Properties

Label 912.2.bo.b.481.1
Level $912$
Weight $2$
Character 912.481
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,2,Mod(289,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 481.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 912.481
Dual form 912.2.bo.b.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.939693 - 0.342020i) q^{3} +(-0.233956 - 1.32683i) q^{5} +(-0.326352 + 0.565258i) q^{7} +(0.766044 + 0.642788i) q^{9} +(1.97178 + 3.41523i) q^{11} +(-1.59240 + 0.579585i) q^{13} +(-0.233956 + 1.32683i) q^{15} +(-2.93969 + 2.46669i) q^{17} +(-2.82635 + 3.31839i) q^{19} +(0.500000 - 0.419550i) q^{21} +(0.631759 - 3.58288i) q^{23} +(2.99273 - 1.08926i) q^{25} +(-0.500000 - 0.866025i) q^{27} +(8.05690 + 6.76055i) q^{29} +(3.23396 - 5.60138i) q^{31} +(-0.684793 - 3.88365i) q^{33} +(0.826352 + 0.300767i) q^{35} -2.94356 q^{37} +1.69459 q^{39} +(1.41875 + 0.516382i) q^{41} +(1.62701 + 9.22724i) q^{43} +(0.673648 - 1.16679i) q^{45} +(9.77972 + 8.20616i) q^{47} +(3.28699 + 5.69323i) q^{49} +(3.60607 - 1.31250i) q^{51} +(-1.87551 + 10.6366i) q^{53} +(4.07011 - 3.41523i) q^{55} +(3.79086 - 2.15160i) q^{57} +(2.12449 - 1.78265i) q^{59} +(0.748970 - 4.24762i) q^{61} +(-0.613341 + 0.223238i) q^{63} +(1.14156 + 1.97724i) q^{65} +(-6.04189 - 5.06975i) q^{67} +(-1.81908 + 3.15074i) q^{69} +(0.932419 + 5.28801i) q^{71} +(-5.51114 - 2.00589i) q^{73} -3.18479 q^{75} -2.57398 q^{77} +(-2.93969 - 1.06996i) q^{79} +(0.173648 + 0.984808i) q^{81} +(-2.25490 + 3.90560i) q^{83} +(3.96064 + 3.32337i) q^{85} +(-5.25877 - 9.10846i) q^{87} +(10.4620 - 3.80785i) q^{89} +(0.192066 - 1.08926i) q^{91} +(-4.95471 + 4.15749i) q^{93} +(5.06418 + 2.97373i) q^{95} +(5.13429 - 4.30818i) q^{97} +(-0.684793 + 3.88365i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 3 q^{7} - 3 q^{11} - 6 q^{13} - 6 q^{15} - 12 q^{17} - 18 q^{19} + 3 q^{21} + 9 q^{23} - 3 q^{27} + 12 q^{29} + 24 q^{31} + 3 q^{33} + 6 q^{35} + 12 q^{37} + 6 q^{39} + 6 q^{41} - 18 q^{43}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.939693 0.342020i −0.542532 0.197465i
\(4\) 0 0
\(5\) −0.233956 1.32683i −0.104628 0.593375i −0.991368 0.131107i \(-0.958147\pi\)
0.886740 0.462268i \(-0.152964\pi\)
\(6\) 0 0
\(7\) −0.326352 + 0.565258i −0.123349 + 0.213647i −0.921087 0.389358i \(-0.872697\pi\)
0.797737 + 0.603005i \(0.206030\pi\)
\(8\) 0 0
\(9\) 0.766044 + 0.642788i 0.255348 + 0.214263i
\(10\) 0 0
\(11\) 1.97178 + 3.41523i 0.594514 + 1.02973i 0.993615 + 0.112822i \(0.0359891\pi\)
−0.399101 + 0.916907i \(0.630678\pi\)
\(12\) 0 0
\(13\) −1.59240 + 0.579585i −0.441651 + 0.160748i −0.553268 0.833003i \(-0.686619\pi\)
0.111617 + 0.993751i \(0.464397\pi\)
\(14\) 0 0
\(15\) −0.233956 + 1.32683i −0.0604071 + 0.342585i
\(16\) 0 0
\(17\) −2.93969 + 2.46669i −0.712980 + 0.598261i −0.925434 0.378910i \(-0.876299\pi\)
0.212453 + 0.977171i \(0.431855\pi\)
\(18\) 0 0
\(19\) −2.82635 + 3.31839i −0.648410 + 0.761292i
\(20\) 0 0
\(21\) 0.500000 0.419550i 0.109109 0.0915533i
\(22\) 0 0
\(23\) 0.631759 3.58288i 0.131731 0.747083i −0.845350 0.534213i \(-0.820608\pi\)
0.977081 0.212870i \(-0.0682810\pi\)
\(24\) 0 0
\(25\) 2.99273 1.08926i 0.598545 0.217853i
\(26\) 0 0
\(27\) −0.500000 0.866025i −0.0962250 0.166667i
\(28\) 0 0
\(29\) 8.05690 + 6.76055i 1.49613 + 1.25540i 0.886512 + 0.462706i \(0.153122\pi\)
0.609618 + 0.792695i \(0.291323\pi\)
\(30\) 0 0
\(31\) 3.23396 5.60138i 0.580836 1.00604i −0.414545 0.910029i \(-0.636059\pi\)
0.995381 0.0960079i \(-0.0306074\pi\)
\(32\) 0 0
\(33\) −0.684793 3.88365i −0.119207 0.676057i
\(34\) 0 0
\(35\) 0.826352 + 0.300767i 0.139679 + 0.0508390i
\(36\) 0 0
\(37\) −2.94356 −0.483919 −0.241959 0.970286i \(-0.577790\pi\)
−0.241959 + 0.970286i \(0.577790\pi\)
\(38\) 0 0
\(39\) 1.69459 0.271352
\(40\) 0 0
\(41\) 1.41875 + 0.516382i 0.221571 + 0.0806453i 0.450421 0.892817i \(-0.351274\pi\)
−0.228849 + 0.973462i \(0.573496\pi\)
\(42\) 0 0
\(43\) 1.62701 + 9.22724i 0.248117 + 1.40714i 0.813141 + 0.582067i \(0.197756\pi\)
−0.565024 + 0.825074i \(0.691133\pi\)
\(44\) 0 0
\(45\) 0.673648 1.16679i 0.100422 0.173935i
\(46\) 0 0
\(47\) 9.77972 + 8.20616i 1.42652 + 1.19699i 0.947735 + 0.319057i \(0.103366\pi\)
0.478783 + 0.877933i \(0.341078\pi\)
\(48\) 0 0
\(49\) 3.28699 + 5.69323i 0.469570 + 0.813319i
\(50\) 0 0
\(51\) 3.60607 1.31250i 0.504950 0.183787i
\(52\) 0 0
\(53\) −1.87551 + 10.6366i −0.257622 + 1.46105i 0.531630 + 0.846976i \(0.321580\pi\)
−0.789252 + 0.614069i \(0.789532\pi\)
\(54\) 0 0
\(55\) 4.07011 3.41523i 0.548813 0.460509i
\(56\) 0 0
\(57\) 3.79086 2.15160i 0.502112 0.284986i
\(58\) 0 0
\(59\) 2.12449 1.78265i 0.276584 0.232082i −0.493934 0.869499i \(-0.664442\pi\)
0.770519 + 0.637417i \(0.219997\pi\)
\(60\) 0 0
\(61\) 0.748970 4.24762i 0.0958958 0.543852i −0.898573 0.438823i \(-0.855395\pi\)
0.994469 0.105029i \(-0.0334935\pi\)
\(62\) 0 0
\(63\) −0.613341 + 0.223238i −0.0772737 + 0.0281253i
\(64\) 0 0
\(65\) 1.14156 + 1.97724i 0.141593 + 0.245246i
\(66\) 0 0
\(67\) −6.04189 5.06975i −0.738134 0.619368i 0.194202 0.980962i \(-0.437788\pi\)
−0.932336 + 0.361593i \(0.882233\pi\)
\(68\) 0 0
\(69\) −1.81908 + 3.15074i −0.218991 + 0.379304i
\(70\) 0 0
\(71\) 0.932419 + 5.28801i 0.110658 + 0.627571i 0.988809 + 0.149188i \(0.0476659\pi\)
−0.878151 + 0.478383i \(0.841223\pi\)
\(72\) 0 0
\(73\) −5.51114 2.00589i −0.645031 0.234772i −0.00127039 0.999999i \(-0.500404\pi\)
−0.643760 + 0.765227i \(0.722627\pi\)
\(74\) 0 0
\(75\) −3.18479 −0.367748
\(76\) 0 0
\(77\) −2.57398 −0.293332
\(78\) 0 0
\(79\) −2.93969 1.06996i −0.330741 0.120380i 0.171312 0.985217i \(-0.445200\pi\)
−0.502053 + 0.864837i \(0.667422\pi\)
\(80\) 0 0
\(81\) 0.173648 + 0.984808i 0.0192942 + 0.109423i
\(82\) 0 0
\(83\) −2.25490 + 3.90560i −0.247507 + 0.428695i −0.962834 0.270095i \(-0.912945\pi\)
0.715326 + 0.698791i \(0.246278\pi\)
\(84\) 0 0
\(85\) 3.96064 + 3.32337i 0.429591 + 0.360470i
\(86\) 0 0
\(87\) −5.25877 9.10846i −0.563799 0.976529i
\(88\) 0 0
\(89\) 10.4620 3.80785i 1.10897 0.403631i 0.278353 0.960479i \(-0.410211\pi\)
0.830615 + 0.556848i \(0.187989\pi\)
\(90\) 0 0
\(91\) 0.192066 1.08926i 0.0201340 0.114186i
\(92\) 0 0
\(93\) −4.95471 + 4.15749i −0.513779 + 0.431112i
\(94\) 0 0
\(95\) 5.06418 + 2.97373i 0.519574 + 0.305098i
\(96\) 0 0
\(97\) 5.13429 4.30818i 0.521308 0.437429i −0.343780 0.939050i \(-0.611707\pi\)
0.865087 + 0.501621i \(0.167263\pi\)
\(98\) 0 0
\(99\) −0.684793 + 3.88365i −0.0688242 + 0.390322i
\(100\) 0 0
\(101\) 1.81908 0.662090i 0.181005 0.0658804i −0.249928 0.968265i \(-0.580407\pi\)
0.430933 + 0.902384i \(0.358185\pi\)
\(102\) 0 0
\(103\) 0.518418 + 0.897927i 0.0510813 + 0.0884754i 0.890435 0.455110i \(-0.150400\pi\)
−0.839354 + 0.543585i \(0.817067\pi\)
\(104\) 0 0
\(105\) −0.673648 0.565258i −0.0657413 0.0551635i
\(106\) 0 0
\(107\) −6.10607 + 10.5760i −0.590296 + 1.02242i 0.403897 + 0.914805i \(0.367656\pi\)
−0.994192 + 0.107618i \(0.965678\pi\)
\(108\) 0 0
\(109\) −0.699340 3.96616i −0.0669847 0.379889i −0.999809 0.0195568i \(-0.993774\pi\)
0.932824 0.360332i \(-0.117337\pi\)
\(110\) 0 0
\(111\) 2.76604 + 1.00676i 0.262541 + 0.0955572i
\(112\) 0 0
\(113\) −13.1925 −1.24105 −0.620525 0.784187i \(-0.713080\pi\)
−0.620525 + 0.784187i \(0.713080\pi\)
\(114\) 0 0
\(115\) −4.90167 −0.457083
\(116\) 0 0
\(117\) −1.59240 0.579585i −0.147217 0.0535826i
\(118\) 0 0
\(119\) −0.434945 2.46669i −0.0398713 0.226122i
\(120\) 0 0
\(121\) −2.27584 + 3.94188i −0.206895 + 0.358353i
\(122\) 0 0
\(123\) −1.15657 0.970481i −0.104285 0.0875053i
\(124\) 0 0
\(125\) −5.51367 9.54996i −0.493158 0.854174i
\(126\) 0 0
\(127\) 12.4500 4.53141i 1.10476 0.402098i 0.275688 0.961247i \(-0.411094\pi\)
0.829067 + 0.559149i \(0.188872\pi\)
\(128\) 0 0
\(129\) 1.62701 9.22724i 0.143250 0.812413i
\(130\) 0 0
\(131\) −13.1591 + 11.0418i −1.14972 + 0.964726i −0.999713 0.0239593i \(-0.992373\pi\)
−0.150003 + 0.988686i \(0.547928\pi\)
\(132\) 0 0
\(133\) −0.953363 2.68058i −0.0826671 0.232436i
\(134\) 0 0
\(135\) −1.03209 + 0.866025i −0.0888281 + 0.0745356i
\(136\) 0 0
\(137\) −1.83140 + 10.3864i −0.156467 + 0.887371i 0.800965 + 0.598712i \(0.204321\pi\)
−0.957432 + 0.288659i \(0.906791\pi\)
\(138\) 0 0
\(139\) 10.1309 3.68734i 0.859290 0.312756i 0.125468 0.992098i \(-0.459957\pi\)
0.733822 + 0.679342i \(0.237735\pi\)
\(140\) 0 0
\(141\) −6.38326 11.0561i −0.537567 0.931094i
\(142\) 0 0
\(143\) −5.11927 4.29558i −0.428095 0.359214i
\(144\) 0 0
\(145\) 7.08512 12.2718i 0.588387 1.01912i
\(146\) 0 0
\(147\) −1.14156 6.47410i −0.0941542 0.533975i
\(148\) 0 0
\(149\) 18.5608 + 6.75557i 1.52056 + 0.553438i 0.961287 0.275547i \(-0.0888591\pi\)
0.559270 + 0.828985i \(0.311081\pi\)
\(150\) 0 0
\(151\) −3.10607 −0.252768 −0.126384 0.991981i \(-0.540337\pi\)
−0.126384 + 0.991981i \(0.540337\pi\)
\(152\) 0 0
\(153\) −3.83750 −0.310243
\(154\) 0 0
\(155\) −8.18866 2.98043i −0.657729 0.239394i
\(156\) 0 0
\(157\) 0.127889 + 0.725293i 0.0102066 + 0.0578847i 0.989486 0.144631i \(-0.0461995\pi\)
−0.979279 + 0.202516i \(0.935088\pi\)
\(158\) 0 0
\(159\) 5.40033 9.35365i 0.428274 0.741792i
\(160\) 0 0
\(161\) 1.81908 + 1.52639i 0.143363 + 0.120296i
\(162\) 0 0
\(163\) −6.31180 10.9324i −0.494379 0.856289i 0.505600 0.862768i \(-0.331271\pi\)
−0.999979 + 0.00647887i \(0.997938\pi\)
\(164\) 0 0
\(165\) −4.99273 + 1.81720i −0.388683 + 0.141469i
\(166\) 0 0
\(167\) 0.958111 5.43372i 0.0741409 0.420474i −0.925035 0.379882i \(-0.875965\pi\)
0.999176 0.0405917i \(-0.0129243\pi\)
\(168\) 0 0
\(169\) −7.75877 + 6.51038i −0.596828 + 0.500799i
\(170\) 0 0
\(171\) −4.29813 + 0.725293i −0.328686 + 0.0554645i
\(172\) 0 0
\(173\) 9.90420 8.31061i 0.753002 0.631844i −0.183293 0.983058i \(-0.558676\pi\)
0.936295 + 0.351214i \(0.114231\pi\)
\(174\) 0 0
\(175\) −0.360967 + 2.04715i −0.0272865 + 0.154750i
\(176\) 0 0
\(177\) −2.60607 + 0.948531i −0.195884 + 0.0712959i
\(178\) 0 0
\(179\) −7.54323 13.0653i −0.563808 0.976544i −0.997160 0.0753188i \(-0.976003\pi\)
0.433352 0.901225i \(-0.357331\pi\)
\(180\) 0 0
\(181\) −14.3118 12.0090i −1.06379 0.892624i −0.0693127 0.997595i \(-0.522081\pi\)
−0.994475 + 0.104971i \(0.966525\pi\)
\(182\) 0 0
\(183\) −2.15657 + 3.73530i −0.159419 + 0.276121i
\(184\) 0 0
\(185\) 0.688663 + 3.90560i 0.0506315 + 0.287146i
\(186\) 0 0
\(187\) −14.2208 5.17593i −1.03992 0.378502i
\(188\) 0 0
\(189\) 0.652704 0.0474772
\(190\) 0 0
\(191\) 8.55169 0.618779 0.309389 0.950935i \(-0.399875\pi\)
0.309389 + 0.950935i \(0.399875\pi\)
\(192\) 0 0
\(193\) −15.9363 5.80033i −1.14712 0.417517i −0.302640 0.953105i \(-0.597868\pi\)
−0.844480 + 0.535588i \(0.820090\pi\)
\(194\) 0 0
\(195\) −0.396459 2.24843i −0.0283910 0.161014i
\(196\) 0 0
\(197\) −2.25877 + 3.91231i −0.160931 + 0.278740i −0.935203 0.354113i \(-0.884783\pi\)
0.774272 + 0.632853i \(0.218116\pi\)
\(198\) 0 0
\(199\) 6.16431 + 5.17247i 0.436977 + 0.366667i 0.834577 0.550892i \(-0.185712\pi\)
−0.397600 + 0.917559i \(0.630157\pi\)
\(200\) 0 0
\(201\) 3.94356 + 6.83045i 0.278157 + 0.481783i
\(202\) 0 0
\(203\) −6.45084 + 2.34791i −0.452760 + 0.164791i
\(204\) 0 0
\(205\) 0.353226 2.00324i 0.0246704 0.139913i
\(206\) 0 0
\(207\) 2.78699 2.33856i 0.193709 0.162541i
\(208\) 0 0
\(209\) −16.9060 3.10948i −1.16941 0.215087i
\(210\) 0 0
\(211\) −15.3851 + 12.9096i −1.05915 + 0.888734i −0.994026 0.109143i \(-0.965189\pi\)
−0.0651256 + 0.997877i \(0.520745\pi\)
\(212\) 0 0
\(213\) 0.932419 5.28801i 0.0638883 0.362328i
\(214\) 0 0
\(215\) 11.8623 4.31753i 0.809003 0.294453i
\(216\) 0 0
\(217\) 2.11081 + 3.65604i 0.143291 + 0.248188i
\(218\) 0 0
\(219\) 4.49273 + 3.76984i 0.303590 + 0.254743i
\(220\) 0 0
\(221\) 3.25150 5.63176i 0.218719 0.378833i
\(222\) 0 0
\(223\) −3.40167 19.2919i −0.227793 1.29188i −0.857273 0.514862i \(-0.827843\pi\)
0.629480 0.777016i \(-0.283268\pi\)
\(224\) 0 0
\(225\) 2.99273 + 1.08926i 0.199515 + 0.0726175i
\(226\) 0 0
\(227\) 18.4979 1.22775 0.613876 0.789403i \(-0.289610\pi\)
0.613876 + 0.789403i \(0.289610\pi\)
\(228\) 0 0
\(229\) −28.1634 −1.86109 −0.930546 0.366175i \(-0.880667\pi\)
−0.930546 + 0.366175i \(0.880667\pi\)
\(230\) 0 0
\(231\) 2.41875 + 0.880352i 0.159142 + 0.0579229i
\(232\) 0 0
\(233\) 0.0270364 + 0.153331i 0.00177122 + 0.0100451i 0.985681 0.168623i \(-0.0539322\pi\)
−0.983909 + 0.178668i \(0.942821\pi\)
\(234\) 0 0
\(235\) 8.60014 14.8959i 0.561011 0.971700i
\(236\) 0 0
\(237\) 2.39646 + 2.01087i 0.155667 + 0.130620i
\(238\) 0 0
\(239\) 3.31521 + 5.74211i 0.214443 + 0.371426i 0.953100 0.302655i \(-0.0978731\pi\)
−0.738657 + 0.674081i \(0.764540\pi\)
\(240\) 0 0
\(241\) 4.94356 1.79931i 0.318443 0.115904i −0.177853 0.984057i \(-0.556915\pi\)
0.496296 + 0.868153i \(0.334693\pi\)
\(242\) 0 0
\(243\) 0.173648 0.984808i 0.0111395 0.0631754i
\(244\) 0 0
\(245\) 6.78493 5.69323i 0.433473 0.363727i
\(246\) 0 0
\(247\) 2.57738 6.92231i 0.163995 0.440456i
\(248\) 0 0
\(249\) 3.45471 2.89884i 0.218933 0.183707i
\(250\) 0 0
\(251\) −2.57263 + 14.5901i −0.162383 + 0.920921i 0.789338 + 0.613958i \(0.210424\pi\)
−0.951722 + 0.306963i \(0.900687\pi\)
\(252\) 0 0
\(253\) 13.4820 4.90706i 0.847609 0.308504i
\(254\) 0 0
\(255\) −2.58512 4.47756i −0.161887 0.280396i
\(256\) 0 0
\(257\) −14.6800 12.3180i −0.915716 0.768377i 0.0574818 0.998347i \(-0.481693\pi\)
−0.973198 + 0.229970i \(0.926137\pi\)
\(258\) 0 0
\(259\) 0.960637 1.66387i 0.0596911 0.103388i
\(260\) 0 0
\(261\) 1.82635 + 10.3578i 0.113048 + 0.641129i
\(262\) 0 0
\(263\) −15.5030 5.64263i −0.955956 0.347939i −0.183508 0.983018i \(-0.558745\pi\)
−0.772447 + 0.635079i \(0.780968\pi\)
\(264\) 0 0
\(265\) 14.5517 0.893903
\(266\) 0 0
\(267\) −11.1334 −0.681354
\(268\) 0 0
\(269\) −3.95811 1.44063i −0.241330 0.0878370i 0.218524 0.975832i \(-0.429876\pi\)
−0.459854 + 0.887995i \(0.652098\pi\)
\(270\) 0 0
\(271\) −1.59105 9.02330i −0.0966495 0.548127i −0.994229 0.107275i \(-0.965788\pi\)
0.897580 0.440852i \(-0.145324\pi\)
\(272\) 0 0
\(273\) −0.553033 + 0.957882i −0.0334711 + 0.0579737i
\(274\) 0 0
\(275\) 9.62108 + 8.07305i 0.580173 + 0.486823i
\(276\) 0 0
\(277\) 11.2476 + 19.4815i 0.675804 + 1.17053i 0.976233 + 0.216723i \(0.0695369\pi\)
−0.300429 + 0.953804i \(0.597130\pi\)
\(278\) 0 0
\(279\) 6.07785 2.21216i 0.363871 0.132438i
\(280\) 0 0
\(281\) −4.08559 + 23.1705i −0.243726 + 1.38224i 0.579707 + 0.814825i \(0.303167\pi\)
−0.823433 + 0.567413i \(0.807944\pi\)
\(282\) 0 0
\(283\) −20.4893 + 17.1926i −1.21796 + 1.02199i −0.219035 + 0.975717i \(0.570291\pi\)
−0.998929 + 0.0462760i \(0.985265\pi\)
\(284\) 0 0
\(285\) −3.74170 4.52644i −0.221639 0.268123i
\(286\) 0 0
\(287\) −0.754900 + 0.633436i −0.0445603 + 0.0373906i
\(288\) 0 0
\(289\) −0.394811 + 2.23908i −0.0232241 + 0.131711i
\(290\) 0 0
\(291\) −6.29813 + 2.29233i −0.369203 + 0.134379i
\(292\) 0 0
\(293\) 0.103541 + 0.179338i 0.00604891 + 0.0104770i 0.869034 0.494752i \(-0.164741\pi\)
−0.862985 + 0.505229i \(0.831408\pi\)
\(294\) 0 0
\(295\) −2.86231 2.40176i −0.166650 0.139836i
\(296\) 0 0
\(297\) 1.97178 3.41523i 0.114414 0.198171i
\(298\) 0 0
\(299\) 1.07057 + 6.07153i 0.0619129 + 0.351126i
\(300\) 0 0
\(301\) −5.74675 2.09165i −0.331237 0.120560i
\(302\) 0 0
\(303\) −1.93582 −0.111210
\(304\) 0 0
\(305\) −5.81109 −0.332742
\(306\) 0 0
\(307\) 14.3944 + 5.23913i 0.821532 + 0.299013i 0.718379 0.695652i \(-0.244885\pi\)
0.103153 + 0.994665i \(0.467107\pi\)
\(308\) 0 0
\(309\) −0.180045 1.02108i −0.0102424 0.0580875i
\(310\) 0 0
\(311\) 7.82160 13.5474i 0.443522 0.768203i −0.554426 0.832233i \(-0.687062\pi\)
0.997948 + 0.0640299i \(0.0203953\pi\)
\(312\) 0 0
\(313\) 7.78493 + 6.53233i 0.440030 + 0.369229i 0.835721 0.549155i \(-0.185050\pi\)
−0.395690 + 0.918384i \(0.629495\pi\)
\(314\) 0 0
\(315\) 0.439693 + 0.761570i 0.0247739 + 0.0429096i
\(316\) 0 0
\(317\) 7.18644 2.61565i 0.403631 0.146910i −0.132224 0.991220i \(-0.542212\pi\)
0.535855 + 0.844310i \(0.319990\pi\)
\(318\) 0 0
\(319\) −7.20233 + 40.8465i −0.403253 + 2.28696i
\(320\) 0 0
\(321\) 9.35504 7.84981i 0.522147 0.438134i
\(322\) 0 0
\(323\) 0.123141 16.7268i 0.00685175 0.930704i
\(324\) 0 0
\(325\) −4.13429 + 3.46908i −0.229329 + 0.192430i
\(326\) 0 0
\(327\) −0.699340 + 3.96616i −0.0386736 + 0.219329i
\(328\) 0 0
\(329\) −7.83022 + 2.84997i −0.431694 + 0.157124i
\(330\) 0 0
\(331\) −2.05303 3.55596i −0.112845 0.195453i 0.804071 0.594533i \(-0.202663\pi\)
−0.916916 + 0.399080i \(0.869330\pi\)
\(332\) 0 0
\(333\) −2.25490 1.89209i −0.123568 0.103686i
\(334\) 0 0
\(335\) −5.31315 + 9.20264i −0.290288 + 0.502794i
\(336\) 0 0
\(337\) −2.09967 11.9078i −0.114376 0.648660i −0.987057 0.160369i \(-0.948732\pi\)
0.872681 0.488291i \(-0.162380\pi\)
\(338\) 0 0
\(339\) 12.3969 + 4.51211i 0.673309 + 0.245064i
\(340\) 0 0
\(341\) 25.5066 1.38126
\(342\) 0 0
\(343\) −8.85978 −0.478383
\(344\) 0 0
\(345\) 4.60607 + 1.67647i 0.247982 + 0.0902582i
\(346\) 0 0
\(347\) 0.719408 + 4.07996i 0.0386198 + 0.219024i 0.998010 0.0630592i \(-0.0200857\pi\)
−0.959390 + 0.282083i \(0.908975\pi\)
\(348\) 0 0
\(349\) 0.0196004 0.0339488i 0.00104918 0.00181724i −0.865500 0.500908i \(-0.832999\pi\)
0.866550 + 0.499091i \(0.166333\pi\)
\(350\) 0 0
\(351\) 1.29813 + 1.08926i 0.0692892 + 0.0581406i
\(352\) 0 0
\(353\) −3.58125 6.20291i −0.190611 0.330148i 0.754842 0.655907i \(-0.227714\pi\)
−0.945453 + 0.325759i \(0.894380\pi\)
\(354\) 0 0
\(355\) 6.79813 2.47432i 0.360807 0.131323i
\(356\) 0 0
\(357\) −0.434945 + 2.46669i −0.0230197 + 0.130551i
\(358\) 0 0
\(359\) 15.6591 13.1395i 0.826456 0.693479i −0.128019 0.991772i \(-0.540862\pi\)
0.954474 + 0.298293i \(0.0964173\pi\)
\(360\) 0 0
\(361\) −3.02347 18.7579i −0.159130 0.987258i
\(362\) 0 0
\(363\) 3.48680 2.92577i 0.183009 0.153563i
\(364\) 0 0
\(365\) −1.37211 + 7.78163i −0.0718196 + 0.407309i
\(366\) 0 0
\(367\) −1.49912 + 0.545636i −0.0782536 + 0.0284820i −0.380850 0.924637i \(-0.624369\pi\)
0.302597 + 0.953119i \(0.402146\pi\)
\(368\) 0 0
\(369\) 0.754900 + 1.30753i 0.0392985 + 0.0680670i
\(370\) 0 0
\(371\) −5.40033 4.53141i −0.280371 0.235259i
\(372\) 0 0
\(373\) 6.42602 11.1302i 0.332727 0.576300i −0.650319 0.759661i \(-0.725365\pi\)
0.983046 + 0.183362i \(0.0586980\pi\)
\(374\) 0 0
\(375\) 1.91488 + 10.8598i 0.0988839 + 0.560798i
\(376\) 0 0
\(377\) −16.7481 6.09581i −0.862571 0.313950i
\(378\) 0 0
\(379\) 15.7023 0.806575 0.403287 0.915073i \(-0.367868\pi\)
0.403287 + 0.915073i \(0.367868\pi\)
\(380\) 0 0
\(381\) −13.2490 −0.678765
\(382\) 0 0
\(383\) −15.4564 5.62565i −0.789783 0.287457i −0.0845371 0.996420i \(-0.526941\pi\)
−0.705246 + 0.708963i \(0.749163\pi\)
\(384\) 0 0
\(385\) 0.602196 + 3.41523i 0.0306908 + 0.174056i
\(386\) 0 0
\(387\) −4.68479 + 8.11430i −0.238141 + 0.412473i
\(388\) 0 0
\(389\) 5.77063 + 4.84213i 0.292583 + 0.245506i 0.777249 0.629193i \(-0.216615\pi\)
−0.484666 + 0.874699i \(0.661059\pi\)
\(390\) 0 0
\(391\) 6.98070 + 12.0909i 0.353029 + 0.611465i
\(392\) 0 0
\(393\) 16.1420 5.87522i 0.814258 0.296365i
\(394\) 0 0
\(395\) −0.731896 + 4.15079i −0.0368257 + 0.208849i
\(396\) 0 0
\(397\) −8.59421 + 7.21140i −0.431331 + 0.361930i −0.832454 0.554095i \(-0.813065\pi\)
0.401123 + 0.916024i \(0.368620\pi\)
\(398\) 0 0
\(399\) −0.0209445 + 2.84499i −0.00104854 + 0.142428i
\(400\) 0 0
\(401\) 18.5804 15.5908i 0.927860 0.778567i −0.0475723 0.998868i \(-0.515148\pi\)
0.975432 + 0.220301i \(0.0707040\pi\)
\(402\) 0 0
\(403\) −1.90327 + 10.7940i −0.0948085 + 0.537685i
\(404\) 0 0
\(405\) 1.26604 0.460802i 0.0629103 0.0228975i
\(406\) 0 0
\(407\) −5.80406 10.0529i −0.287697 0.498305i
\(408\) 0 0
\(409\) 20.1348 + 16.8951i 0.995599 + 0.835407i 0.986369 0.164550i \(-0.0526173\pi\)
0.00923072 + 0.999957i \(0.497062\pi\)
\(410\) 0 0
\(411\) 5.27332 9.13366i 0.260114 0.450530i
\(412\) 0 0
\(413\) 0.314330 + 1.78265i 0.0154672 + 0.0877187i
\(414\) 0 0
\(415\) 5.70961 + 2.07813i 0.280274 + 0.102011i
\(416\) 0 0
\(417\) −10.7811 −0.527951
\(418\) 0 0
\(419\) −13.2226 −0.645964 −0.322982 0.946405i \(-0.604685\pi\)
−0.322982 + 0.946405i \(0.604685\pi\)
\(420\) 0 0
\(421\) 34.8025 + 12.6671i 1.69617 + 0.617355i 0.995380 0.0960141i \(-0.0306094\pi\)
0.700789 + 0.713369i \(0.252832\pi\)
\(422\) 0 0
\(423\) 2.21688 + 12.5726i 0.107788 + 0.611299i
\(424\) 0 0
\(425\) −6.11081 + 10.5842i −0.296418 + 0.513411i
\(426\) 0 0
\(427\) 2.15657 + 1.80958i 0.104364 + 0.0875717i
\(428\) 0 0
\(429\) 3.34137 + 5.78742i 0.161323 + 0.279419i
\(430\) 0 0
\(431\) 8.90167 3.23994i 0.428779 0.156063i −0.118611 0.992941i \(-0.537844\pi\)
0.547389 + 0.836878i \(0.315622\pi\)
\(432\) 0 0
\(433\) −3.91101 + 22.1804i −0.187951 + 1.06592i 0.734154 + 0.678983i \(0.237579\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(434\) 0 0
\(435\) −10.8550 + 9.10846i −0.520459 + 0.436717i
\(436\) 0 0
\(437\) 10.1038 + 12.2229i 0.483332 + 0.584701i
\(438\) 0 0
\(439\) 25.4577 21.3615i 1.21503 1.01953i 0.215960 0.976402i \(-0.430712\pi\)
0.999070 0.0431289i \(-0.0137326\pi\)
\(440\) 0 0
\(441\) −1.14156 + 6.47410i −0.0543600 + 0.308291i
\(442\) 0 0
\(443\) 28.7818 10.4757i 1.36747 0.497717i 0.449112 0.893476i \(-0.351741\pi\)
0.918355 + 0.395759i \(0.129518\pi\)
\(444\) 0 0
\(445\) −7.50000 12.9904i −0.355534 0.615803i
\(446\) 0 0
\(447\) −15.1309 12.6963i −0.715666 0.600515i
\(448\) 0 0
\(449\) −7.54623 + 13.0704i −0.356128 + 0.616833i −0.987310 0.158802i \(-0.949237\pi\)
0.631182 + 0.775635i \(0.282570\pi\)
\(450\) 0 0
\(451\) 1.03390 + 5.86354i 0.0486844 + 0.276103i
\(452\) 0 0
\(453\) 2.91875 + 1.06234i 0.137135 + 0.0499130i
\(454\) 0 0
\(455\) −1.49020 −0.0698616
\(456\) 0 0
\(457\) 19.8462 0.928365 0.464182 0.885740i \(-0.346348\pi\)
0.464182 + 0.885740i \(0.346348\pi\)
\(458\) 0 0
\(459\) 3.60607 + 1.31250i 0.168317 + 0.0612623i
\(460\) 0 0
\(461\) −6.03684 34.2366i −0.281164 1.59456i −0.718676 0.695345i \(-0.755252\pi\)
0.437512 0.899212i \(-0.355860\pi\)
\(462\) 0 0
\(463\) −1.71301 + 2.96702i −0.0796104 + 0.137889i −0.903082 0.429468i \(-0.858701\pi\)
0.823472 + 0.567358i \(0.192034\pi\)
\(464\) 0 0
\(465\) 6.67546 + 5.60138i 0.309567 + 0.259758i
\(466\) 0 0
\(467\) −5.66250 9.80774i −0.262029 0.453848i 0.704752 0.709454i \(-0.251058\pi\)
−0.966781 + 0.255606i \(0.917725\pi\)
\(468\) 0 0
\(469\) 4.83750 1.76070i 0.223375 0.0813018i
\(470\) 0 0
\(471\) 0.127889 0.725293i 0.00589280 0.0334197i
\(472\) 0 0
\(473\) −28.3050 + 23.7507i −1.30147 + 1.09206i
\(474\) 0 0
\(475\) −4.84389 + 13.0097i −0.222253 + 0.596925i
\(476\) 0 0
\(477\) −8.27379 + 6.94253i −0.378831 + 0.317877i
\(478\) 0 0
\(479\) −2.00862 + 11.3914i −0.0917761 + 0.520488i 0.903912 + 0.427719i \(0.140683\pi\)
−0.995688 + 0.0927688i \(0.970428\pi\)
\(480\) 0 0
\(481\) 4.68732 1.70604i 0.213723 0.0777889i
\(482\) 0 0
\(483\) −1.18732 2.05650i −0.0540249 0.0935738i
\(484\) 0 0
\(485\) −6.91740 5.80439i −0.314103 0.263564i
\(486\) 0 0
\(487\) 5.87346 10.1731i 0.266152 0.460988i −0.701713 0.712460i \(-0.747581\pi\)
0.967865 + 0.251471i \(0.0809145\pi\)
\(488\) 0 0
\(489\) 2.19207 + 12.4318i 0.0991287 + 0.562187i
\(490\) 0 0
\(491\) 9.63563 + 3.50708i 0.434850 + 0.158272i 0.550164 0.835057i \(-0.314565\pi\)
−0.115314 + 0.993329i \(0.536787\pi\)
\(492\) 0 0
\(493\) −40.3610 −1.81777
\(494\) 0 0
\(495\) 5.31315 0.238808
\(496\) 0 0
\(497\) −3.29339 1.19869i −0.147729 0.0537688i
\(498\) 0 0
\(499\) 1.12149 + 6.36030i 0.0502049 + 0.284726i 0.999566 0.0294612i \(-0.00937914\pi\)
−0.949361 + 0.314187i \(0.898268\pi\)
\(500\) 0 0
\(501\) −2.75877 + 4.77833i −0.123253 + 0.213480i
\(502\) 0 0
\(503\) 14.0248 + 11.7682i 0.625336 + 0.524719i 0.899476 0.436971i \(-0.143949\pi\)
−0.274140 + 0.961690i \(0.588393\pi\)
\(504\) 0 0
\(505\) −1.30406 2.25870i −0.0580300 0.100511i
\(506\) 0 0
\(507\) 9.51754 3.46410i 0.422689 0.153846i
\(508\) 0 0
\(509\) 2.09580 11.8859i 0.0928947 0.526832i −0.902477 0.430737i \(-0.858254\pi\)
0.995372 0.0960949i \(-0.0306352\pi\)
\(510\) 0 0
\(511\) 2.93242 2.46059i 0.129723 0.108850i
\(512\) 0 0
\(513\) 4.28699 + 0.788496i 0.189275 + 0.0348129i
\(514\) 0 0
\(515\) 1.07011 0.897927i 0.0471546 0.0395674i
\(516\) 0 0
\(517\) −8.74241 + 49.5807i −0.384491 + 2.18056i
\(518\) 0 0
\(519\) −12.1493 + 4.42198i −0.533295 + 0.194104i
\(520\) 0 0
\(521\) −14.2849 24.7422i −0.625834 1.08398i −0.988379 0.152010i \(-0.951425\pi\)
0.362545 0.931966i \(-0.381908\pi\)
\(522\) 0 0
\(523\) −14.2836 11.9854i −0.624578 0.524083i 0.274661 0.961541i \(-0.411434\pi\)
−0.899239 + 0.437458i \(0.855879\pi\)
\(524\) 0 0
\(525\) 1.03936 1.80023i 0.0453615 0.0785684i
\(526\) 0 0
\(527\) 4.31005 + 24.4435i 0.187749 + 1.06478i
\(528\) 0 0
\(529\) 9.17499 + 3.33942i 0.398913 + 0.145192i
\(530\) 0 0
\(531\) 2.77332 0.120352
\(532\) 0 0
\(533\) −2.55850 −0.110821
\(534\) 0 0
\(535\) 15.4611 + 5.62738i 0.668442 + 0.243293i
\(536\) 0 0
\(537\) 2.61974 + 14.8573i 0.113050 + 0.641138i
\(538\) 0 0
\(539\) −12.9624 + 22.4516i −0.558332 + 0.967060i
\(540\) 0 0
\(541\) −13.3007 11.1606i −0.571840 0.479831i 0.310416 0.950601i \(-0.399532\pi\)
−0.882256 + 0.470770i \(0.843976\pi\)
\(542\) 0 0
\(543\) 9.34137 + 16.1797i 0.400876 + 0.694338i
\(544\) 0 0
\(545\) −5.09879 + 1.85581i −0.218408 + 0.0794941i
\(546\) 0 0
\(547\) −0.877326 + 4.97556i −0.0375117 + 0.212740i −0.997802 0.0662625i \(-0.978893\pi\)
0.960290 + 0.279002i \(0.0900037\pi\)
\(548\) 0 0
\(549\) 3.30406 2.77244i 0.141014 0.118325i
\(550\) 0 0
\(551\) −45.2058 + 7.62830i −1.92583 + 0.324976i
\(552\) 0 0
\(553\) 1.56418 1.31250i 0.0665156 0.0558132i
\(554\) 0 0
\(555\) 0.688663 3.90560i 0.0292321 0.165784i
\(556\) 0 0
\(557\) 22.5303 8.20037i 0.954641 0.347461i 0.182710 0.983167i \(-0.441513\pi\)
0.771931 + 0.635706i \(0.219291\pi\)
\(558\) 0 0
\(559\) −7.93882 13.7504i −0.335776 0.581581i
\(560\) 0 0
\(561\) 11.5929 + 9.72757i 0.489451 + 0.410698i
\(562\) 0 0
\(563\) 21.3418 36.9651i 0.899451 1.55789i 0.0712538 0.997458i \(-0.477300\pi\)
0.828197 0.560437i \(-0.189367\pi\)
\(564\) 0 0
\(565\) 3.08647 + 17.5042i 0.129849 + 0.736408i
\(566\) 0 0
\(567\) −0.613341 0.223238i −0.0257579 0.00937511i
\(568\) 0 0
\(569\) 21.9358 0.919598 0.459799 0.888023i \(-0.347922\pi\)
0.459799 + 0.888023i \(0.347922\pi\)
\(570\) 0 0
\(571\) 32.3063 1.35198 0.675989 0.736912i \(-0.263717\pi\)
0.675989 + 0.736912i \(0.263717\pi\)
\(572\) 0 0
\(573\) −8.03596 2.92485i −0.335707 0.122187i
\(574\) 0 0
\(575\) −2.01202 11.4107i −0.0839071 0.475861i
\(576\) 0 0
\(577\) 23.4060 40.5404i 0.974405 1.68772i 0.292520 0.956259i \(-0.405506\pi\)
0.681885 0.731460i \(-0.261161\pi\)
\(578\) 0 0
\(579\) 12.9914 + 10.9011i 0.539903 + 0.453033i
\(580\) 0 0
\(581\) −1.47178 2.54920i −0.0610598 0.105759i
\(582\) 0 0
\(583\) −40.0244 + 14.5677i −1.65764 + 0.603332i
\(584\) 0 0
\(585\) −0.396459 + 2.24843i −0.0163916 + 0.0929613i
\(586\) 0 0
\(587\) 18.9841 15.9296i 0.783558 0.657483i −0.160584 0.987022i \(-0.551338\pi\)
0.944142 + 0.329539i \(0.106893\pi\)
\(588\) 0 0
\(589\) 9.44727 + 26.5630i 0.389268 + 1.09451i
\(590\) 0 0
\(591\) 3.46064 2.90382i 0.142352 0.119447i
\(592\) 0 0
\(593\) −0.634447 + 3.59813i −0.0260536 + 0.147758i −0.995060 0.0992801i \(-0.968346\pi\)
0.969006 + 0.247038i \(0.0794571\pi\)
\(594\) 0 0
\(595\) −3.17112 + 1.15419i −0.130003 + 0.0473173i
\(596\) 0 0
\(597\) −4.02347 6.96886i −0.164670 0.285216i
\(598\) 0 0
\(599\) −1.14677 0.962258i −0.0468559 0.0393168i 0.619059 0.785344i \(-0.287514\pi\)
−0.665915 + 0.746028i \(0.731959\pi\)
\(600\) 0 0
\(601\) −11.9119 + 20.6321i −0.485898 + 0.841600i −0.999869 0.0162075i \(-0.994841\pi\)
0.513970 + 0.857808i \(0.328174\pi\)
\(602\) 0 0
\(603\) −1.36959 7.76730i −0.0557738 0.316309i
\(604\) 0 0
\(605\) 5.76264 + 2.09743i 0.234285 + 0.0852726i
\(606\) 0 0
\(607\) −16.4757 −0.668726 −0.334363 0.942444i \(-0.608521\pi\)
−0.334363 + 0.942444i \(0.608521\pi\)
\(608\) 0 0
\(609\) 6.86484 0.278177
\(610\) 0 0
\(611\) −20.3293 7.39928i −0.822437 0.299343i
\(612\) 0 0
\(613\) 0.231591 + 1.31342i 0.00935389 + 0.0530486i 0.989127 0.147061i \(-0.0469813\pi\)
−0.979774 + 0.200109i \(0.935870\pi\)
\(614\) 0 0
\(615\) −1.01707 + 1.76162i −0.0410124 + 0.0710355i
\(616\) 0 0
\(617\) 27.6864 + 23.2317i 1.11461 + 0.935272i 0.998320 0.0579425i \(-0.0184540\pi\)
0.116294 + 0.993215i \(0.462898\pi\)
\(618\) 0 0
\(619\) 9.65792 + 16.7280i 0.388185 + 0.672355i 0.992205 0.124613i \(-0.0397690\pi\)
−0.604021 + 0.796968i \(0.706436\pi\)
\(620\) 0 0
\(621\) −3.41875 + 1.24432i −0.137190 + 0.0499329i
\(622\) 0 0
\(623\) −1.26187 + 7.15642i −0.0505557 + 0.286716i
\(624\) 0 0
\(625\) 0.817267 0.685768i 0.0326907 0.0274307i
\(626\) 0 0
\(627\) 14.8229 + 8.70415i 0.591972 + 0.347610i
\(628\) 0 0
\(629\) 8.65317 7.26087i 0.345025 0.289510i
\(630\) 0 0
\(631\) −4.95290 + 28.0893i −0.197172 + 1.11822i 0.712120 + 0.702057i \(0.247735\pi\)
−0.909292 + 0.416159i \(0.863376\pi\)
\(632\) 0 0
\(633\) 18.8726 6.86906i 0.750118 0.273020i
\(634\) 0 0
\(635\) −8.92514 15.4588i −0.354184 0.613464i
\(636\) 0 0
\(637\) −8.53390 7.16079i −0.338125 0.283721i
\(638\) 0 0
\(639\) −2.68479 + 4.65020i −0.106209 + 0.183959i
\(640\) 0 0
\(641\) −5.38342 30.5309i −0.212632 1.20590i −0.884968 0.465651i \(-0.845820\pi\)
0.672336 0.740246i \(-0.265291\pi\)
\(642\) 0 0
\(643\) 22.2358 + 8.09316i 0.876893 + 0.319163i 0.740955 0.671554i \(-0.234373\pi\)
0.135938 + 0.990717i \(0.456595\pi\)
\(644\) 0 0
\(645\) −12.6236 −0.497054
\(646\) 0 0
\(647\) −36.0865 −1.41871 −0.709353 0.704854i \(-0.751013\pi\)
−0.709353 + 0.704854i \(0.751013\pi\)
\(648\) 0 0
\(649\) 10.2772 + 3.74059i 0.403415 + 0.146831i
\(650\) 0 0
\(651\) −0.733078 4.15749i −0.0287316 0.162945i
\(652\) 0 0
\(653\) 18.7245 32.4317i 0.732745 1.26915i −0.222961 0.974827i \(-0.571572\pi\)
0.955706 0.294324i \(-0.0950944\pi\)
\(654\) 0 0
\(655\) 17.7292 + 14.8766i 0.692737 + 0.581276i
\(656\) 0 0
\(657\) −2.93242 5.07910i −0.114405 0.198154i
\(658\) 0 0
\(659\) 18.1652 6.61159i 0.707615 0.257551i 0.0369566 0.999317i \(-0.488234\pi\)
0.670659 + 0.741766i \(0.266011\pi\)
\(660\) 0 0
\(661\) −4.27584 + 24.2495i −0.166311 + 0.943197i 0.781391 + 0.624041i \(0.214510\pi\)
−0.947702 + 0.319156i \(0.896601\pi\)
\(662\) 0 0
\(663\) −4.98158 + 4.18004i −0.193469 + 0.162339i
\(664\) 0 0
\(665\) −3.33363 + 1.89209i −0.129272 + 0.0733719i
\(666\) 0 0
\(667\) 29.3123 24.5959i 1.13498 0.952358i
\(668\) 0 0
\(669\) −3.40167 + 19.2919i −0.131516 + 0.745866i
\(670\) 0 0
\(671\) 15.9834 5.81748i 0.617032 0.224581i
\(672\) 0 0
\(673\) −21.2173 36.7495i −0.817869 1.41659i −0.907250 0.420593i \(-0.861822\pi\)
0.0893810 0.995998i \(-0.471511\pi\)
\(674\) 0 0
\(675\) −2.43969 2.04715i −0.0939038 0.0787947i
\(676\) 0 0
\(677\) −7.29813 + 12.6407i −0.280490 + 0.485823i −0.971506 0.237017i \(-0.923830\pi\)
0.691015 + 0.722840i \(0.257164\pi\)
\(678\) 0 0
\(679\) 0.759648 + 4.30818i 0.0291526 + 0.165333i
\(680\) 0 0
\(681\) −17.3824 6.32667i −0.666094 0.242438i
\(682\) 0 0
\(683\) −17.8043 −0.681262 −0.340631 0.940197i \(-0.610641\pi\)
−0.340631 + 0.940197i \(0.610641\pi\)
\(684\) 0 0
\(685\) 14.2094 0.542915
\(686\) 0 0
\(687\) 26.4650 + 9.63246i 1.00970 + 0.367501i
\(688\) 0 0
\(689\) −3.17823 18.0247i −0.121081 0.686685i
\(690\) 0 0
\(691\) 6.23648 10.8019i 0.237247 0.410924i −0.722676 0.691187i \(-0.757088\pi\)
0.959923 + 0.280263i \(0.0904216\pi\)
\(692\) 0 0
\(693\) −1.97178 1.65452i −0.0749018 0.0628501i
\(694\) 0 0
\(695\) −7.26264 12.5793i −0.275488 0.477159i
\(696\) 0 0
\(697\) −5.44444 + 1.98161i −0.206223 + 0.0750590i
\(698\) 0 0
\(699\) 0.0270364 0.153331i 0.00102261 0.00579952i
\(700\) 0 0
\(701\) −2.47700 + 2.07845i −0.0935549 + 0.0785018i −0.688366 0.725364i \(-0.741671\pi\)
0.594811 + 0.803866i \(0.297227\pi\)
\(702\) 0 0
\(703\) 8.31954 9.76790i 0.313778 0.368403i
\(704\) 0 0
\(705\) −13.1762 + 11.0561i −0.496243 + 0.416398i
\(706\) 0 0
\(707\) −0.219408 + 1.24432i −0.00825167 + 0.0467976i
\(708\) 0 0
\(709\) 19.7576 7.19117i 0.742012 0.270070i 0.0567714 0.998387i \(-0.481919\pi\)
0.685240 + 0.728317i \(0.259697\pi\)
\(710\) 0 0
\(711\) −1.56418 2.70924i −0.0586612 0.101604i
\(712\) 0 0
\(713\) −18.0260 15.1256i −0.675079 0.566458i
\(714\) 0 0
\(715\) −4.50181 + 7.79737i −0.168358 + 0.291605i
\(716\) 0 0
\(717\) −1.15136 6.52968i −0.0429983 0.243856i
\(718\) 0 0
\(719\) −3.80793 1.38597i −0.142012 0.0516881i 0.270036 0.962850i \(-0.412964\pi\)
−0.412048 + 0.911162i \(0.635187\pi\)
\(720\) 0 0
\(721\) −0.676747 −0.0252034
\(722\) 0 0
\(723\) −5.26083 −0.195652
\(724\) 0 0
\(725\) 31.4761 + 11.4564i 1.16899 + 0.425479i
\(726\) 0 0
\(727\) 7.10623 + 40.3014i 0.263555 + 1.49470i 0.773117 + 0.634263i \(0.218696\pi\)
−0.509562 + 0.860434i \(0.670192\pi\)
\(728\) 0 0
\(729\) −0.500000 + 0.866025i −0.0185185 + 0.0320750i
\(730\) 0 0
\(731\) −27.5437 23.1119i −1.01874 0.854825i
\(732\) 0 0
\(733\) −3.63429 6.29477i −0.134235 0.232503i 0.791070 0.611726i \(-0.209524\pi\)
−0.925305 + 0.379223i \(0.876191\pi\)
\(734\) 0 0
\(735\) −8.32295 + 3.02931i −0.306997 + 0.111738i
\(736\) 0 0
\(737\) 5.40104 30.6308i 0.198950 1.12830i
\(738\) 0 0
\(739\) −3.56212 + 2.98897i −0.131035 + 0.109951i −0.705950 0.708262i \(-0.749480\pi\)
0.574915 + 0.818213i \(0.305035\pi\)
\(740\) 0 0
\(741\) −4.78952 + 5.62333i −0.175947 + 0.206578i
\(742\) 0 0
\(743\) 2.05484 1.72422i 0.0753849 0.0632555i −0.604317 0.796744i \(-0.706554\pi\)
0.679701 + 0.733489i \(0.262109\pi\)
\(744\) 0 0
\(745\) 4.62108 26.2075i 0.169303 0.960167i
\(746\) 0 0
\(747\) −4.23783 + 1.54244i −0.155054 + 0.0564350i
\(748\) 0 0
\(749\) −3.98545 6.90301i −0.145625 0.252230i
\(750\) 0 0
\(751\) −24.8444 20.8469i −0.906584 0.760714i 0.0648824 0.997893i \(-0.479333\pi\)
−0.971466 + 0.237179i \(0.923777\pi\)
\(752\) 0 0
\(753\) 7.40760 12.8303i 0.269948 0.467564i
\(754\) 0 0
\(755\) 0.726682 + 4.12122i 0.0264467 + 0.149986i
\(756\) 0 0
\(757\) −4.47266 1.62791i −0.162562 0.0591676i 0.259458 0.965755i \(-0.416456\pi\)
−0.422019 + 0.906587i \(0.638678\pi\)
\(758\) 0 0
\(759\) −14.3473 −0.520774
\(760\) 0 0
\(761\) −30.2481 −1.09649 −0.548247 0.836316i \(-0.684705\pi\)
−0.548247 + 0.836316i \(0.684705\pi\)
\(762\) 0 0
\(763\) 2.47013 + 0.899055i 0.0894248 + 0.0325480i
\(764\) 0 0
\(765\) 0.897804 + 5.09170i 0.0324602 + 0.184091i
\(766\) 0 0
\(767\) −2.34982 + 4.07001i −0.0848472 + 0.146960i
\(768\) 0 0
\(769\) 24.2108 + 20.3153i 0.873063 + 0.732587i 0.964741 0.263202i \(-0.0847784\pi\)
−0.0916775 + 0.995789i \(0.529223\pi\)
\(770\) 0 0
\(771\) 9.58172 + 16.5960i 0.345077 + 0.597691i
\(772\) 0 0
\(773\) −43.6014 + 15.8696i −1.56823 + 0.570790i −0.972604 0.232470i \(-0.925319\pi\)
−0.595629 + 0.803260i \(0.703097\pi\)
\(774\) 0 0
\(775\) 3.57697 20.2860i 0.128489 0.728695i
\(776\) 0 0
\(777\) −1.47178 + 1.23497i −0.0527999 + 0.0443043i
\(778\) 0 0
\(779\) −5.72344 + 3.24849i −0.205064 + 0.116389i
\(780\) 0 0
\(781\) −16.2212 + 13.6112i −0.580441 + 0.487048i
\(782\) 0 0
\(783\) 1.82635 10.3578i 0.0652685 0.370156i
\(784\) 0 0
\(785\) 0.932419 0.339373i 0.0332794 0.0121127i
\(786\) 0 0
\(787\) −18.4244 31.9120i −0.656760 1.13754i −0.981449 0.191721i \(-0.938593\pi\)
0.324689 0.945821i \(-0.394740\pi\)
\(788\) 0 0
\(789\) 12.6382 + 10.6047i 0.449930 + 0.377536i
\(790\) 0 0
\(791\) 4.30541 7.45718i 0.153083 0.265147i
\(792\) 0 0
\(793\) 1.26920 + 7.19799i 0.0450706 + 0.255608i
\(794\) 0 0
\(795\) −13.6741 4.97697i −0.484971 0.176515i
\(796\) 0 0
\(797\) 18.7939 0.665712 0.332856 0.942978i \(-0.391988\pi\)
0.332856 + 0.942978i \(0.391988\pi\)
\(798\) 0 0
\(799\) −48.9914 −1.73319
\(800\) 0 0
\(801\) 10.4620 + 3.80785i 0.369656 + 0.134544i
\(802\) 0 0
\(803\) −4.01620 22.7770i −0.141729 0.803782i
\(804\) 0 0
\(805\) 1.59967 2.77071i 0.0563810 0.0976547i
\(806\) 0 0
\(807\) 3.22668 + 2.70751i 0.113585 + 0.0953088i
\(808\) 0 0
\(809\) −3.02276 5.23557i −0.106274 0.184073i 0.807984 0.589205i \(-0.200559\pi\)
−0.914258 + 0.405132i \(0.867226\pi\)
\(810\) 0 0
\(811\) 8.41370 3.06233i 0.295445 0.107533i −0.190045 0.981775i \(-0.560863\pi\)
0.485490 + 0.874242i \(0.338641\pi\)
\(812\) 0 0
\(813\) −1.59105 + 9.02330i −0.0558006 + 0.316461i
\(814\) 0 0
\(815\) −13.0287 + 10.9324i −0.456375 + 0.382944i
\(816\) 0 0
\(817\) −35.2181 20.6804i −1.23213 0.723514i
\(818\) 0 0
\(819\) 0.847296 0.710966i 0.0296069 0.0248432i
\(820\) 0 0
\(821\) 1.41416 8.02011i 0.0493546 0.279904i −0.950135 0.311838i \(-0.899055\pi\)
0.999490 + 0.0319338i \(0.0101666\pi\)
\(822\) 0 0
\(823\) −2.48380 + 0.904030i −0.0865799 + 0.0315125i −0.384947 0.922939i \(-0.625780\pi\)
0.298367 + 0.954451i \(0.403558\pi\)
\(824\) 0 0
\(825\) −6.27972 10.8768i −0.218632 0.378681i
\(826\) 0 0
\(827\) 28.1464 + 23.6176i 0.978745 + 0.821265i 0.983900 0.178722i \(-0.0571963\pi\)
−0.00515463 + 0.999987i \(0.501641\pi\)
\(828\) 0 0
\(829\) 21.8717 37.8829i 0.759636 1.31573i −0.183401 0.983038i \(-0.558711\pi\)
0.943037 0.332689i \(-0.107956\pi\)
\(830\) 0 0
\(831\) −3.90626 22.1535i −0.135507 0.768496i
\(832\) 0 0
\(833\) −23.7062 8.62835i −0.821371 0.298955i
\(834\) 0 0
\(835\) −7.43376 −0.257256
\(836\) 0 0
\(837\) −6.46791 −0.223564
\(838\) 0 0
\(839\) 12.9508 + 4.71372i 0.447113 + 0.162736i 0.555757 0.831345i \(-0.312429\pi\)
−0.108644 + 0.994081i \(0.534651\pi\)
\(840\) 0 0
\(841\) 14.1729 + 80.3787i 0.488722 + 2.77168i
\(842\) 0 0
\(843\) 11.7640 20.3758i 0.405173 0.701781i
\(844\) 0 0
\(845\) 10.4534 + 8.77141i 0.359607 + 0.301746i
\(846\) 0 0
\(847\) −1.48545 2.57288i −0.0510407 0.0884052i
\(848\) 0 0
\(849\) 25.1339 9.14798i 0.862592 0.313958i
\(850\) 0 0
\(851\) −1.85962 + 10.5464i −0.0637470 + 0.361527i
\(852\) 0 0
\(853\) 8.09673 6.79397i 0.277227 0.232621i −0.493564 0.869710i \(-0.664306\pi\)
0.770790 + 0.637089i \(0.219862\pi\)
\(854\) 0 0
\(855\) 1.96791 + 5.53320i 0.0673011 + 0.189231i
\(856\) 0 0
\(857\) 28.2342 23.6913i 0.964461 0.809279i −0.0172120 0.999852i \(-0.505479\pi\)
0.981673 + 0.190573i \(0.0610346\pi\)
\(858\) 0 0
\(859\) 6.09745 34.5803i 0.208042 1.17987i −0.684538 0.728977i \(-0.739996\pi\)
0.892580 0.450889i \(-0.148893\pi\)
\(860\) 0 0
\(861\) 0.926022 0.337044i 0.0315587 0.0114864i
\(862\) 0 0
\(863\) 1.50846 + 2.61272i 0.0513484 + 0.0889381i 0.890557 0.454871i \(-0.150315\pi\)
−0.839209 + 0.543809i \(0.816981\pi\)
\(864\) 0 0
\(865\) −13.3439 11.1969i −0.453706 0.380705i
\(866\) 0 0
\(867\) 1.13681 1.96902i 0.0386081 0.0668713i
\(868\) 0 0
\(869\) −2.14227 12.1494i −0.0726717 0.412142i
\(870\) 0 0
\(871\) 12.5594 + 4.57126i 0.425560 + 0.154891i
\(872\) 0 0
\(873\) 6.70233 0.226840
\(874\) 0 0
\(875\) 7.19759 0.243323
\(876\) 0 0
\(877\) −54.6878 19.9047i −1.84668 0.672136i −0.986870 0.161517i \(-0.948361\pi\)
−0.859807 0.510619i \(-0.829416\pi\)
\(878\) 0 0
\(879\) −0.0359593 0.203935i −0.00121288 0.00687856i
\(880\) 0 0
\(881\) −12.8191 + 22.2033i −0.431886 + 0.748048i −0.997036 0.0769402i \(-0.975485\pi\)
0.565150 + 0.824988i \(0.308818\pi\)
\(882\) 0 0
\(883\) −15.4886 12.9965i −0.521233 0.437367i 0.343828 0.939033i \(-0.388276\pi\)
−0.865061 + 0.501666i \(0.832721\pi\)
\(884\) 0 0
\(885\) 1.86824 + 3.23589i 0.0628002 + 0.108773i
\(886\) 0 0
\(887\) −19.8332 + 7.21870i −0.665934 + 0.242380i −0.652796 0.757533i \(-0.726404\pi\)
−0.0131379 + 0.999914i \(0.504182\pi\)
\(888\) 0 0
\(889\) −1.50165 + 8.51627i −0.0503637 + 0.285627i
\(890\) 0 0
\(891\) −3.02094 + 2.53487i −0.101205 + 0.0849215i
\(892\) 0 0
\(893\) −54.8722 + 9.25946i −1.83623 + 0.309856i
\(894\) 0 0
\(895\) −15.5706 + 13.0653i −0.520467 + 0.436724i
\(896\) 0 0
\(897\) 1.07057 6.07153i 0.0357454 0.202722i
\(898\) 0 0
\(899\) 63.9240 23.2664i 2.13199 0.775979i
\(900\) 0 0
\(901\) −20.7237 35.8946i −0.690408 1.19582i
\(902\) 0 0
\(903\) 4.68479 + 3.93101i 0.155900 + 0.130816i
\(904\) 0 0
\(905\) −12.5856 + 21.7989i −0.418359 + 0.724619i
\(906\) 0 0
\(907\) −4.48515 25.4365i −0.148927 0.844606i −0.964130 0.265431i \(-0.914486\pi\)
0.815203 0.579175i \(-0.196625\pi\)
\(908\) 0 0
\(909\) 1.81908 + 0.662090i 0.0603350 + 0.0219601i
\(910\) 0 0
\(911\) −15.4415 −0.511600 −0.255800 0.966730i \(-0.582339\pi\)
−0.255800 + 0.966730i \(0.582339\pi\)
\(912\) 0 0
\(913\) −17.7847 −0.588587
\(914\) 0 0
\(915\) 5.46064 + 1.98751i 0.180523 + 0.0657050i
\(916\) 0 0
\(917\) −1.94697 11.0418i −0.0642945 0.364632i
\(918\) 0 0
\(919\) 4.63223 8.02325i 0.152803 0.264663i −0.779454 0.626460i \(-0.784503\pi\)
0.932257 + 0.361797i \(0.117837\pi\)
\(920\) 0 0
\(921\) −11.7344 9.84635i −0.386662 0.324448i
\(922\) 0 0
\(923\) −4.54963 7.88019i −0.149753 0.259380i
\(924\) 0 0
\(925\) −8.80928 + 3.20631i −0.289647 + 0.105423i
\(926\) 0 0
\(927\) −0.180045 + 1.02108i −0.00591345 + 0.0335368i
\(928\) 0 0
\(929\) −14.0974 + 11.8292i −0.462522 + 0.388102i −0.844058 0.536252i \(-0.819840\pi\)
0.381536 + 0.924354i \(0.375395\pi\)
\(930\) 0 0
\(931\) −28.1826 5.18355i −0.923646 0.169884i
\(932\) 0 0
\(933\) −11.9834 + 10.0553i −0.392319 + 0.329194i
\(934\) 0 0
\(935\) −3.54054 + 20.0794i −0.115788 + 0.656668i
\(936\) 0 0
\(937\) −7.37851 + 2.68556i −0.241045 + 0.0877333i −0.459718 0.888065i \(-0.652050\pi\)
0.218673 + 0.975798i \(0.429827\pi\)
\(938\) 0 0
\(939\) −5.08125 8.80099i −0.165820 0.287209i
\(940\) 0 0
\(941\) −44.7656 37.5628i −1.45932 1.22451i −0.925408 0.378972i \(-0.876278\pi\)
−0.533910 0.845542i \(-0.679278\pi\)
\(942\) 0 0
\(943\) 2.74644 4.75698i 0.0894365 0.154909i
\(944\) 0 0
\(945\) −0.152704 0.866025i −0.00496745 0.0281718i
\(946\) 0 0
\(947\) −33.8558 12.3225i −1.10017 0.400428i −0.272789 0.962074i \(-0.587946\pi\)
−0.827377 + 0.561646i \(0.810168\pi\)
\(948\) 0 0
\(949\) 9.93851 0.322618
\(950\) 0 0
\(951\) −7.64765 −0.247992
\(952\) 0 0
\(953\) −12.2138 4.44545i −0.395643 0.144002i 0.136534 0.990635i \(-0.456404\pi\)
−0.532177 + 0.846633i \(0.678626\pi\)
\(954\) 0 0
\(955\) −2.00072 11.3466i −0.0647416 0.367168i
\(956\) 0 0
\(957\) 20.7383 35.9198i 0.670374 1.16112i
\(958\) 0 0
\(959\) −5.27332 4.42484i −0.170284 0.142886i
\(960\) 0 0
\(961\) −5.41694 9.38241i −0.174740 0.302658i
\(962\) 0 0
\(963\) −11.4757 + 4.17680i −0.369798 + 0.134595i
\(964\) 0 0
\(965\) −3.96766 + 22.5017i −0.127724 + 0.724356i
\(966\) 0 0
\(967\) −38.5428 + 32.3413i −1.23945 + 1.04003i −0.241887 + 0.970304i \(0.577766\pi\)
−0.997567 + 0.0697207i \(0.977789\pi\)
\(968\) 0 0
\(969\) −5.83662 + 15.6759i −0.187499 + 0.503584i
\(970\) 0 0
\(971\) 23.5155 19.7318i 0.754648 0.633225i −0.182080 0.983284i \(-0.558283\pi\)
0.936728 + 0.350059i \(0.113839\pi\)
\(972\) 0 0
\(973\) −1.22193 + 6.92993i −0.0391734 + 0.222163i
\(974\) 0 0
\(975\) 5.07145 1.84586i 0.162416 0.0591147i
\(976\) 0 0
\(977\) 17.5403 + 30.3807i 0.561164 + 0.971964i 0.997395 + 0.0721297i \(0.0229796\pi\)
−0.436231 + 0.899834i \(0.643687\pi\)
\(978\) 0 0
\(979\) 33.6334 + 28.2218i 1.07493 + 0.901972i
\(980\) 0 0
\(981\) 2.01367 3.48778i 0.0642916 0.111356i
\(982\) 0 0
\(983\) −3.26130 18.4957i −0.104019 0.589922i −0.991608 0.129285i \(-0.958732\pi\)
0.887588 0.460638i \(-0.152379\pi\)
\(984\) 0 0
\(985\) 5.71941 + 2.08169i 0.182235 + 0.0663283i
\(986\) 0 0
\(987\) 8.33275 0.265234
\(988\) 0 0
\(989\) 34.0880 1.08394
\(990\) 0 0
\(991\) −12.7208 4.62998i −0.404088 0.147076i 0.131977 0.991253i \(-0.457868\pi\)
−0.536065 + 0.844177i \(0.680090\pi\)
\(992\) 0 0
\(993\) 0.713011 + 4.04369i 0.0226267 + 0.128323i
\(994\) 0 0
\(995\) 5.42081 9.38911i 0.171851 0.297655i
\(996\) 0 0
\(997\) 5.29086 + 4.43956i 0.167563 + 0.140602i 0.722713 0.691148i \(-0.242895\pi\)
−0.555150 + 0.831750i \(0.687339\pi\)
\(998\) 0 0
\(999\) 1.47178 + 2.54920i 0.0465651 + 0.0806531i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.bo.b.481.1 6
4.3 odd 2 57.2.i.a.25.1 yes 6
12.11 even 2 171.2.u.a.82.1 6
19.16 even 9 inner 912.2.bo.b.529.1 6
76.15 even 18 1083.2.a.n.1.2 3
76.23 odd 18 1083.2.a.m.1.2 3
76.35 odd 18 57.2.i.a.16.1 6
228.23 even 18 3249.2.a.w.1.2 3
228.35 even 18 171.2.u.a.73.1 6
228.167 odd 18 3249.2.a.x.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.i.a.16.1 6 76.35 odd 18
57.2.i.a.25.1 yes 6 4.3 odd 2
171.2.u.a.73.1 6 228.35 even 18
171.2.u.a.82.1 6 12.11 even 2
912.2.bo.b.481.1 6 1.1 even 1 trivial
912.2.bo.b.529.1 6 19.16 even 9 inner
1083.2.a.m.1.2 3 76.23 odd 18
1083.2.a.n.1.2 3 76.15 even 18
3249.2.a.w.1.2 3 228.23 even 18
3249.2.a.x.1.2 3 228.167 odd 18