Properties

Label 912.2.bn.g
Level $912$
Weight $2$
Character orbit 912.bn
Analytic conductor $7.282$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bn (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 1) q^{3} + \beta_1 q^{5} + ( - \beta_{3} + 2 \beta_1 - 2) q^{7} + (2 \beta_{3} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} - 1) q^{3} + \beta_1 q^{5} + ( - \beta_{3} + 2 \beta_1 - 2) q^{7} + (2 \beta_{3} - 1) q^{9} + (\beta_{3} + 2 \beta_{2} - 1) q^{11} + (2 \beta_{2} - 4) q^{13} + ( - 2 \beta_{2} - \beta_1 + 2) q^{15} + (2 \beta_{2} - 2 \beta_1 + 2) q^{17} + (3 \beta_{3} + \beta_{2} - 3 \beta_1) q^{19} + (3 \beta_{3} - 4 \beta_{2} - 2 \beta_1 + 4) q^{21} + (5 \beta_{3} - 5 \beta_1) q^{23} - 3 \beta_{2} q^{25} + ( - \beta_{3} + 5) q^{27} + ( - \beta_{3} - \beta_1) q^{29} + 3 \beta_{3} q^{31} + ( - 2 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 3) q^{33} + (2 \beta_{2} - 2 \beta_1 + 2) q^{35} + (3 \beta_{3} + 4 \beta_{2} - 2) q^{37} + (2 \beta_{3} - 2 \beta_{2} + 2 \beta_1 + 4) q^{39} + ( - 3 \beta_{2} + 3) q^{41} + (4 \beta_{3} + 4 \beta_{2} - 2 \beta_1 - 4) q^{43} + (4 \beta_{2} - \beta_1 - 4) q^{45} + ( - 7 \beta_{3} - 2 \beta_{2} + 7 \beta_1 + 4) q^{47} + (4 \beta_{3} - 8 \beta_1 + 3) q^{49} + ( - 4 \beta_{3} + 2 \beta_{2} + 4 \beta_1 - 6) q^{51} + (2 \beta_{3} + 6 \beta_{2} + 2 \beta_1) q^{53} + (2 \beta_{3} + 2 \beta_{2} - \beta_1 - 2) q^{55} + ( - 4 \beta_{3} + 5 \beta_{2} + 4 \beta_1) q^{57} + ( - 2 \beta_{3} - 9 \beta_{2} + \beta_1 + 9) q^{59} + ( - \beta_{3} + 4 \beta_{2} - \beta_1) q^{61} + ( - 3 \beta_{3} + 8 \beta_{2} - 2 \beta_1 - 2) q^{63} + (2 \beta_{3} - 4 \beta_1) q^{65} + (3 \beta_{3} - \beta_{2} - 3 \beta_1 + 2) q^{67} + ( - 5 \beta_{3} + 10 \beta_{2} + 5 \beta_1) q^{69} + ( - 6 \beta_{2} + 6) q^{71} + (8 \beta_{3} - \beta_{2} - 4 \beta_1 + 1) q^{73} + (3 \beta_{3} + 3 \beta_{2} - 3 \beta_1) q^{75} + \beta_{3} q^{77} + 6 \beta_1 q^{79} + ( - 4 \beta_{3} - 7) q^{81} + (\beta_{3} + 18 \beta_{2} - 9) q^{83} + (2 \beta_{3} - 4 \beta_{2} + 2 \beta_1) q^{85} + (\beta_{3} + 2 \beta_{2} + \beta_1 - 4) q^{87} + (2 \beta_{3} - 12 \beta_{2} + 2 \beta_1) q^{89} + (6 \beta_{3} - 4 \beta_{2} - 6 \beta_1 + 8) q^{91} + ( - 3 \beta_{3} + 6) q^{93} + (\beta_{3} - 6) q^{95} + ( - 3 \beta_{2} + 6 \beta_1 - 3) q^{97} + (\beta_{3} - 2 \beta_{2} - 4 \beta_1 - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{3} - 8 q^{7} - 4 q^{9} - 12 q^{13} + 4 q^{15} + 12 q^{17} + 2 q^{19} + 8 q^{21} - 6 q^{25} + 20 q^{27} + 8 q^{33} + 12 q^{35} + 12 q^{39} + 6 q^{41} - 8 q^{43} - 8 q^{45} + 12 q^{47} + 12 q^{49} - 20 q^{51} + 12 q^{53} - 4 q^{55} + 10 q^{57} + 18 q^{59} + 8 q^{61} + 8 q^{63} + 6 q^{67} + 20 q^{69} + 12 q^{71} + 2 q^{73} + 6 q^{75} - 28 q^{81} - 8 q^{85} - 12 q^{87} - 24 q^{89} + 24 q^{91} + 24 q^{93} - 24 q^{95} - 18 q^{97} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(\beta_{2}\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
1.22474 + 0.707107i
−1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 0.707107i
0 −1.00000 1.41421i 0 1.22474 + 0.707107i 0 0.449490 0 −1.00000 + 2.82843i 0
65.2 0 −1.00000 + 1.41421i 0 −1.22474 0.707107i 0 −4.44949 0 −1.00000 2.82843i 0
449.1 0 −1.00000 1.41421i 0 −1.22474 + 0.707107i 0 −4.44949 0 −1.00000 + 2.82843i 0
449.2 0 −1.00000 + 1.41421i 0 1.22474 0.707107i 0 0.449490 0 −1.00000 2.82843i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
57.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.bn.g 4
3.b odd 2 1 912.2.bn.h 4
4.b odd 2 1 114.2.h.e 4
12.b even 2 1 114.2.h.f yes 4
19.d odd 6 1 912.2.bn.h 4
57.f even 6 1 inner 912.2.bn.g 4
76.f even 6 1 114.2.h.f yes 4
228.n odd 6 1 114.2.h.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.h.e 4 4.b odd 2 1
114.2.h.e 4 228.n odd 6 1
114.2.h.f yes 4 12.b even 2 1
114.2.h.f yes 4 76.f even 6 1
912.2.bn.g 4 1.a even 1 1 trivial
912.2.bn.g 4 57.f even 6 1 inner
912.2.bn.h 4 3.b odd 2 1
912.2.bn.h 4 19.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\):

\( T_{5}^{4} - 2T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 2 \) Copy content Toggle raw display
\( T_{17}^{4} - 12T_{17}^{3} + 52T_{17}^{2} - 48T_{17} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 2T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 10T^{2} + 1 \) Copy content Toggle raw display
$13$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + 52 T^{2} - 48 T + 16 \) Copy content Toggle raw display
$19$ \( T^{4} - 2 T^{3} - 15 T^{2} - 38 T + 361 \) Copy content Toggle raw display
$23$ \( T^{4} - 50T^{2} + 2500 \) Copy content Toggle raw display
$29$ \( T^{4} + 6T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T^{2} + 18)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 60T^{2} + 36 \) Copy content Toggle raw display
$41$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 8 T^{3} + 72 T^{2} - 64 T + 64 \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} - 38 T^{2} + \cdots + 7396 \) Copy content Toggle raw display
$53$ \( T^{4} - 12 T^{3} + 132 T^{2} + \cdots + 144 \) Copy content Toggle raw display
$59$ \( T^{4} - 18 T^{3} + 249 T^{2} + \cdots + 5625 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + 54 T^{2} - 80 T + 100 \) Copy content Toggle raw display
$67$ \( T^{4} - 6 T^{3} - 3 T^{2} + 90 T + 225 \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 2 T^{3} + 99 T^{2} + \cdots + 9025 \) Copy content Toggle raw display
$79$ \( T^{4} - 72T^{2} + 5184 \) Copy content Toggle raw display
$83$ \( T^{4} + 490 T^{2} + 58081 \) Copy content Toggle raw display
$89$ \( T^{4} + 24 T^{3} + 456 T^{2} + \cdots + 14400 \) Copy content Toggle raw display
$97$ \( T^{4} + 18 T^{3} + 63 T^{2} + \cdots + 2025 \) Copy content Toggle raw display
show more
show less