i 0.171279 0.985222i \(-0.445210\pi\)
0.999997 + 0.00240481i \(0.000765477\pi\)
\(642\) 0 0
\(643\) 2.18820 + 12.4099i 0.0862940 + 0.489398i 0.997070 + 0.0764965i \(0.0243734\pi\)
−0.910776 + 0.412901i \(0.864515\pi\)
\(644\) 0 0
\(645\) 25.7520 1.01398
\(646\) 0 0
\(647\) −8.41241 −0.330726 −0.165363 0.986233i \(-0.552880\pi\)
−0.165363 + 0.986233i \(0.552880\pi\)
\(648\) 0 0
\(649\) 4.20502 + 23.8479i 0.165062 + 0.936111i
\(650\) 0 0
\(651\) −2.26604 + 1.90144i −0.0888133 + 0.0745232i
\(652\) 0 0
\(653\) −13.1900 + 22.8458i −0.516165 + 0.894024i 0.483659 + 0.875257i \(0.339307\pi\)
−0.999824 + 0.0187673i \(0.994026\pi\)
\(654\) 0 0
\(655\) −21.7383 + 7.91209i −0.849385 + 0.309151i
\(656\) 0 0
\(657\) 7.68139 + 13.3046i 0.299680 + 0.519060i
\(658\) 0 0
\(659\) −5.55794 + 31.5207i −0.216507 + 1.22787i 0.661766 + 0.749711i \(0.269807\pi\)
−0.878273 + 0.478160i \(0.841304\pi\)
\(660\) 0 0
\(661\) −31.0462 26.0509i −1.20756 1.01326i −0.999381 0.0351705i \(-0.988803\pi\)
−0.208177 0.978091i \(-0.566753\pi\)
\(662\) 0 0
\(663\) −2.54829 0.927500i −0.0989672 0.0360211i
\(664\) 0 0
\(665\) 13.4500 15.7915i 0.521567 0.612367i
\(666\) 0 0
\(667\) 71.2311 + 25.9260i 2.75808 + 1.00386i
\(668\) 0 0
\(669\) 20.1229 + 16.8851i 0.777996 + 0.652816i
\(670\) 0 0
\(671\) 0.0154253 0.0874810i 0.000595486 0.00337717i
\(672\) 0 0
\(673\) 2.28059 + 3.95010i 0.0879104 + 0.152265i 0.906628 0.421932i \(-0.138648\pi\)
−0.818717 + 0.574197i \(0.805314\pi\)
\(674\) 0 0
\(675\) 9.44356 3.43718i 0.363483 0.132297i
\(676\) 0 0
\(677\) −16.7208 + 28.9612i −0.642631 + 1.11307i 0.342213 + 0.939623i \(0.388824\pi\)
−0.984843 + 0.173446i \(0.944510\pi\)
\(678\) 0 0
\(679\) 13.5103 11.3365i 0.518476 0.435053i
\(680\) 0 0
\(681\) 3.18954 + 18.0888i 0.122223 + 0.693164i
\(682\) 0 0
\(683\) 26.4825 1.01332 0.506662 0.862145i \(-0.330879\pi\)
0.506662 + 0.862145i \(0.330879\pi\)
\(684\) 0 0
\(685\) 0.0760373 0.00290524
\(686\) 0 0
\(687\) −0.672304 3.81283i −0.0256500 0.145468i
\(688\) 0 0
\(689\) 3.33725 2.80028i 0.127139 0.106682i
\(690\) 0 0
\(691\) 16.7003 28.9257i 0.635308 1.10039i −0.351141 0.936322i \(-0.614206\pi\)
0.986450 0.164064i \(-0.0524603\pi\)
\(692\) 0 0
\(693\) 2.44444 0.889704i 0.0928566 0.0337970i
\(694\) 0 0
\(695\) −8.71941 15.1025i −0.330746 0.572869i
\(696\) 0 0
\(697\) −1.53343 + 8.69653i −0.0580829 + 0.329405i
\(698\) 0 0
\(699\) −12.5988 10.5716i −0.476530 0.399856i
\(700\) 0 0
\(701\) −17.7408 6.45713i −0.670061 0.243882i −0.0154871 0.999880i \(-0.504930\pi\)
−0.654574 + 0.755998i \(0.727152\pi\)
\(702\) 0 0
\(703\) −4.70620 5.69323i −0.177498 0.214724i
\(704\) 0 0
\(705\) 7.91147 + 2.87954i 0.297963 + 0.108450i
\(706\) 0 0
\(707\) −5.35117 4.49016i −0.201251 0.168870i
\(708\) 0 0
\(709\) −0.0369988 + 0.209830i −0.00138952 + 0.00788034i −0.985495 0.169707i \(-0.945718\pi\)
0.984105 + 0.177587i \(0.0568291\pi\)
\(710\) 0 0
\(711\) −2.33022 4.03606i −0.0873902 0.151364i
\(712\) 0 0
\(713\) 20.2665 7.37641i 0.758987 0.276249i
\(714\) 0 0
\(715\) 2.01636 3.49244i 0.0754075 0.130610i
\(716\) 0 0
\(717\) 2.53209 2.12467i 0.0945626 0.0793474i
\(718\) 0 0
\(719\) 2.25150 + 12.7689i 0.0839667 + 0.476199i 0.997575 + 0.0696027i \(0.0221732\pi\)
−0.913608 + 0.406596i \(0.866716\pi\)
\(720\) 0 0
\(721\) −0.384133 −0.0143059
\(722\) 0 0
\(723\) −3.01548 −0.112147
\(724\) 0 0
\(725\) −14.7909 83.8831i −0.549319 3.11534i
\(726\) 0 0
\(727\) −19.7062 + 16.5355i −0.730863 + 0.613267i −0.930367 0.366630i \(-0.880511\pi\)
0.199504 + 0.979897i \(0.436067\pi\)
\(728\) 0 0
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 0 0
\(731\) 34.5082 12.5600i 1.27633 0.464547i
\(732\) 0 0
\(733\) −4.25995 7.37845i −0.157345 0.272529i 0.776565 0.630037i \(-0.216960\pi\)
−0.933910 + 0.357507i \(0.883627\pi\)
\(734\) 0 0
\(735\) −3.70187 + 20.9943i −0.136545 + 0.774387i
\(736\) 0 0
\(737\) −7.27063 6.10078i −0.267817 0.224725i
\(738\) 0 0
\(739\) −12.5030 4.55072i −0.459930 0.167401i 0.101655 0.994820i \(-0.467586\pi\)
−0.561585 + 0.827419i \(0.689808\pi\)
\(740\) 0 0
\(741\) 1.36138 + 1.64690i 0.0500115 + 0.0605003i
\(742\) 0 0
\(743\) −25.3307 9.21962i −0.929293 0.338235i −0.167364 0.985895i \(-0.553525\pi\)
−0.761929 + 0.647660i \(0.775748\pi\)
\(744\) 0 0
\(745\) −35.7506 29.9983i −1.30980 1.09905i
\(746\) 0 0
\(747\) −2.16725 + 12.2911i −0.0792956 + 0.449708i
\(748\) 0 0
\(749\) 10.3213 + 17.8770i 0.377132 + 0.653212i
\(750\) 0 0
\(751\) 17.3277 6.30677i 0.632297 0.230137i −0.00593399 0.999982i \(-0.501889\pi\)
0.638231 + 0.769845i \(0.279667\pi\)
\(752\) 0 0
\(753\) 1.76739 3.06121i 0.0644072 0.111557i
\(754\) 0 0
\(755\) 0.175708 0.147436i 0.00639465 0.00536575i
\(756\) 0 0
\(757\) 5.19490 + 29.4617i 0.188812 + 1.07080i 0.920959 + 0.389659i \(0.127407\pi\)
−0.732148 + 0.681146i \(0.761482\pi\)
\(758\) 0 0
\(759\) −18.9659 −0.688417
\(760\) 0 0
\(761\) −28.6691 −1.03925 −0.519627 0.854393i \(-0.673929\pi\)
−0.519627 + 0.854393i \(0.673929\pi\)
\(762\) 0 0
\(763\) 2.21776 + 12.5775i 0.0802883 + 0.455337i
\(764\) 0 0
\(765\) 16.4402 13.7949i 0.594395 0.498757i
\(766\) 0 0
\(767\) −2.79885 + 4.84775i −0.101061 + 0.175042i
\(768\) 0 0
\(769\) 9.17277 3.33862i 0.330779 0.120394i −0.171292 0.985220i \(-0.554794\pi\)
0.502070 + 0.864827i \(0.332572\pi\)
\(770\) 0 0
\(771\) −2.35117 4.07234i −0.0846752 0.146662i
\(772\) 0 0
\(773\) −0.676641 + 3.83742i −0.0243371 + 0.138023i −0.994555 0.104210i \(-0.966769\pi\)
0.970218 + 0.242233i \(0.0778797\pi\)
\(774\) 0 0
\(775\) −18.5646 15.5776i −0.666862 0.559563i
\(776\) 0 0
\(777\) −1.95336 0.710966i −0.0700765 0.0255058i
\(778\) 0 0
\(779\) 4.51161 5.29704i 0.161645 0.189786i
\(780\) 0 0
\(781\) 5.25712 + 1.91344i 0.188115 + 0.0684681i
\(782\) 0 0
\(783\) 6.49273 + 5.44804i 0.232031 + 0.194697i
\(784\) 0 0
\(785\) −8.72921 + 49.5058i −0.311559 + 1.76694i
\(786\) 0 0
\(787\) −1.47044 2.54687i −0.0524154 0.0907862i 0.838627 0.544706i \(-0.183359\pi\)
−0.891043 + 0.453920i \(0.850025\pi\)
\(788\) 0 0
\(789\) −19.7922 + 7.20377i −0.704621 + 0.256461i
\(790\) 0 0
\(791\) −10.6613 + 18.4660i −0.379073 + 0.656574i
\(792\) 0 0
\(793\) 0.0157300 0.0131990i 0.000558587 0.000468711i
\(794\) 0 0
\(795\) 5.98680 + 33.9528i 0.212330 + 1.20418i
\(796\) 0 0
\(797\) 8.26950 0.292921 0.146460 0.989217i \(-0.453212\pi\)
0.146460 + 0.989217i \(0.453212\pi\)
\(798\) 0 0
\(799\) 12.0060 0.424741
\(800\) 0 0
\(801\) 1.46838 + 8.32759i 0.0518826 + 0.294241i
\(802\) 0 0
\(803\) −24.9566 + 20.9411i −0.880699 + 0.738995i
\(804\) 0 0
\(805\) −21.2802 + 36.8584i −0.750028 + 1.29909i
\(806\) 0 0
\(807\) 9.47090 3.44713i 0.333392 0.121345i
\(808\) 0 0
\(809\) 1.04529 + 1.81050i 0.0367505 + 0.0636538i 0.883816 0.467835i \(-0.154966\pi\)
−0.847065 + 0.531489i \(0.821633\pi\)
\(810\) 0 0
\(811\) −0.150177 + 0.851698i −0.00527344 + 0.0299072i −0.987331 0.158675i \(-0.949278\pi\)
0.982057 + 0.188582i \(0.0603890\pi\)
\(812\) 0 0
\(813\) −7.47952 6.27606i −0.262318 0.220111i
\(814\) 0 0
\(815\) −54.9436 19.9978i −1.92459 0.700494i
\(816\) 0 0
\(817\) −28.4577 5.23416i −0.995609 0.183120i
\(818\) 0 0
\(819\) 0.565055 + 0.205663i 0.0197446 + 0.00718646i
\(820\) 0 0
\(821\) 17.4394 + 14.6334i 0.608641 + 0.510710i 0.894210 0.447648i \(-0.147738\pi\)
−0.285569 + 0.958358i \(0.592183\pi\)
\(822\) 0 0
\(823\) 5.75056 32.6131i 0.200452 1.13682i −0.703986 0.710214i \(-0.748598\pi\)
0.904438 0.426606i \(-0.140291\pi\)
\(824\) 0 0
\(825\) 10.6557 + 18.4562i 0.370984 + 0.642563i
\(826\) 0 0
\(827\) −24.9158 + 9.06861i −0.866408 + 0.315347i −0.736712 0.676207i \(-0.763622\pi\)
−0.129696 + 0.991554i \(0.541400\pi\)
\(828\) 0 0
\(829\) 1.57873 2.73443i 0.0548314 0.0949708i −0.837307 0.546733i \(-0.815871\pi\)
0.892138 + 0.451762i \(0.149205\pi\)
\(830\) 0 0
\(831\) −12.9133 + 10.8355i −0.447957 + 0.375880i
\(832\) 0 0
\(833\) 5.27894 + 29.9384i 0.182905 + 1.03730i
\(834\) 0 0
\(835\) −7.52940 −0.260566
\(836\) 0 0
\(837\) 2.41147 0.0833527
\(838\) 0 0
\(839\) 7.31386 + 41.4790i 0.252503 + 1.43201i 0.802403 + 0.596783i \(0.203555\pi\)
−0.549900 + 0.835230i \(0.685334\pi\)
\(840\) 0 0
\(841\) 32.8148 27.5349i 1.13154 0.949479i
\(842\) 0 0
\(843\) −5.86231 + 10.1538i −0.201909 + 0.349716i
\(844\) 0 0
\(845\) −46.5146 + 16.9299i −1.60015 + 0.582407i
\(846\) 0 0
\(847\) −3.98855 6.90837i −0.137048 0.237375i
\(848\) 0 0
\(849\) −3.74123 + 21.2176i −0.128399 + 0.728185i
\(850\) 0 0
\(851\) 11.6099 + 9.74189i 0.397984 + 0.333948i
\(852\) 0 0
\(853\) −53.1147 19.3322i −1.81861 0.661921i −0.995579 0.0939314i \(-0.970057\pi\)
−0.823035 0.567990i \(-0.807721\pi\)
\(854\) 0 0
\(855\) −16.6741 + 2.81369i −0.570243 + 0.0962262i
\(856\) 0 0
\(857\) −12.3960 4.51179i −0.423441 0.154120i 0.121505 0.992591i \(-0.461228\pi\)
−0.544946 + 0.838471i \(0.683450\pi\)
\(858\) 0 0
\(859\) 16.6623 + 13.9813i 0.568509 + 0.477036i 0.881151 0.472836i \(-0.156770\pi\)
−0.312642 + 0.949871i \(0.601214\pi\)
\(860\) 0 0
\(861\) 0.340022 1.92836i 0.0115879 0.0657184i
\(862\) 0 0
\(863\) −23.4550 40.6253i −0.798418 1.38290i −0.920646 0.390398i \(-0.872337\pi\)
0.122228 0.992502i \(-0.460996\pi\)
\(864\) 0 0
\(865\) 58.5890 21.3247i 1.99209 0.725061i
\(866\) 0 0
\(867\) 6.80200 11.7814i 0.231008 0.400118i
\(868\) 0 0
\(869\) 7.57082 6.35267i 0.256823 0.215500i
\(870\) 0 0
\(871\) −0.380978 2.16063i −0.0129089 0.0732102i
\(872\) 0 0
\(873\) −14.3773 −0.486599
\(874\) 0 0
\(875\) 24.0300 0.812363
\(876\) 0 0
\(877\) −0.464451 2.63403i −0.0156834 0.0889450i 0.975961 0.217944i \(-0.0699349\pi\)
−0.991645 + 0.128999i \(0.958824\pi\)
\(878\) 0 0
\(879\) 8.51889 7.14819i 0.287335 0.241103i
\(880\) 0 0
\(881\) 13.5548 23.4777i 0.456674 0.790983i −0.542108 0.840309i \(-0.682374\pi\)
0.998783 + 0.0493254i \(0.0157071\pi\)
\(882\) 0 0
\(883\) −40.8055 + 14.8520i −1.37321 + 0.499809i −0.920114 0.391651i \(-0.871904\pi\)
−0.453099 + 0.891460i \(0.649682\pi\)
\(884\) 0 0
\(885\) −22.1498 38.3645i −0.744556 1.28961i
\(886\) 0 0
\(887\) 3.72251 21.1114i 0.124990 0.708851i −0.856325 0.516438i \(-0.827258\pi\)
0.981314 0.192413i \(-0.0616313\pi\)
\(888\) 0 0
\(889\) −1.53209 1.28558i −0.0513846 0.0431168i
\(890\) 0 0
\(891\) −1.99273 0.725293i −0.0667588 0.0242982i
\(892\) 0 0
\(893\) −8.15745 4.79012i −0.272979 0.160295i
\(894\) 0 0
\(895\) −53.8585 19.6029i −1.80029 0.655252i
\(896\) 0 0
\(897\) −3.35844 2.81807i −0.112135 0.0940925i
\(898\) 0 0
\(899\) 3.54916 20.1283i 0.118371 0.671317i
\(900\) 0 0
\(901\) 24.5822 + 42.5776i 0.818951 + 1.41847i
\(902\) 0 0
\(903\) −7.65183 + 2.78504i −0.254637 + 0.0926802i
\(904\) 0 0
\(905\) −35.3542 + 61.2352i −1.17521 + 2.03553i
\(906\) 0 0
\(907\) 12.5471 10.5283i 0.416620 0.349585i −0.410256 0.911971i \(-0.634561\pi\)
0.826875 + 0.562385i \(0.190116\pi\)
\(908\) 0 0
\(909\) 0.988856 + 5.60808i 0.0327983 + 0.186008i
\(910\) 0 0
\(911\) −28.4502 −0.942596 −0.471298 0.881974i \(-0.656214\pi\)
−0.471298 + 0.881974i \(0.656214\pi\)
\(912\) 0 0
\(913\) −26.4668 −0.875922
\(914\) 0 0
\(915\) 0.0282185 + 0.160035i 0.000932875 + 0.00529059i
\(916\) 0 0
\(917\) 5.60354 4.70193i 0.185045 0.155271i
\(918\) 0 0
\(919\) −25.6268 + 44.3869i −0.845349 + 1.46419i 0.0399689 + 0.999201i \(0.487274\pi\)
−0.885318 + 0.464986i \(0.846059\pi\)
\(920\) 0 0
\(921\) −23.5300 + 8.56423i −0.775341 + 0.282201i
\(922\) 0 0
\(923\) 0.646612 + 1.11996i 0.0212835 + 0.0368641i
\(924\) 0 0
\(925\) 2.95723 16.7713i 0.0972332 0.551437i
\(926\) 0 0
\(927\) 0.239885 + 0.201288i 0.00787887 + 0.00661116i
\(928\) 0 0
\(929\) −48.4445 17.6324i −1.58941 0.578499i −0.612189 0.790712i \(-0.709711\pi\)
−0.977223 + 0.212213i \(0.931933\pi\)
\(930\) 0 0
\(931\) 8.35797 22.4478i 0.273922 0.735696i
\(932\) 0 0
\(933\) −0.0530334 0.0193026i −0.00173624 0.000631938i
\(934\) 0 0
\(935\) 34.8632 + 29.2537i 1.14015 + 0.956699i
\(936\) 0 0
\(937\) −2.51161 + 14.2441i −0.0820508 + 0.465333i 0.915903 + 0.401399i \(0.131476\pi\)
−0.997954 + 0.0639341i \(0.979635\pi\)
\(938\) 0 0
\(939\) 6.88191 + 11.9198i 0.224583 + 0.388989i
\(940\) 0 0
\(941\) 12.3855 4.50795i 0.403755 0.146955i −0.132157 0.991229i \(-0.542190\pi\)
0.535912 + 0.844274i \(0.319968\pi\)
\(942\) 0 0
\(943\) −7.13816 + 12.3636i −0.232450 + 0.402616i
\(944\) 0 0
\(945\) −3.64543 + 3.05888i −0.118586 + 0.0995053i
\(946\) 0 0
\(947\) 7.43676 + 42.1759i 0.241662 + 1.37053i 0.828119 + 0.560553i \(0.189411\pi\)
−0.586456 + 0.809981i \(0.699477\pi\)
\(948\) 0 0
\(949\) −7.53083 −0.244461
\(950\) 0 0
\(951\) −10.9040 −0.353588
\(952\) 0 0
\(953\) −5.59451 31.7281i −0.181224 1.02777i −0.930712 0.365754i \(-0.880811\pi\)
0.749488 0.662018i \(-0.230300\pi\)
\(954\) 0 0
\(955\) 3.83615 3.21891i 0.124135 0.104162i
\(956\) 0 0
\(957\) −8.98680 + 15.5656i −0.290502 + 0.503164i
\(958\) 0 0
\(959\) −0.0225934 + 0.00822333i −0.000729579 + 0.000265545i
\(960\) 0 0
\(961\) 12.5924 + 21.8107i 0.406206 + 0.703570i
\(962\) 0 0
\(963\) 2.92215 16.5723i 0.0941650 0.534036i
\(964\) 0 0
\(965\) 27.1045 + 22.7434i 0.872524 + 0.732134i
\(966\) 0 0
\(967\) 32.4650 + 11.8163i 1.04400 + 0.379986i 0.806396 0.591375i \(-0.201415\pi\)
0.237607 + 0.971361i \(0.423637\pi\)
\(968\) 0 0
\(969\) −20.9714 + 11.9028i −0.673697 + 0.382375i
\(970\) 0 0
\(971\) −1.11556 0.406031i −0.0358001 0.0130302i 0.324058 0.946037i \(-0.394953\pi\)
−0.359858 + 0.933007i \(0.617175\pi\)
\(972\) 0 0
\(973\) 4.22416 + 3.54449i 0.135420 + 0.113631i
\(974\) 0 0
\(975\) −0.855448 + 4.85148i −0.0273963 + 0.155372i
\(976\) 0 0
\(977\) −10.4413 18.0849i −0.334048 0.578588i 0.649253 0.760572i \(-0.275081\pi\)
−0.983302 + 0.181984i \(0.941748\pi\)
\(978\) 0 0
\(979\) −16.8506 + 6.13311i −0.538547 + 0.196015i
\(980\) 0 0
\(981\) 5.20574 9.01660i 0.166206 0.287878i
\(982\) 0 0
\(983\) 26.8855 22.5596i 0.857515 0.719541i −0.103916 0.994586i \(-0.533137\pi\)
0.961431 + 0.275045i \(0.0886928\pi\)
\(984\) 0 0
\(985\) −12.5458 71.1505i −0.399741 2.26704i
\(986\) 0 0
\(987\) −2.66220 −0.0847387
\(988\) 0 0
\(989\) 59.3688 1.88782
\(990\) 0 0
\(991\) 8.63651 + 48.9801i 0.274348 + 1.55590i 0.741026 + 0.671476i \(0.234339\pi\)
−0.466679 + 0.884427i \(0.654550\pi\)
\(992\) 0 0
\(993\) 6.58125 5.52233i 0.208850 0.175246i
\(994\) 0 0
\(995\) −16.3537 + 28.3254i −0.518447 + 0.897976i
\(996\) 0 0
\(997\) −39.3105 + 14.3079i −1.24498 + 0.453134i −0.878701 0.477372i \(-0.841589\pi\)
−0.366275 + 0.930507i \(0.619367\pi\)
\(998\) 0 0
\(999\) 0.847296 + 1.46756i 0.0268073 + 0.0464316i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bo.c.289.1 6
4.3 odd 2 114.2.i.b.61.1 yes 6
12.11 even 2 342.2.u.d.289.1 6
19.5 even 9 inner 912.2.bo.c.385.1 6
76.43 odd 18 114.2.i.b.43.1 6
76.47 odd 18 2166.2.a.t.1.1 3
76.67 even 18 2166.2.a.n.1.1 3
228.47 even 18 6498.2.a.bo.1.3 3
228.119 even 18 342.2.u.d.271.1 6
228.143 odd 18 6498.2.a.bt.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
114.2.i.b.43.1 6 76.43 odd 18
114.2.i.b.61.1 yes 6 4.3 odd 2
342.2.u.d.271.1 6 228.119 even 18
342.2.u.d.289.1 6 12.11 even 2
912.2.bo.c.289.1 6 1.1 even 1 trivial
912.2.bo.c.385.1 6 19.5 even 9 inner
2166.2.a.n.1.1 3 76.67 even 18
2166.2.a.t.1.1 3 76.47 odd 18
6498.2.a.bo.1.3 3 228.47 even 18
6498.2.a.bt.1.3 3 228.143 odd 18