Properties

Label 912.2.bn.d
Level $912$
Weight $2$
Character orbit 912.bn
Analytic conductor $7.282$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bn (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \zeta_{6} ) q^{3} + ( -2 - 2 \zeta_{6} ) q^{5} + 2 q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( 2 - \zeta_{6} ) q^{3} + ( -2 - 2 \zeta_{6} ) q^{5} + 2 q^{7} + ( 3 - 3 \zeta_{6} ) q^{9} + ( 1 - 2 \zeta_{6} ) q^{11} + ( -4 + 2 \zeta_{6} ) q^{13} -6 q^{15} + ( -4 - 4 \zeta_{6} ) q^{17} + ( 2 - 5 \zeta_{6} ) q^{19} + ( 4 - 2 \zeta_{6} ) q^{21} + 7 \zeta_{6} q^{25} + ( 3 - 6 \zeta_{6} ) q^{27} + 6 \zeta_{6} q^{29} + ( -4 + 8 \zeta_{6} ) q^{31} -3 \zeta_{6} q^{33} + ( -4 - 4 \zeta_{6} ) q^{35} + ( 4 - 8 \zeta_{6} ) q^{37} + ( -6 + 6 \zeta_{6} ) q^{39} + ( 3 - 3 \zeta_{6} ) q^{41} + ( 8 - 8 \zeta_{6} ) q^{43} + ( -12 + 6 \zeta_{6} ) q^{45} + ( -4 + 2 \zeta_{6} ) q^{47} -3 q^{49} -12 q^{51} -6 \zeta_{6} q^{53} + ( -6 + 6 \zeta_{6} ) q^{55} + ( -1 - 7 \zeta_{6} ) q^{57} + ( 3 - 3 \zeta_{6} ) q^{59} -10 \zeta_{6} q^{61} + ( 6 - 6 \zeta_{6} ) q^{63} + 12 q^{65} + ( -6 + 3 \zeta_{6} ) q^{67} + ( 6 - 6 \zeta_{6} ) q^{71} + ( -5 + 5 \zeta_{6} ) q^{73} + ( 7 + 7 \zeta_{6} ) q^{75} + ( 2 - 4 \zeta_{6} ) q^{77} + ( 8 + 8 \zeta_{6} ) q^{79} -9 \zeta_{6} q^{81} + ( 3 - 6 \zeta_{6} ) q^{83} + 24 \zeta_{6} q^{85} + ( 6 + 6 \zeta_{6} ) q^{87} + 6 \zeta_{6} q^{89} + ( -8 + 4 \zeta_{6} ) q^{91} + 12 \zeta_{6} q^{93} + ( -14 + 16 \zeta_{6} ) q^{95} + ( 5 + 5 \zeta_{6} ) q^{97} + ( -3 - 3 \zeta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 3q^{3} - 6q^{5} + 4q^{7} + 3q^{9} + O(q^{10}) \) \( 2q + 3q^{3} - 6q^{5} + 4q^{7} + 3q^{9} - 6q^{13} - 12q^{15} - 12q^{17} - q^{19} + 6q^{21} + 7q^{25} + 6q^{29} - 3q^{33} - 12q^{35} - 6q^{39} + 3q^{41} + 8q^{43} - 18q^{45} - 6q^{47} - 6q^{49} - 24q^{51} - 6q^{53} - 6q^{55} - 9q^{57} + 3q^{59} - 10q^{61} + 6q^{63} + 24q^{65} - 9q^{67} + 6q^{71} - 5q^{73} + 21q^{75} + 24q^{79} - 9q^{81} + 24q^{85} + 18q^{87} + 6q^{89} - 12q^{91} + 12q^{93} - 12q^{95} + 15q^{97} - 9q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(\zeta_{6}\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 0.866025i 0 −3.00000 1.73205i 0 2.00000 0 1.50000 2.59808i 0
449.1 0 1.50000 + 0.866025i 0 −3.00000 + 1.73205i 0 2.00000 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
57.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.bn.d 2
3.b odd 2 1 912.2.bn.b 2
4.b odd 2 1 114.2.h.a 2
12.b even 2 1 114.2.h.d yes 2
19.d odd 6 1 912.2.bn.b 2
57.f even 6 1 inner 912.2.bn.d 2
76.f even 6 1 114.2.h.d yes 2
228.n odd 6 1 114.2.h.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.h.a 2 4.b odd 2 1
114.2.h.a 2 228.n odd 6 1
114.2.h.d yes 2 12.b even 2 1
114.2.h.d yes 2 76.f even 6 1
912.2.bn.b 2 3.b odd 2 1
912.2.bn.b 2 19.d odd 6 1
912.2.bn.d 2 1.a even 1 1 trivial
912.2.bn.d 2 57.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(912, [\chi])\):

\( T_{5}^{2} + 6 T_{5} + 12 \)
\( T_{7} - 2 \)
\( T_{17}^{2} + 12 T_{17} + 48 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 3 - 3 T + T^{2} \)
$5$ \( 12 + 6 T + T^{2} \)
$7$ \( ( -2 + T )^{2} \)
$11$ \( 3 + T^{2} \)
$13$ \( 12 + 6 T + T^{2} \)
$17$ \( 48 + 12 T + T^{2} \)
$19$ \( 19 + T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( 36 - 6 T + T^{2} \)
$31$ \( 48 + T^{2} \)
$37$ \( 48 + T^{2} \)
$41$ \( 9 - 3 T + T^{2} \)
$43$ \( 64 - 8 T + T^{2} \)
$47$ \( 12 + 6 T + T^{2} \)
$53$ \( 36 + 6 T + T^{2} \)
$59$ \( 9 - 3 T + T^{2} \)
$61$ \( 100 + 10 T + T^{2} \)
$67$ \( 27 + 9 T + T^{2} \)
$71$ \( 36 - 6 T + T^{2} \)
$73$ \( 25 + 5 T + T^{2} \)
$79$ \( 192 - 24 T + T^{2} \)
$83$ \( 27 + T^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( 75 - 15 T + T^{2} \)
show more
show less