Properties

Label 912.2.bo.b
Level $912$
Weight $2$
Character orbit 912.bo
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [912,2,Mod(289,912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("912.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(912, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bo (of order \(9\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{18}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{18} q^{3} + ( - \zeta_{18}^{5} - \zeta_{18}^{4} + \cdots - 1) q^{5} + (\zeta_{18}^{3} - \zeta_{18}^{2} + \cdots - 1) q^{7} + \zeta_{18}^{2} q^{9} + (2 \zeta_{18}^{5} + \cdots + 2 \zeta_{18}) q^{11} + \cdots + ( - \zeta_{18}^{5} + 3 \zeta_{18}^{4} + \cdots - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 3 q^{7} - 3 q^{11} - 6 q^{13} - 6 q^{15} - 12 q^{17} - 18 q^{19} + 3 q^{21} + 9 q^{23} - 3 q^{27} + 12 q^{29} + 24 q^{31} + 3 q^{33} + 6 q^{35} + 12 q^{37} + 6 q^{39} + 6 q^{41} - 18 q^{43}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(-\zeta_{18}^{5}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.173648 0.984808i
−0.173648 + 0.984808i
0.939693 + 0.342020i
0.939693 0.342020i
−0.766044 0.642788i
−0.766044 + 0.642788i
0 0.173648 + 0.984808i 0 −1.93969 + 1.62760i 0 0.266044 0.460802i 0 −0.939693 + 0.342020i 0
385.1 0 0.173648 0.984808i 0 −1.93969 1.62760i 0 0.266044 + 0.460802i 0 −0.939693 0.342020i 0
481.1 0 −0.939693 0.342020i 0 −0.233956 1.32683i 0 −0.326352 + 0.565258i 0 0.766044 + 0.642788i 0
529.1 0 −0.939693 + 0.342020i 0 −0.233956 + 1.32683i 0 −0.326352 0.565258i 0 0.766044 0.642788i 0
625.1 0 0.766044 + 0.642788i 0 −0.826352 + 0.300767i 0 −1.43969 2.49362i 0 0.173648 + 0.984808i 0
769.1 0 0.766044 0.642788i 0 −0.826352 0.300767i 0 −1.43969 + 2.49362i 0 0.173648 0.984808i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.bo.b 6
4.b odd 2 1 57.2.i.a 6
12.b even 2 1 171.2.u.a 6
19.e even 9 1 inner 912.2.bo.b 6
76.k even 18 1 1083.2.a.n 3
76.l odd 18 1 57.2.i.a 6
76.l odd 18 1 1083.2.a.m 3
228.u odd 18 1 3249.2.a.x 3
228.v even 18 1 171.2.u.a 6
228.v even 18 1 3249.2.a.w 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
57.2.i.a 6 4.b odd 2 1
57.2.i.a 6 76.l odd 18 1
171.2.u.a 6 12.b even 2 1
171.2.u.a 6 228.v even 18 1
912.2.bo.b 6 1.a even 1 1 trivial
912.2.bo.b 6 19.e even 9 1 inner
1083.2.a.m 3 76.l odd 18 1
1083.2.a.n 3 76.k even 18 1
3249.2.a.w 3 228.v even 18 1
3249.2.a.x 3 228.u odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 6T_{5}^{5} + 18T_{5}^{4} + 30T_{5}^{3} + 36T_{5}^{2} + 27T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} + 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} + 3 T^{5} + \cdots + 1369 \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$17$ \( T^{6} + 12 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$19$ \( T^{6} + 18 T^{5} + \cdots + 6859 \) Copy content Toggle raw display
$23$ \( T^{6} - 9 T^{5} + \cdots + 5329 \) Copy content Toggle raw display
$29$ \( T^{6} - 12 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$31$ \( T^{6} - 24 T^{5} + \cdots + 239121 \) Copy content Toggle raw display
$37$ \( (T^{3} - 6 T^{2} - 9 T + 51)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 6 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$43$ \( T^{6} + 18 T^{5} + \cdots + 361 \) Copy content Toggle raw display
$47$ \( T^{6} - 33 T^{5} + \cdots + 45369 \) Copy content Toggle raw display
$53$ \( T^{6} + 24 T^{5} + \cdots + 83521 \) Copy content Toggle raw display
$59$ \( T^{6} + 54 T^{4} + \cdots + 7921 \) Copy content Toggle raw display
$61$ \( T^{6} + 21 T^{5} + \cdots + 1369 \) Copy content Toggle raw display
$67$ \( T^{6} + 30 T^{5} + \cdots + 87616 \) Copy content Toggle raw display
$71$ \( T^{6} + 18 T^{5} + \cdots + 23409 \) Copy content Toggle raw display
$73$ \( T^{6} + 27 T^{5} + \cdots + 11881 \) Copy content Toggle raw display
$79$ \( T^{6} + 12 T^{5} + \cdots + 2809 \) Copy content Toggle raw display
$83$ \( T^{6} + 15 T^{5} + \cdots + 2601 \) Copy content Toggle raw display
$89$ \( T^{6} - 45 T^{5} + \cdots + 1265625 \) Copy content Toggle raw display
$97$ \( T^{6} - 21 T^{5} + \cdots + 72361 \) Copy content Toggle raw display
show more
show less