Properties

Label 912.2.bb.e.559.1
Level $912$
Weight $2$
Character 912.559
Analytic conductor $7.282$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.954288.1
Defining polynomial: \(x^{6} - x^{5} - 2 x^{4} + 3 x^{3} - 6 x^{2} - 9 x + 27\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.1
Root \(0.403374 + 1.68443i\) of defining polynomial
Character \(\chi\) \(=\) 912.559
Dual form 912.2.bb.e.31.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.66044 + 2.87597i) q^{5} +2.71781i q^{7} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.66044 + 2.87597i) q^{5} +2.71781i q^{7} +(-0.500000 - 0.866025i) q^{9} +0.985762i q^{11} +(4.33502 - 2.50283i) q^{13} +(-1.66044 - 2.87597i) q^{15} +(-2.51414 + 4.35461i) q^{17} +(-0.193252 + 4.35461i) q^{19} +(-2.35369 - 1.35891i) q^{21} +(-3.68872 + 2.12968i) q^{23} +(-3.01414 - 5.22064i) q^{25} +1.00000 q^{27} +(5.83502 - 3.36885i) q^{29} -2.32088 q^{31} +(-0.853695 - 0.492881i) q^{33} +(-7.81635 - 4.51277i) q^{35} -8.27925i q^{37} +5.00565i q^{39} +(-9.96265 - 5.75194i) q^{41} +(-9.48133 - 5.47405i) q^{43} +3.32088 q^{45} +(-6.41478 + 3.70357i) q^{47} -0.386505 q^{49} +(-2.51414 - 4.35461i) q^{51} +(5.14631 - 2.97122i) q^{53} +(-2.83502 - 1.63680i) q^{55} +(-3.67458 - 2.34467i) q^{57} +(1.66044 - 2.87597i) q^{59} +(3.62763 + 6.28324i) q^{61} +(2.35369 - 1.35891i) q^{63} +16.6232i q^{65} +(6.67458 + 11.5607i) q^{67} -4.25936i q^{69} +(-2.19325 + 3.79882i) q^{71} +(-2.52827 + 4.37910i) q^{73} +6.02827 q^{75} -2.67912 q^{77} +(5.48133 - 9.49394i) q^{79} +(-0.500000 + 0.866025i) q^{81} +8.70923i q^{83} +(-8.34916 - 14.4612i) q^{85} +6.73770i q^{87} +(-6.10896 + 3.52701i) q^{89} +(6.80221 + 11.7818i) q^{91} +(1.16044 - 2.00994i) q^{93} +(-12.2029 - 7.78637i) q^{95} +(-7.12763 - 4.11514i) q^{97} +(0.853695 - 0.492881i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{3} - 2q^{5} - 3q^{9} + O(q^{10}) \) \( 6q - 3q^{3} - 2q^{5} - 3q^{9} - 3q^{13} - 2q^{15} - 2q^{17} - 4q^{19} - 9q^{21} + 12q^{23} - 5q^{25} + 6q^{27} + 6q^{29} + 2q^{31} + 6q^{35} - 12q^{41} - 33q^{43} + 4q^{45} - 18q^{47} - 8q^{49} - 2q^{51} + 36q^{53} + 12q^{55} - q^{57} + 2q^{59} + 3q^{61} + 9q^{63} + 19q^{67} - 16q^{71} + 11q^{73} + 10q^{75} - 32q^{77} + 9q^{79} - 3q^{81} - 8q^{85} + 6q^{89} + q^{91} - q^{93} - 26q^{95} - 24q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −1.66044 + 2.87597i −0.742572 + 1.28617i 0.208748 + 0.977969i \(0.433061\pi\)
−0.951320 + 0.308204i \(0.900272\pi\)
\(6\) 0 0
\(7\) 2.71781i 1.02724i 0.858019 + 0.513618i \(0.171695\pi\)
−0.858019 + 0.513618i \(0.828305\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 0.985762i 0.297218i 0.988896 + 0.148609i \(0.0474796\pi\)
−0.988896 + 0.148609i \(0.952520\pi\)
\(12\) 0 0
\(13\) 4.33502 2.50283i 1.20232 0.694159i 0.241248 0.970463i \(-0.422443\pi\)
0.961070 + 0.276304i \(0.0891098\pi\)
\(14\) 0 0
\(15\) −1.66044 2.87597i −0.428724 0.742572i
\(16\) 0 0
\(17\) −2.51414 + 4.35461i −0.609768 + 1.05615i 0.381511 + 0.924364i \(0.375404\pi\)
−0.991278 + 0.131784i \(0.957929\pi\)
\(18\) 0 0
\(19\) −0.193252 + 4.35461i −0.0443351 + 0.999017i
\(20\) 0 0
\(21\) −2.35369 1.35891i −0.513618 0.296538i
\(22\) 0 0
\(23\) −3.68872 + 2.12968i −0.769150 + 0.444069i −0.832571 0.553918i \(-0.813132\pi\)
0.0634210 + 0.997987i \(0.479799\pi\)
\(24\) 0 0
\(25\) −3.01414 5.22064i −0.602827 1.04413i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.83502 3.36885i 1.08354 0.625580i 0.151688 0.988428i \(-0.451529\pi\)
0.931848 + 0.362848i \(0.118196\pi\)
\(30\) 0 0
\(31\) −2.32088 −0.416843 −0.208422 0.978039i \(-0.566833\pi\)
−0.208422 + 0.978039i \(0.566833\pi\)
\(32\) 0 0
\(33\) −0.853695 0.492881i −0.148609 0.0857995i
\(34\) 0 0
\(35\) −7.81635 4.51277i −1.32120 0.762797i
\(36\) 0 0
\(37\) 8.27925i 1.36110i −0.732701 0.680550i \(-0.761741\pi\)
0.732701 0.680550i \(-0.238259\pi\)
\(38\) 0 0
\(39\) 5.00565i 0.801546i
\(40\) 0 0
\(41\) −9.96265 5.75194i −1.55591 0.898302i −0.997642 0.0686385i \(-0.978134\pi\)
−0.558263 0.829664i \(-0.688532\pi\)
\(42\) 0 0
\(43\) −9.48133 5.47405i −1.44589 0.834784i −0.447656 0.894206i \(-0.647741\pi\)
−0.998233 + 0.0594217i \(0.981074\pi\)
\(44\) 0 0
\(45\) 3.32088 0.495048
\(46\) 0 0
\(47\) −6.41478 + 3.70357i −0.935692 + 0.540222i −0.888607 0.458669i \(-0.848326\pi\)
−0.0470845 + 0.998891i \(0.514993\pi\)
\(48\) 0 0
\(49\) −0.386505 −0.0552150
\(50\) 0 0
\(51\) −2.51414 4.35461i −0.352050 0.609768i
\(52\) 0 0
\(53\) 5.14631 2.97122i 0.706899 0.408129i −0.103013 0.994680i \(-0.532848\pi\)
0.809912 + 0.586551i \(0.199515\pi\)
\(54\) 0 0
\(55\) −2.83502 1.63680i −0.382274 0.220706i
\(56\) 0 0
\(57\) −3.67458 2.34467i −0.486710 0.310559i
\(58\) 0 0
\(59\) 1.66044 2.87597i 0.216171 0.374419i −0.737463 0.675387i \(-0.763976\pi\)
0.953634 + 0.300968i \(0.0973097\pi\)
\(60\) 0 0
\(61\) 3.62763 + 6.28324i 0.464471 + 0.804487i 0.999177 0.0405508i \(-0.0129113\pi\)
−0.534707 + 0.845038i \(0.679578\pi\)
\(62\) 0 0
\(63\) 2.35369 1.35891i 0.296538 0.171206i
\(64\) 0 0
\(65\) 16.6232i 2.06185i
\(66\) 0 0
\(67\) 6.67458 + 11.5607i 0.815430 + 1.41237i 0.909019 + 0.416755i \(0.136833\pi\)
−0.0935894 + 0.995611i \(0.529834\pi\)
\(68\) 0 0
\(69\) 4.25936i 0.512767i
\(70\) 0 0
\(71\) −2.19325 + 3.79882i −0.260291 + 0.450838i −0.966319 0.257346i \(-0.917152\pi\)
0.706028 + 0.708184i \(0.250485\pi\)
\(72\) 0 0
\(73\) −2.52827 + 4.37910i −0.295912 + 0.512535i −0.975197 0.221340i \(-0.928957\pi\)
0.679285 + 0.733875i \(0.262290\pi\)
\(74\) 0 0
\(75\) 6.02827 0.696085
\(76\) 0 0
\(77\) −2.67912 −0.305314
\(78\) 0 0
\(79\) 5.48133 9.49394i 0.616697 1.06815i −0.373387 0.927676i \(-0.621804\pi\)
0.990084 0.140476i \(-0.0448631\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 8.70923i 0.955962i 0.878370 + 0.477981i \(0.158631\pi\)
−0.878370 + 0.477981i \(0.841369\pi\)
\(84\) 0 0
\(85\) −8.34916 14.4612i −0.905593 1.56853i
\(86\) 0 0
\(87\) 6.73770i 0.722358i
\(88\) 0 0
\(89\) −6.10896 + 3.52701i −0.647548 + 0.373862i −0.787516 0.616294i \(-0.788633\pi\)
0.139968 + 0.990156i \(0.455300\pi\)
\(90\) 0 0
\(91\) 6.80221 + 11.7818i 0.713065 + 1.23507i
\(92\) 0 0
\(93\) 1.16044 2.00994i 0.120332 0.208422i
\(94\) 0 0
\(95\) −12.2029 7.78637i −1.25199 0.798865i
\(96\) 0 0
\(97\) −7.12763 4.11514i −0.723701 0.417829i 0.0924121 0.995721i \(-0.470542\pi\)
−0.816113 + 0.577892i \(0.803876\pi\)
\(98\) 0 0
\(99\) 0.853695 0.492881i 0.0857995 0.0495364i
\(100\) 0 0
\(101\) 2.83502 + 4.91040i 0.282095 + 0.488603i 0.971901 0.235392i \(-0.0756373\pi\)
−0.689805 + 0.723995i \(0.742304\pi\)
\(102\) 0 0
\(103\) 10.1222 0.997367 0.498683 0.866784i \(-0.333817\pi\)
0.498683 + 0.866784i \(0.333817\pi\)
\(104\) 0 0
\(105\) 7.81635 4.51277i 0.762797 0.440401i
\(106\) 0 0
\(107\) −0.971726 −0.0939403 −0.0469702 0.998896i \(-0.514957\pi\)
−0.0469702 + 0.998896i \(0.514957\pi\)
\(108\) 0 0
\(109\) −0.579757 0.334723i −0.0555307 0.0320607i 0.471978 0.881611i \(-0.343540\pi\)
−0.527508 + 0.849550i \(0.676874\pi\)
\(110\) 0 0
\(111\) 7.17004 + 4.13963i 0.680550 + 0.392916i
\(112\) 0 0
\(113\) 8.39291i 0.789539i 0.918780 + 0.394769i \(0.129175\pi\)
−0.918780 + 0.394769i \(0.870825\pi\)
\(114\) 0 0
\(115\) 14.1449i 1.31901i
\(116\) 0 0
\(117\) −4.33502 2.50283i −0.400773 0.231386i
\(118\) 0 0
\(119\) −11.8350 6.83295i −1.08491 0.626376i
\(120\) 0 0
\(121\) 10.0283 0.911661
\(122\) 0 0
\(123\) 9.96265 5.75194i 0.898302 0.518635i
\(124\) 0 0
\(125\) 3.41478 0.305427
\(126\) 0 0
\(127\) −3.70739 6.42139i −0.328978 0.569806i 0.653332 0.757072i \(-0.273371\pi\)
−0.982309 + 0.187266i \(0.940037\pi\)
\(128\) 0 0
\(129\) 9.48133 5.47405i 0.834784 0.481963i
\(130\) 0 0
\(131\) 16.5424 + 9.55077i 1.44532 + 0.834454i 0.998197 0.0600198i \(-0.0191164\pi\)
0.447120 + 0.894474i \(0.352450\pi\)
\(132\) 0 0
\(133\) −11.8350 0.525224i −1.02623 0.0455427i
\(134\) 0 0
\(135\) −1.66044 + 2.87597i −0.142908 + 0.247524i
\(136\) 0 0
\(137\) 10.5424 + 18.2600i 0.900699 + 1.56006i 0.826589 + 0.562806i \(0.190278\pi\)
0.0741101 + 0.997250i \(0.476388\pi\)
\(138\) 0 0
\(139\) −10.8588 + 6.26931i −0.921028 + 0.531756i −0.883963 0.467557i \(-0.845134\pi\)
−0.0370651 + 0.999313i \(0.511801\pi\)
\(140\) 0 0
\(141\) 7.40715i 0.623794i
\(142\) 0 0
\(143\) 2.46719 + 4.27330i 0.206317 + 0.357351i
\(144\) 0 0
\(145\) 22.3751i 1.85815i
\(146\) 0 0
\(147\) 0.193252 0.334723i 0.0159392 0.0276075i
\(148\) 0 0
\(149\) 3.04695 5.27747i 0.249616 0.432347i −0.713804 0.700346i \(-0.753029\pi\)
0.963419 + 0.267999i \(0.0863624\pi\)
\(150\) 0 0
\(151\) 12.6983 1.03337 0.516687 0.856174i \(-0.327165\pi\)
0.516687 + 0.856174i \(0.327165\pi\)
\(152\) 0 0
\(153\) 5.02827 0.406512
\(154\) 0 0
\(155\) 3.85369 6.67479i 0.309536 0.536132i
\(156\) 0 0
\(157\) −8.43438 + 14.6088i −0.673137 + 1.16591i 0.303873 + 0.952713i \(0.401720\pi\)
−0.977010 + 0.213195i \(0.931613\pi\)
\(158\) 0 0
\(159\) 5.94244i 0.471266i
\(160\) 0 0
\(161\) −5.78807 10.0252i −0.456164 0.790100i
\(162\) 0 0
\(163\) 16.1932i 1.26835i −0.773189 0.634175i \(-0.781340\pi\)
0.773189 0.634175i \(-0.218660\pi\)
\(164\) 0 0
\(165\) 2.83502 1.63680i 0.220706 0.127425i
\(166\) 0 0
\(167\) −6.68872 11.5852i −0.517588 0.896489i −0.999791 0.0204298i \(-0.993497\pi\)
0.482203 0.876060i \(-0.339837\pi\)
\(168\) 0 0
\(169\) 6.02827 10.4413i 0.463713 0.803175i
\(170\) 0 0
\(171\) 3.86783 2.00994i 0.295780 0.153704i
\(172\) 0 0
\(173\) 10.9572 + 6.32614i 0.833060 + 0.480967i 0.854899 0.518794i \(-0.173619\pi\)
−0.0218394 + 0.999761i \(0.506952\pi\)
\(174\) 0 0
\(175\) 14.1887 8.19186i 1.07257 0.619246i
\(176\) 0 0
\(177\) 1.66044 + 2.87597i 0.124806 + 0.216171i
\(178\) 0 0
\(179\) −0.735663 −0.0549861 −0.0274930 0.999622i \(-0.508752\pi\)
−0.0274930 + 0.999622i \(0.508752\pi\)
\(180\) 0 0
\(181\) 5.42024 3.12938i 0.402883 0.232605i −0.284844 0.958574i \(-0.591942\pi\)
0.687727 + 0.725969i \(0.258608\pi\)
\(182\) 0 0
\(183\) −7.25526 −0.536325
\(184\) 0 0
\(185\) 23.8109 + 13.7472i 1.75061 + 1.01072i
\(186\) 0 0
\(187\) −4.29261 2.47834i −0.313907 0.181234i
\(188\) 0 0
\(189\) 2.71781i 0.197692i
\(190\) 0 0
\(191\) 1.84571i 0.133551i −0.997768 0.0667754i \(-0.978729\pi\)
0.997768 0.0667754i \(-0.0212711\pi\)
\(192\) 0 0
\(193\) −3.92024 2.26335i −0.282185 0.162920i 0.352227 0.935915i \(-0.385424\pi\)
−0.634412 + 0.772995i \(0.718758\pi\)
\(194\) 0 0
\(195\) −14.3961 8.31160i −1.03093 0.595206i
\(196\) 0 0
\(197\) −13.6892 −0.975318 −0.487659 0.873034i \(-0.662149\pi\)
−0.487659 + 0.873034i \(0.662149\pi\)
\(198\) 0 0
\(199\) −2.10389 + 1.21468i −0.149141 + 0.0861067i −0.572714 0.819756i \(-0.694109\pi\)
0.423572 + 0.905862i \(0.360776\pi\)
\(200\) 0 0
\(201\) −13.3492 −0.941577
\(202\) 0 0
\(203\) 9.15591 + 15.8585i 0.642619 + 1.11305i
\(204\) 0 0
\(205\) 33.0848 19.1015i 2.31074 1.33411i
\(206\) 0 0
\(207\) 3.68872 + 2.12968i 0.256383 + 0.148023i
\(208\) 0 0
\(209\) −4.29261 0.190501i −0.296926 0.0131772i
\(210\) 0 0
\(211\) −6.77394 + 11.7328i −0.466337 + 0.807720i −0.999261 0.0384438i \(-0.987760\pi\)
0.532924 + 0.846163i \(0.321093\pi\)
\(212\) 0 0
\(213\) −2.19325 3.79882i −0.150279 0.260291i
\(214\) 0 0
\(215\) 31.4864 18.1787i 2.14735 1.23978i
\(216\) 0 0
\(217\) 6.30773i 0.428197i
\(218\) 0 0
\(219\) −2.52827 4.37910i −0.170845 0.295912i
\(220\) 0 0
\(221\) 25.1698i 1.69310i
\(222\) 0 0
\(223\) −7.80221 + 13.5138i −0.522475 + 0.904953i 0.477183 + 0.878804i \(0.341658\pi\)
−0.999658 + 0.0261490i \(0.991676\pi\)
\(224\) 0 0
\(225\) −3.01414 + 5.22064i −0.200942 + 0.348043i
\(226\) 0 0
\(227\) −16.2926 −1.08138 −0.540689 0.841222i \(-0.681837\pi\)
−0.540689 + 0.841222i \(0.681837\pi\)
\(228\) 0 0
\(229\) 11.3118 0.747506 0.373753 0.927528i \(-0.378071\pi\)
0.373753 + 0.927528i \(0.378071\pi\)
\(230\) 0 0
\(231\) 1.33956 2.32018i 0.0881364 0.152657i
\(232\) 0 0
\(233\) −12.7977 + 22.1662i −0.838404 + 1.45216i 0.0528253 + 0.998604i \(0.483177\pi\)
−0.891229 + 0.453554i \(0.850156\pi\)
\(234\) 0 0
\(235\) 24.5983i 1.60462i
\(236\) 0 0
\(237\) 5.48133 + 9.49394i 0.356050 + 0.616697i
\(238\) 0 0
\(239\) 2.47834i 0.160310i −0.996782 0.0801552i \(-0.974458\pi\)
0.996782 0.0801552i \(-0.0255416\pi\)
\(240\) 0 0
\(241\) −13.9148 + 8.03370i −0.896330 + 0.517496i −0.876008 0.482297i \(-0.839803\pi\)
−0.0203221 + 0.999793i \(0.506469\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0.641769 1.11158i 0.0410011 0.0710160i
\(246\) 0 0
\(247\) 10.0611 + 19.3610i 0.640171 + 1.23191i
\(248\) 0 0
\(249\) −7.54241 4.35461i −0.477981 0.275962i
\(250\) 0 0
\(251\) 2.45213 1.41574i 0.154777 0.0893604i −0.420611 0.907241i \(-0.638184\pi\)
0.575388 + 0.817881i \(0.304851\pi\)
\(252\) 0 0
\(253\) −2.09936 3.63620i −0.131986 0.228606i
\(254\) 0 0
\(255\) 16.6983 1.04569
\(256\) 0 0
\(257\) −2.23113 + 1.28814i −0.139174 + 0.0803521i −0.567970 0.823049i \(-0.692271\pi\)
0.428796 + 0.903401i \(0.358938\pi\)
\(258\) 0 0
\(259\) 22.5015 1.39817
\(260\) 0 0
\(261\) −5.83502 3.36885i −0.361179 0.208527i
\(262\) 0 0
\(263\) 24.7977 + 14.3169i 1.52909 + 0.882821i 0.999400 + 0.0346292i \(0.0110250\pi\)
0.529690 + 0.848191i \(0.322308\pi\)
\(264\) 0 0
\(265\) 19.7342i 1.21226i
\(266\) 0 0
\(267\) 7.05402i 0.431699i
\(268\) 0 0
\(269\) −19.2685 11.1247i −1.17482 0.678282i −0.220009 0.975498i \(-0.570609\pi\)
−0.954810 + 0.297215i \(0.903942\pi\)
\(270\) 0 0
\(271\) 2.67004 + 1.54155i 0.162194 + 0.0936425i 0.578900 0.815399i \(-0.303482\pi\)
−0.416706 + 0.909041i \(0.636816\pi\)
\(272\) 0 0
\(273\) −13.6044 −0.823377
\(274\) 0 0
\(275\) 5.14631 2.97122i 0.310334 0.179171i
\(276\) 0 0
\(277\) 4.25526 0.255674 0.127837 0.991795i \(-0.459197\pi\)
0.127837 + 0.991795i \(0.459197\pi\)
\(278\) 0 0
\(279\) 1.16044 + 2.00994i 0.0694739 + 0.120332i
\(280\) 0 0
\(281\) 13.2366 7.64215i 0.789629 0.455892i −0.0502030 0.998739i \(-0.515987\pi\)
0.839832 + 0.542847i \(0.182654\pi\)
\(282\) 0 0
\(283\) 24.3027 + 14.0312i 1.44465 + 0.834068i 0.998155 0.0607193i \(-0.0193394\pi\)
0.446493 + 0.894787i \(0.352673\pi\)
\(284\) 0 0
\(285\) 12.8446 6.67479i 0.760850 0.395381i
\(286\) 0 0
\(287\) 15.6327 27.0766i 0.922769 1.59828i
\(288\) 0 0
\(289\) −4.14177 7.17375i −0.243633 0.421986i
\(290\) 0 0
\(291\) 7.12763 4.11514i 0.417829 0.241234i
\(292\) 0 0
\(293\) 1.11158i 0.0649390i −0.999473 0.0324695i \(-0.989663\pi\)
0.999473 0.0324695i \(-0.0103372\pi\)
\(294\) 0 0
\(295\) 5.51414 + 9.55077i 0.321045 + 0.556067i
\(296\) 0 0
\(297\) 0.985762i 0.0571997i
\(298\) 0 0
\(299\) −10.6604 + 18.4644i −0.616509 + 1.06783i
\(300\) 0 0
\(301\) 14.8774 25.7685i 0.857521 1.48527i
\(302\) 0 0
\(303\) −5.67004 −0.325735
\(304\) 0 0
\(305\) −24.0939 −1.37961
\(306\) 0 0
\(307\) 12.4485 21.5615i 0.710474 1.23058i −0.254205 0.967150i \(-0.581814\pi\)
0.964679 0.263427i \(-0.0848529\pi\)
\(308\) 0 0
\(309\) −5.06108 + 8.76605i −0.287915 + 0.498683i
\(310\) 0 0
\(311\) 9.06236i 0.513879i −0.966427 0.256940i \(-0.917286\pi\)
0.966427 0.256940i \(-0.0827141\pi\)
\(312\) 0 0
\(313\) 3.19325 + 5.53088i 0.180493 + 0.312624i 0.942049 0.335476i \(-0.108897\pi\)
−0.761555 + 0.648100i \(0.775564\pi\)
\(314\) 0 0
\(315\) 9.02554i 0.508532i
\(316\) 0 0
\(317\) 2.39611 1.38339i 0.134579 0.0776990i −0.431199 0.902257i \(-0.641909\pi\)
0.565778 + 0.824558i \(0.308576\pi\)
\(318\) 0 0
\(319\) 3.32088 + 5.75194i 0.185934 + 0.322047i
\(320\) 0 0
\(321\) 0.485863 0.841540i 0.0271182 0.0469702i
\(322\) 0 0
\(323\) −18.4768 11.7896i −1.02808 0.655993i
\(324\) 0 0
\(325\) −26.1327 15.0877i −1.44958 0.836916i
\(326\) 0 0
\(327\) 0.579757 0.334723i 0.0320607 0.0185102i
\(328\) 0 0
\(329\) −10.0656 17.4342i −0.554936 0.961177i
\(330\) 0 0
\(331\) −27.6610 −1.52038 −0.760192 0.649698i \(-0.774895\pi\)
−0.760192 + 0.649698i \(0.774895\pi\)
\(332\) 0 0
\(333\) −7.17004 + 4.13963i −0.392916 + 0.226850i
\(334\) 0 0
\(335\) −44.3310 −2.42206
\(336\) 0 0
\(337\) 15.9202 + 9.19156i 0.867231 + 0.500696i 0.866427 0.499304i \(-0.166411\pi\)
0.000803838 1.00000i \(0.499744\pi\)
\(338\) 0 0
\(339\) −7.26847 4.19646i −0.394769 0.227920i
\(340\) 0 0
\(341\) 2.28784i 0.123893i
\(342\) 0 0
\(343\) 17.9742i 0.970518i
\(344\) 0 0
\(345\) 12.2498 + 7.07243i 0.659507 + 0.380767i
\(346\) 0 0
\(347\) −4.73153 2.73175i −0.254002 0.146648i 0.367594 0.929987i \(-0.380182\pi\)
−0.621595 + 0.783339i \(0.713515\pi\)
\(348\) 0 0
\(349\) 22.6700 1.21350 0.606750 0.794893i \(-0.292473\pi\)
0.606750 + 0.794893i \(0.292473\pi\)
\(350\) 0 0
\(351\) 4.33502 2.50283i 0.231386 0.133591i
\(352\) 0 0
\(353\) 2.03735 0.108437 0.0542185 0.998529i \(-0.482733\pi\)
0.0542185 + 0.998529i \(0.482733\pi\)
\(354\) 0 0
\(355\) −7.28354 12.6155i −0.386570 0.669559i
\(356\) 0 0
\(357\) 11.8350 6.83295i 0.626376 0.361638i
\(358\) 0 0
\(359\) −30.7175 17.7348i −1.62121 0.936005i −0.986597 0.163174i \(-0.947827\pi\)
−0.634611 0.772832i \(-0.718840\pi\)
\(360\) 0 0
\(361\) −18.9253 1.68308i −0.996069 0.0885831i
\(362\) 0 0
\(363\) −5.01414 + 8.68474i −0.263174 + 0.455831i
\(364\) 0 0
\(365\) −8.39611 14.5425i −0.439472 0.761188i
\(366\) 0 0
\(367\) −1.44398 + 0.833682i −0.0753752 + 0.0435179i −0.537214 0.843446i \(-0.680523\pi\)
0.461839 + 0.886964i \(0.347190\pi\)
\(368\) 0 0
\(369\) 11.5039i 0.598868i
\(370\) 0 0
\(371\) 8.07522 + 13.9867i 0.419245 + 0.726153i
\(372\) 0 0
\(373\) 17.5110i 0.906686i 0.891336 + 0.453343i \(0.149769\pi\)
−0.891336 + 0.453343i \(0.850231\pi\)
\(374\) 0 0
\(375\) −1.70739 + 2.95729i −0.0881692 + 0.152714i
\(376\) 0 0
\(377\) 16.8633 29.2081i 0.868504 1.50429i
\(378\) 0 0
\(379\) −22.4905 −1.15526 −0.577630 0.816298i \(-0.696022\pi\)
−0.577630 + 0.816298i \(0.696022\pi\)
\(380\) 0 0
\(381\) 7.41478 0.379871
\(382\) 0 0
\(383\) −10.1746 + 17.6229i −0.519897 + 0.900488i 0.479836 + 0.877358i \(0.340696\pi\)
−0.999732 + 0.0231292i \(0.992637\pi\)
\(384\) 0 0
\(385\) 4.44852 7.70506i 0.226717 0.392686i
\(386\) 0 0
\(387\) 10.9481i 0.556523i
\(388\) 0 0
\(389\) 11.7881 + 20.4175i 0.597679 + 1.03521i 0.993163 + 0.116738i \(0.0372436\pi\)
−0.395484 + 0.918473i \(0.629423\pi\)
\(390\) 0 0
\(391\) 21.4172i 1.08312i
\(392\) 0 0
\(393\) −16.5424 + 9.55077i −0.834454 + 0.481772i
\(394\) 0 0
\(395\) 18.2029 + 31.5283i 0.915885 + 1.58636i
\(396\) 0 0
\(397\) −16.3633 + 28.3421i −0.821250 + 1.42245i 0.0835014 + 0.996508i \(0.473390\pi\)
−0.904752 + 0.425939i \(0.859944\pi\)
\(398\) 0 0
\(399\) 6.37237 9.98682i 0.319017 0.499966i
\(400\) 0 0
\(401\) −16.3533 9.44158i −0.816645 0.471490i 0.0326134 0.999468i \(-0.489617\pi\)
−0.849258 + 0.527978i \(0.822950\pi\)
\(402\) 0 0
\(403\) −10.0611 + 5.80877i −0.501178 + 0.289355i
\(404\) 0 0
\(405\) −1.66044 2.87597i −0.0825080 0.142908i
\(406\) 0 0
\(407\) 8.16137 0.404544
\(408\) 0 0
\(409\) 15.6646 9.04395i 0.774564 0.447194i −0.0599366 0.998202i \(-0.519090\pi\)
0.834500 + 0.551008i \(0.185757\pi\)
\(410\) 0 0
\(411\) −21.0848 −1.04004
\(412\) 0 0
\(413\) 7.81635 + 4.51277i 0.384617 + 0.222059i
\(414\) 0 0
\(415\) −25.0475 14.4612i −1.22953 0.709871i
\(416\) 0 0
\(417\) 12.5386i 0.614019i
\(418\) 0 0
\(419\) 0.353130i 0.0172515i 0.999963 + 0.00862577i \(0.00274570\pi\)
−0.999963 + 0.00862577i \(0.997254\pi\)
\(420\) 0 0
\(421\) 24.7977 + 14.3169i 1.20856 + 0.697765i 0.962446 0.271474i \(-0.0875112\pi\)
0.246119 + 0.969240i \(0.420845\pi\)
\(422\) 0 0
\(423\) 6.41478 + 3.70357i 0.311897 + 0.180074i
\(424\) 0 0
\(425\) 30.3118 1.47034
\(426\) 0 0
\(427\) −17.0767 + 9.85922i −0.826398 + 0.477121i
\(428\) 0 0
\(429\) −4.93438 −0.238234
\(430\) 0 0
\(431\) 6.41478 + 11.1107i 0.308989 + 0.535185i 0.978141 0.207940i \(-0.0666760\pi\)
−0.669152 + 0.743125i \(0.733343\pi\)
\(432\) 0 0
\(433\) −20.0525 + 11.5773i −0.963664 + 0.556371i −0.897299 0.441424i \(-0.854473\pi\)
−0.0663649 + 0.997795i \(0.521140\pi\)
\(434\) 0 0
\(435\) −19.3774 11.1876i −0.929077 0.536403i
\(436\) 0 0
\(437\) −8.56108 16.4745i −0.409532 0.788082i
\(438\) 0 0
\(439\) −13.0894 + 22.6714i −0.624721 + 1.08205i 0.363874 + 0.931448i \(0.381454\pi\)
−0.988595 + 0.150600i \(0.951879\pi\)
\(440\) 0 0
\(441\) 0.193252 + 0.334723i 0.00920250 + 0.0159392i
\(442\) 0 0
\(443\) 17.2871 9.98074i 0.821337 0.474199i −0.0295402 0.999564i \(-0.509404\pi\)
0.850877 + 0.525364i \(0.176071\pi\)
\(444\) 0 0
\(445\) 23.4256i 1.11048i
\(446\) 0 0
\(447\) 3.04695 + 5.27747i 0.144116 + 0.249616i
\(448\) 0 0
\(449\) 30.3224i 1.43100i −0.698613 0.715500i \(-0.746199\pi\)
0.698613 0.715500i \(-0.253801\pi\)
\(450\) 0 0
\(451\) 5.67004 9.82080i 0.266992 0.462444i
\(452\) 0 0
\(453\) −6.34916 + 10.9971i −0.298309 + 0.516687i
\(454\) 0 0
\(455\) −45.1787 −2.11801
\(456\) 0 0
\(457\) −14.5569 −0.680945 −0.340473 0.940254i \(-0.610587\pi\)
−0.340473 + 0.940254i \(0.610587\pi\)
\(458\) 0 0
\(459\) −2.51414 + 4.35461i −0.117350 + 0.203256i
\(460\) 0 0
\(461\) 18.5147 32.0683i 0.862314 1.49357i −0.00737587 0.999973i \(-0.502348\pi\)
0.869690 0.493599i \(-0.164319\pi\)
\(462\) 0 0
\(463\) 39.4283i 1.83239i 0.400735 + 0.916194i \(0.368755\pi\)
−0.400735 + 0.916194i \(0.631245\pi\)
\(464\) 0 0
\(465\) 3.85369 + 6.67479i 0.178711 + 0.309536i
\(466\) 0 0
\(467\) 6.16620i 0.285338i 0.989770 + 0.142669i \(0.0455684\pi\)
−0.989770 + 0.142669i \(0.954432\pi\)
\(468\) 0 0
\(469\) −31.4198 + 18.1403i −1.45083 + 0.837639i
\(470\) 0 0
\(471\) −8.43438 14.6088i −0.388636 0.673137i
\(472\) 0 0
\(473\) 5.39611 9.34633i 0.248113 0.429745i
\(474\) 0 0
\(475\) 23.3163 12.1165i 1.06983 0.555943i
\(476\) 0 0
\(477\) −5.14631 2.97122i −0.235633 0.136043i
\(478\) 0 0
\(479\) 29.6382 17.1116i 1.35420 0.781849i 0.365367 0.930864i \(-0.380943\pi\)
0.988835 + 0.149015i \(0.0476101\pi\)
\(480\) 0 0
\(481\) −20.7215 35.8907i −0.944820 1.63648i
\(482\) 0 0
\(483\) 11.5761 0.526733
\(484\) 0 0
\(485\) 23.6700 13.6659i 1.07480 0.620537i
\(486\) 0 0
\(487\) −18.0565 −0.818220 −0.409110 0.912485i \(-0.634161\pi\)
−0.409110 + 0.912485i \(0.634161\pi\)
\(488\) 0 0
\(489\) 14.0237 + 8.09661i 0.634175 + 0.366141i
\(490\) 0 0
\(491\) 14.2871 + 8.24869i 0.644770 + 0.372258i 0.786450 0.617654i \(-0.211917\pi\)
−0.141680 + 0.989913i \(0.545250\pi\)
\(492\) 0 0
\(493\) 33.8790i 1.52583i
\(494\) 0 0
\(495\) 3.27360i 0.147137i
\(496\) 0 0
\(497\) −10.3245 5.96085i −0.463117 0.267381i
\(498\) 0 0
\(499\) −29.0237 16.7569i −1.29928 0.750140i −0.319001 0.947754i \(-0.603347\pi\)
−0.980280 + 0.197614i \(0.936681\pi\)
\(500\) 0 0
\(501\) 13.3774 0.597660
\(502\) 0 0
\(503\) 4.62723 2.67153i 0.206318 0.119118i −0.393281 0.919418i \(-0.628660\pi\)
0.599599 + 0.800301i \(0.295327\pi\)
\(504\) 0 0
\(505\) −18.8296 −0.837904
\(506\) 0 0
\(507\) 6.02827 + 10.4413i 0.267725 + 0.463713i
\(508\) 0 0
\(509\) 22.7074 13.1101i 1.00649 0.581096i 0.0963261 0.995350i \(-0.469291\pi\)
0.910161 + 0.414254i \(0.135958\pi\)
\(510\) 0 0
\(511\) −11.9016 6.87137i −0.526494 0.303972i
\(512\) 0 0
\(513\) −0.193252 + 4.35461i −0.00853230 + 0.192261i
\(514\) 0 0
\(515\) −16.8073 + 29.1111i −0.740617 + 1.28279i
\(516\) 0 0
\(517\) −3.65084 6.32344i −0.160564 0.278105i
\(518\) 0 0
\(519\) −10.9572 + 6.32614i −0.480967 + 0.277687i
\(520\) 0 0
\(521\) 29.6197i 1.29766i 0.760933 + 0.648830i \(0.224741\pi\)
−0.760933 + 0.648830i \(0.775259\pi\)
\(522\) 0 0
\(523\) −3.70285 6.41353i −0.161914 0.280444i 0.773641 0.633624i \(-0.218434\pi\)
−0.935555 + 0.353180i \(0.885100\pi\)
\(524\) 0 0
\(525\) 16.3837i 0.715044i
\(526\) 0 0
\(527\) 5.83502 10.1066i 0.254178 0.440248i
\(528\) 0 0
\(529\) −2.42892 + 4.20701i −0.105605 + 0.182913i
\(530\) 0 0
\(531\) −3.32088 −0.144114
\(532\) 0 0
\(533\) −57.5844 −2.49426
\(534\) 0 0
\(535\) 1.61350 2.79466i 0.0697575 0.120823i
\(536\) 0 0
\(537\) 0.367832 0.637103i 0.0158731 0.0274930i
\(538\) 0 0
\(539\) 0.381002i 0.0164109i
\(540\) 0 0
\(541\) 7.30128 + 12.6462i 0.313907 + 0.543702i 0.979204 0.202876i \(-0.0650288\pi\)
−0.665298 + 0.746578i \(0.731695\pi\)
\(542\) 0 0
\(543\) 6.25876i 0.268589i
\(544\) 0 0
\(545\) 1.92531 1.11158i 0.0824711 0.0476147i
\(546\) 0 0
\(547\) 20.8022 + 36.0305i 0.889438 + 1.54055i 0.840541 + 0.541749i \(0.182238\pi\)
0.0488977 + 0.998804i \(0.484429\pi\)
\(548\) 0 0
\(549\) 3.62763 6.28324i 0.154824 0.268162i
\(550\) 0 0
\(551\) 13.5424 + 26.0603i 0.576926 + 1.11021i
\(552\) 0 0
\(553\) 25.8027 + 14.8972i 1.09724 + 0.633494i
\(554\) 0 0
\(555\) −23.8109 + 13.7472i −1.01072 + 0.583537i
\(556\) 0 0
\(557\) −22.2125 38.4731i −0.941172 1.63016i −0.763240 0.646115i \(-0.776393\pi\)
−0.177931 0.984043i \(-0.556941\pi\)
\(558\) 0 0
\(559\) −54.8023 −2.31789
\(560\) 0 0
\(561\) 4.29261 2.47834i 0.181234 0.104636i
\(562\) 0 0
\(563\) 39.2545 1.65438 0.827189 0.561923i \(-0.189938\pi\)
0.827189 + 0.561923i \(0.189938\pi\)
\(564\) 0 0
\(565\) −24.1378 13.9359i −1.01548 0.586290i
\(566\) 0 0
\(567\) −2.35369 1.35891i −0.0988459 0.0570687i
\(568\) 0 0
\(569\) 27.2761i 1.14347i −0.820438 0.571736i \(-0.806270\pi\)
0.820438 0.571736i \(-0.193730\pi\)
\(570\) 0 0
\(571\) 1.07155i 0.0448429i 0.999749 + 0.0224214i \(0.00713757\pi\)
−0.999749 + 0.0224214i \(0.992862\pi\)
\(572\) 0 0
\(573\) 1.59843 + 0.922854i 0.0667754 + 0.0385528i
\(574\) 0 0
\(575\) 22.2366 + 12.8383i 0.927330 + 0.535394i
\(576\) 0 0
\(577\) 17.6135 0.733259 0.366630 0.930367i \(-0.380512\pi\)
0.366630 + 0.930367i \(0.380512\pi\)
\(578\) 0 0
\(579\) 3.92024 2.26335i 0.162920 0.0940617i
\(580\) 0 0
\(581\) −23.6700 −0.981999
\(582\) 0 0
\(583\) 2.92892 + 5.07303i 0.121303 + 0.210103i
\(584\) 0 0
\(585\) 14.3961 8.31160i 0.595206 0.343642i
\(586\) 0 0
\(587\) 19.2366 + 11.1063i 0.793979 + 0.458404i 0.841361 0.540473i \(-0.181755\pi\)
−0.0473824 + 0.998877i \(0.515088\pi\)
\(588\) 0 0
\(589\) 0.448517 10.1066i 0.0184808 0.416433i
\(590\) 0 0
\(591\) 6.84462 11.8552i 0.281550 0.487659i
\(592\) 0 0
\(593\) −6.10896 10.5810i −0.250865 0.434511i 0.712899 0.701266i \(-0.247382\pi\)
−0.963764 + 0.266756i \(0.914048\pi\)
\(594\) 0 0
\(595\) 39.3027 22.6914i 1.61126 0.930259i
\(596\) 0 0
\(597\) 2.42937i 0.0994274i
\(598\) 0 0
\(599\) −13.4955 23.3748i −0.551410 0.955070i −0.998173 0.0604175i \(-0.980757\pi\)
0.446763 0.894652i \(-0.352577\pi\)
\(600\) 0 0
\(601\) 24.4514i 0.997392i 0.866777 + 0.498696i \(0.166188\pi\)
−0.866777 + 0.498696i \(0.833812\pi\)
\(602\) 0 0
\(603\) 6.67458 11.5607i 0.271810 0.470789i
\(604\) 0 0
\(605\) −16.6514 + 28.8410i −0.676974 + 1.17255i
\(606\) 0 0
\(607\) 13.7175 0.556777 0.278388 0.960469i \(-0.410200\pi\)
0.278388 + 0.960469i \(0.410200\pi\)
\(608\) 0 0
\(609\) −18.3118 −0.742032
\(610\) 0 0
\(611\) −18.5388 + 32.1101i −0.750000 + 1.29904i
\(612\) 0 0
\(613\) −20.6646 + 35.7921i −0.834634 + 1.44563i 0.0596932 + 0.998217i \(0.480988\pi\)
−0.894328 + 0.447413i \(0.852346\pi\)
\(614\) 0 0
\(615\) 38.2031i 1.54050i
\(616\) 0 0
\(617\) 12.9157 + 22.3707i 0.519967 + 0.900609i 0.999731 + 0.0232112i \(0.00738901\pi\)
−0.479764 + 0.877398i \(0.659278\pi\)
\(618\) 0 0
\(619\) 38.1873i 1.53488i −0.641121 0.767440i \(-0.721530\pi\)
0.641121 0.767440i \(-0.278470\pi\)
\(620\) 0 0
\(621\) −3.68872 + 2.12968i −0.148023 + 0.0854612i
\(622\) 0 0
\(623\) −9.58575 16.6030i −0.384045 0.665185i
\(624\) 0 0
\(625\) 9.40064 16.2824i 0.376026 0.651296i
\(626\) 0 0
\(627\) 2.31128 3.62226i 0.0923038 0.144659i
\(628\) 0 0
\(629\) 36.0529 + 20.8152i 1.43752 + 0.829955i
\(630\) 0 0
\(631\) 22.6090 13.0533i 0.900048 0.519643i 0.0228325 0.999739i \(-0.492732\pi\)
0.877216 + 0.480096i \(0.159398\pi\)
\(632\) 0 0
\(633\) −6.77394 11.7328i −0.269240 0.466337i
\(634\) 0 0
\(635\) 24.6236 0.977159
\(636\) 0 0
\(637\) −1.67551 + 0.967354i −0.0663860 + 0.0383280i
\(638\) 0 0
\(639\) 4.38650 0.173527
\(640\) 0 0
\(641\) −11.4249 6.59617i −0.451257 0.260533i 0.257104 0.966384i \(-0.417232\pi\)
−0.708361 + 0.705851i \(0.750565\pi\)
\(642\) 0 0
\(643\) −28.2790 16.3269i −1.11521 0.643870i −0.175040 0.984561i \(-0.556005\pi\)
−0.940175 + 0.340692i \(0.889339\pi\)
\(644\) 0 0
\(645\) 36.3574i 1.43157i
\(646\) 0 0
\(647\) 23.5235i 0.924805i −0.886670 0.462403i \(-0.846988\pi\)
0.886670 0.462403i \(-0.153012\pi\)
\(648\) 0 0
\(649\) 2.83502 + 1.63680i 0.111284 + 0.0642500i
\(650\) 0 0
\(651\) 5.46265 + 3.15386i 0.214098 + 0.123610i
\(652\) 0 0
\(653\) 49.5953 1.94082 0.970408 0.241471i \(-0.0776299\pi\)
0.970408 + 0.241471i \(0.0776299\pi\)
\(654\) 0 0
\(655\) −54.9354 + 31.7170i −2.14651 + 1.23929i
\(656\) 0 0
\(657\) 5.05655 0.197275
\(658\) 0 0
\(659\) −7.49546 12.9825i −0.291982 0.505727i 0.682296 0.731076i \(-0.260981\pi\)
−0.974278 + 0.225348i \(0.927648\pi\)
\(660\) 0 0
\(661\) −19.5953 + 11.3134i −0.762171 + 0.440040i −0.830075 0.557652i \(-0.811702\pi\)
0.0679038 + 0.997692i \(0.478369\pi\)
\(662\) 0 0
\(663\) −21.7977 12.5849i −0.846552 0.488757i
\(664\) 0 0
\(665\) 21.1619 33.1651i 0.820623 1.28609i
\(666\) 0 0
\(667\) −14.3492 + 24.8535i −0.555602 + 0.962330i
\(668\) 0 0
\(669\) −7.80221 13.5138i −0.301651 0.522475i
\(670\) 0 0
\(671\) −6.19378 + 3.57598i −0.239108 + 0.138049i
\(672\) 0 0
\(673\) 26.1398i 1.00762i −0.863815 0.503808i \(-0.831932\pi\)
0.863815 0.503808i \(-0.168068\pi\)
\(674\) 0 0
\(675\) −3.01414 5.22064i −0.116014 0.200942i
\(676\) 0 0
\(677\) 4.42199i 0.169951i 0.996383 + 0.0849755i \(0.0270812\pi\)
−0.996383 + 0.0849755i \(0.972919\pi\)
\(678\) 0 0
\(679\) 11.1842 19.3716i 0.429209 0.743413i
\(680\) 0 0
\(681\) 8.14631 14.1098i 0.312167 0.540689i
\(682\) 0 0
\(683\) −18.2361 −0.697784 −0.348892 0.937163i \(-0.613442\pi\)
−0.348892 + 0.937163i \(0.613442\pi\)
\(684\) 0 0
\(685\) −70.0203 −2.67534
\(686\) 0 0
\(687\) −5.65591 + 9.79632i −0.215786 + 0.373753i
\(688\) 0 0
\(689\) 14.8729 25.7606i 0.566612 0.981401i
\(690\) 0 0
\(691\) 9.05341i 0.344408i 0.985061 + 0.172204i \(0.0550888\pi\)
−0.985061 + 0.172204i \(0.944911\pi\)
\(692\) 0 0
\(693\) 1.33956 + 2.32018i 0.0508856 + 0.0881364i
\(694\) 0 0
\(695\) 41.6393i 1.57947i
\(696\) 0 0
\(697\) 50.0950 28.9223i 1.89748 1.09551i
\(698\) 0 0
\(699\) −12.7977 22.1662i −0.484053 0.838404i
\(700\) 0 0
\(701\) −10.6514 + 18.4487i −0.402297 + 0.696798i −0.994003 0.109356i \(-0.965121\pi\)
0.591706 + 0.806154i \(0.298455\pi\)
\(702\) 0 0
\(703\) 36.0529 + 1.59999i 1.35976 + 0.0603446i
\(704\) 0 0
\(705\) 21.3027 + 12.2991i 0.802308 + 0.463212i
\(706\) 0 0
\(707\) −13.3455 + 7.70506i −0.501911 + 0.289778i
\(708\) 0 0
\(709\) −2.50546 4.33959i −0.0940947 0.162977i 0.815136 0.579270i \(-0.196662\pi\)
−0.909230 + 0.416293i \(0.863329\pi\)
\(710\) 0 0
\(711\) −10.9627 −0.411132
\(712\) 0 0
\(713\) 8.56108 4.94274i 0.320615 0.185107i
\(714\) 0 0
\(715\) −16.3865 −0.612821
\(716\) 0 0
\(717\) 2.14631 + 1.23917i 0.0801552 + 0.0462776i
\(718\) 0 0
\(719\) 28.2366 + 16.3024i 1.05305 + 0.607977i 0.923501 0.383596i \(-0.125315\pi\)
0.129546 + 0.991573i \(0.458648\pi\)
\(720\) 0 0
\(721\) 27.5102i 1.02453i
\(722\) 0 0
\(723\) 16.0674i 0.597553i
\(724\) 0 0
\(725\) −35.1751 20.3084i −1.30637 0.754233i
\(726\) 0 0
\(727\) 15.8113 + 9.12865i 0.586408 + 0.338563i 0.763676 0.645600i \(-0.223393\pi\)
−0.177268 + 0.984163i \(0.556726\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 47.6747 27.5250i 1.76331 1.01805i
\(732\) 0 0
\(733\) 46.0275 1.70006 0.850032 0.526731i \(-0.176583\pi\)
0.850032 + 0.526731i \(0.176583\pi\)
\(734\) 0 0
\(735\) 0.641769 + 1.11158i 0.0236720 + 0.0410011i
\(736\) 0 0
\(737\) −11.3961 + 6.57954i −0.419781 + 0.242361i
\(738\) 0 0
\(739\) −25.5607 14.7575i −0.940265 0.542862i −0.0502216 0.998738i \(-0.515993\pi\)
−0.890043 + 0.455876i \(0.849326\pi\)
\(740\) 0 0
\(741\) −21.7977 0.967354i −0.800758 0.0355366i
\(742\) 0 0
\(743\) 7.18365 12.4424i 0.263543 0.456469i −0.703638 0.710558i \(-0.748442\pi\)
0.967181 + 0.254089i \(0.0817757\pi\)
\(744\) 0 0
\(745\) 10.1186 + 17.5259i 0.370715 + 0.642098i
\(746\) 0 0
\(747\) 7.54241 4.35461i 0.275962 0.159327i
\(748\) 0 0
\(749\) 2.64097i 0.0964989i
\(750\) 0 0
\(751\) 4.90157 + 8.48977i 0.178861 + 0.309796i 0.941491 0.337039i \(-0.109425\pi\)
−0.762630 + 0.646835i \(0.776092\pi\)
\(752\) 0 0
\(753\) 2.83147i 0.103185i
\(754\) 0 0
\(755\) −21.0848 + 36.5200i −0.767355 + 1.32910i
\(756\) 0 0
\(757\) 12.5620 21.7580i 0.456574 0.790810i −0.542203 0.840247i \(-0.682410\pi\)
0.998777 + 0.0494379i \(0.0157430\pi\)
\(758\) 0 0
\(759\) 4.19872 0.152404
\(760\) 0 0
\(761\) −24.8778 −0.901821 −0.450910 0.892569i \(-0.648901\pi\)
−0.450910 + 0.892569i \(0.648901\pi\)
\(762\) 0 0
\(763\) 0.909714 1.57567i 0.0329339 0.0570431i
\(764\) 0 0
\(765\) −8.34916 + 14.4612i −0.301864 + 0.522845i
\(766\) 0 0
\(767\) 16.6232i 0.600229i
\(768\) 0 0
\(769\) 9.36876 + 16.2272i 0.337846 + 0.585167i 0.984027 0.178017i \(-0.0569683\pi\)
−0.646181 + 0.763184i \(0.723635\pi\)
\(770\) 0 0
\(771\) 2.57628i 0.0927826i
\(772\) 0 0
\(773\) −18.9627 + 10.9481i −0.682039 + 0.393776i −0.800623 0.599169i \(-0.795498\pi\)
0.118584 + 0.992944i \(0.462165\pi\)
\(774\) 0 0
\(775\) 6.99546 + 12.1165i 0.251284 + 0.435237i
\(776\) 0 0
\(777\) −11.2507 + 19.4868i −0.403618 + 0.699086i
\(778\) 0 0
\(779\) 26.9728 42.2719i 0.966400 1.51455i
\(780\) 0 0
\(781\) −3.74474 2.16202i −0.133997 0.0773633i
\(782\) 0 0
\(783\) 5.83502 3.36885i 0.208527 0.120393i
\(784\) 0 0
\(785\) −28.0096 48.5141i −0.999706 1.73154i
\(786\) 0 0
\(787\) 42.9336 1.53042 0.765208 0.643783i \(-0.222636\pi\)
0.765208 + 0.643783i \(0.222636\pi\)
\(788\) 0 0
\(789\) −24.7977 + 14.3169i −0.882821 + 0.509697i
\(790\) 0 0
\(791\) −22.8104 −0.811043
\(792\) 0 0
\(793\) 31.4517 + 18.1587i 1.11688 + 0.644833i
\(794\) 0 0
\(795\) −17.0903 9.86708i −0.606130 0.349949i
\(796\) 0 0