Properties

Label 912.2.bb.a.31.1
Level $912$
Weight $2$
Character 912.31
Analytic conductor $7.282$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(31,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.28235666434\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 912.31
Dual form 912.2.bb.a.559.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +1.73205i q^{7} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{3} +1.73205i q^{7} +(-0.500000 + 0.866025i) q^{9} +3.46410i q^{11} +(-4.50000 - 2.59808i) q^{13} +(-3.00000 - 5.19615i) q^{17} +(-4.00000 + 1.73205i) q^{19} +(1.50000 - 0.866025i) q^{21} +(-3.00000 - 1.73205i) q^{23} +(2.50000 - 4.33013i) q^{25} +1.00000 q^{27} +(-3.00000 - 1.73205i) q^{29} +1.00000 q^{31} +(3.00000 - 1.73205i) q^{33} +8.66025i q^{37} +5.19615i q^{39} +(-6.00000 + 3.46410i) q^{41} +(-4.50000 + 2.59808i) q^{43} +(-9.00000 - 5.19615i) q^{47} +4.00000 q^{49} +(-3.00000 + 5.19615i) q^{51} +(-9.00000 - 5.19615i) q^{53} +(3.50000 + 2.59808i) q^{57} +(6.00000 + 10.3923i) q^{59} +(2.50000 - 4.33013i) q^{61} +(-1.50000 - 0.866025i) q^{63} +(-6.50000 + 11.2583i) q^{67} +3.46410i q^{69} +(2.50000 + 4.33013i) q^{73} -5.00000 q^{75} -6.00000 q^{77} +(0.500000 + 0.866025i) q^{79} +(-0.500000 - 0.866025i) q^{81} -17.3205i q^{83} +3.46410i q^{87} +(4.50000 - 7.79423i) q^{91} +(-0.500000 - 0.866025i) q^{93} +(12.0000 - 6.92820i) q^{97} +(-3.00000 - 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - q^{9} - 9 q^{13} - 6 q^{17} - 8 q^{19} + 3 q^{21} - 6 q^{23} + 5 q^{25} + 2 q^{27} - 6 q^{29} + 2 q^{31} + 6 q^{33} - 12 q^{41} - 9 q^{43} - 18 q^{47} + 8 q^{49} - 6 q^{51} - 18 q^{53} + 7 q^{57} + 12 q^{59} + 5 q^{61} - 3 q^{63} - 13 q^{67} + 5 q^{73} - 10 q^{75} - 12 q^{77} + q^{79} - q^{81} + 9 q^{91} - q^{93} + 24 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/912\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(799\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 1.73205i 0.654654i 0.944911 + 0.327327i \(0.106148\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.46410i 1.04447i 0.852803 + 0.522233i \(0.174901\pi\)
−0.852803 + 0.522233i \(0.825099\pi\)
\(12\) 0 0
\(13\) −4.50000 2.59808i −1.24808 0.720577i −0.277350 0.960769i \(-0.589456\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 0 0
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 0 0
\(21\) 1.50000 0.866025i 0.327327 0.188982i
\(22\) 0 0
\(23\) −3.00000 1.73205i −0.625543 0.361158i 0.153481 0.988152i \(-0.450952\pi\)
−0.779024 + 0.626994i \(0.784285\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −3.00000 1.73205i −0.557086 0.321634i 0.194889 0.980825i \(-0.437565\pi\)
−0.751975 + 0.659192i \(0.770899\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) 3.00000 1.73205i 0.522233 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.66025i 1.42374i 0.702313 + 0.711868i \(0.252151\pi\)
−0.702313 + 0.711868i \(0.747849\pi\)
\(38\) 0 0
\(39\) 5.19615i 0.832050i
\(40\) 0 0
\(41\) −6.00000 + 3.46410i −0.937043 + 0.541002i −0.889032 0.457845i \(-0.848621\pi\)
−0.0480106 + 0.998847i \(0.515288\pi\)
\(42\) 0 0
\(43\) −4.50000 + 2.59808i −0.686244 + 0.396203i −0.802203 0.597051i \(-0.796339\pi\)
0.115960 + 0.993254i \(0.463006\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.00000 5.19615i −1.31278 0.757937i −0.330228 0.943901i \(-0.607126\pi\)
−0.982556 + 0.185964i \(0.940459\pi\)
\(48\) 0 0
\(49\) 4.00000 0.571429
\(50\) 0 0
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) −9.00000 5.19615i −1.23625 0.713746i −0.267920 0.963441i \(-0.586336\pi\)
−0.968325 + 0.249695i \(0.919670\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.50000 + 2.59808i 0.463586 + 0.344124i
\(58\) 0 0
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 0 0
\(63\) −1.50000 0.866025i −0.188982 0.109109i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.50000 + 11.2583i −0.794101 + 1.37542i 0.129307 + 0.991605i \(0.458725\pi\)
−0.923408 + 0.383819i \(0.874609\pi\)
\(68\) 0 0
\(69\) 3.46410i 0.417029i
\(70\) 0 0
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) 2.50000 + 4.33013i 0.292603 + 0.506803i 0.974424 0.224716i \(-0.0721453\pi\)
−0.681822 + 0.731519i \(0.738812\pi\)
\(74\) 0 0
\(75\) −5.00000 −0.577350
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 17.3205i 1.90117i −0.310460 0.950586i \(-0.600483\pi\)
0.310460 0.950586i \(-0.399517\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.46410i 0.371391i
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) 4.50000 7.79423i 0.471728 0.817057i
\(92\) 0 0
\(93\) −0.500000 0.866025i −0.0518476 0.0898027i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 6.92820i 1.21842 0.703452i 0.253837 0.967247i \(-0.418307\pi\)
0.964579 + 0.263795i \(0.0849741\pi\)
\(98\) 0 0
\(99\) −3.00000 1.73205i −0.301511 0.174078i
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −1.00000 −0.0985329 −0.0492665 0.998786i \(-0.515688\pi\)
−0.0492665 + 0.998786i \(0.515688\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −12.0000 + 6.92820i −1.14939 + 0.663602i −0.948739 0.316061i \(-0.897640\pi\)
−0.200653 + 0.979662i \(0.564306\pi\)
\(110\) 0 0
\(111\) 7.50000 4.33013i 0.711868 0.410997i
\(112\) 0 0
\(113\) 6.92820i 0.651751i 0.945413 + 0.325875i \(0.105659\pi\)
−0.945413 + 0.325875i \(0.894341\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.50000 2.59808i 0.416025 0.240192i
\(118\) 0 0
\(119\) 9.00000 5.19615i 0.825029 0.476331i
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 6.00000 + 3.46410i 0.541002 + 0.312348i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 + 13.8564i −0.709885 + 1.22956i 0.255014 + 0.966937i \(0.417920\pi\)
−0.964899 + 0.262620i \(0.915413\pi\)
\(128\) 0 0
\(129\) 4.50000 + 2.59808i 0.396203 + 0.228748i
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) −3.00000 6.92820i −0.260133 0.600751i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) 7.50000 + 4.33013i 0.636142 + 0.367277i 0.783127 0.621862i \(-0.213624\pi\)
−0.146985 + 0.989139i \(0.546957\pi\)
\(140\) 0 0
\(141\) 10.3923i 0.875190i
\(142\) 0 0
\(143\) 9.00000 15.5885i 0.752618 1.30357i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.00000 3.46410i −0.164957 0.285714i
\(148\) 0 0
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.50000 + 14.7224i 0.678374 + 1.17498i 0.975470 + 0.220131i \(0.0706483\pi\)
−0.297097 + 0.954847i \(0.596018\pi\)
\(158\) 0 0
\(159\) 10.3923i 0.824163i
\(160\) 0 0
\(161\) 3.00000 5.19615i 0.236433 0.409514i
\(162\) 0 0
\(163\) 22.5167i 1.76364i −0.471585 0.881820i \(-0.656318\pi\)
0.471585 0.881820i \(-0.343682\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 10.3923i 0.464294 0.804181i −0.534875 0.844931i \(-0.679641\pi\)
0.999169 + 0.0407502i \(0.0129748\pi\)
\(168\) 0 0
\(169\) 7.00000 + 12.1244i 0.538462 + 0.932643i
\(170\) 0 0
\(171\) 0.500000 4.33013i 0.0382360 0.331133i
\(172\) 0 0
\(173\) −21.0000 + 12.1244i −1.59660 + 0.921798i −0.604465 + 0.796632i \(0.706613\pi\)
−0.992136 + 0.125166i \(0.960054\pi\)
\(174\) 0 0
\(175\) 7.50000 + 4.33013i 0.566947 + 0.327327i
\(176\) 0 0
\(177\) 6.00000 10.3923i 0.450988 0.781133i
\(178\) 0 0
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 18.0000 10.3923i 1.31629 0.759961i
\(188\) 0 0
\(189\) 1.73205i 0.125988i
\(190\) 0 0
\(191\) 6.92820i 0.501307i 0.968077 + 0.250654i \(0.0806455\pi\)
−0.968077 + 0.250654i \(0.919354\pi\)
\(192\) 0 0
\(193\) 13.5000 7.79423i 0.971751 0.561041i 0.0719816 0.997406i \(-0.477068\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) −10.5000 6.06218i −0.744325 0.429736i 0.0793146 0.996850i \(-0.474727\pi\)
−0.823640 + 0.567113i \(0.808060\pi\)
\(200\) 0 0
\(201\) 13.0000 0.916949
\(202\) 0 0
\(203\) 3.00000 5.19615i 0.210559 0.364698i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000 1.73205i 0.208514 0.120386i
\(208\) 0 0
\(209\) −6.00000 13.8564i −0.415029 0.958468i
\(210\) 0 0
\(211\) 2.50000 + 4.33013i 0.172107 + 0.298098i 0.939156 0.343490i \(-0.111609\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.73205i 0.117579i
\(218\) 0 0
\(219\) 2.50000 4.33013i 0.168934 0.292603i
\(220\) 0 0
\(221\) 31.1769i 2.09719i
\(222\) 0 0
\(223\) −5.50000 9.52628i −0.368307 0.637927i 0.620994 0.783815i \(-0.286729\pi\)
−0.989301 + 0.145889i \(0.953396\pi\)
\(224\) 0 0
\(225\) 2.50000 + 4.33013i 0.166667 + 0.288675i
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 23.0000 1.51988 0.759941 0.649992i \(-0.225228\pi\)
0.759941 + 0.649992i \(0.225228\pi\)
\(230\) 0 0
\(231\) 3.00000 + 5.19615i 0.197386 + 0.341882i
\(232\) 0 0
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.500000 0.866025i 0.0324785 0.0562544i
\(238\) 0 0
\(239\) 6.92820i 0.448148i −0.974572 0.224074i \(-0.928064\pi\)
0.974572 0.224074i \(-0.0719358\pi\)
\(240\) 0 0
\(241\) 7.50000 + 4.33013i 0.483117 + 0.278928i 0.721715 0.692191i \(-0.243354\pi\)
−0.238597 + 0.971119i \(0.576688\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 22.5000 + 2.59808i 1.43164 + 0.165312i
\(248\) 0 0
\(249\) −15.0000 + 8.66025i −0.950586 + 0.548821i
\(250\) 0 0
\(251\) −15.0000 8.66025i −0.946792 0.546630i −0.0547088 0.998502i \(-0.517423\pi\)
−0.892083 + 0.451872i \(0.850756\pi\)
\(252\) 0 0
\(253\) 6.00000 10.3923i 0.377217 0.653359i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 1.73205i −0.187135 0.108042i 0.403506 0.914977i \(-0.367792\pi\)
−0.590641 + 0.806935i \(0.701125\pi\)
\(258\) 0 0
\(259\) −15.0000 −0.932055
\(260\) 0 0
\(261\) 3.00000 1.73205i 0.185695 0.107211i
\(262\) 0 0
\(263\) −18.0000 + 10.3923i −1.10993 + 0.640817i −0.938811 0.344434i \(-0.888071\pi\)
−0.171117 + 0.985251i \(0.554738\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.00000 3.46410i 0.365826 0.211210i −0.305807 0.952093i \(-0.598926\pi\)
0.671634 + 0.740883i \(0.265593\pi\)
\(270\) 0 0
\(271\) 3.00000 1.73205i 0.182237 0.105215i −0.406106 0.913826i \(-0.633114\pi\)
0.588343 + 0.808611i \(0.299780\pi\)
\(272\) 0 0
\(273\) −9.00000 −0.544705
\(274\) 0 0
\(275\) 15.0000 + 8.66025i 0.904534 + 0.522233i
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 0 0
\(279\) −0.500000 + 0.866025i −0.0299342 + 0.0518476i
\(280\) 0 0
\(281\) −6.00000 3.46410i −0.357930 0.206651i 0.310242 0.950657i \(-0.399590\pi\)
−0.668172 + 0.744007i \(0.732923\pi\)
\(282\) 0 0
\(283\) 3.00000 1.73205i 0.178331 0.102960i −0.408177 0.912903i \(-0.633835\pi\)
0.586509 + 0.809943i \(0.300502\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 10.3923i −0.354169 0.613438i
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) −12.0000 6.92820i −0.703452 0.406138i
\(292\) 0 0
\(293\) 24.2487i 1.41662i −0.705899 0.708312i \(-0.749457\pi\)
0.705899 0.708312i \(-0.250543\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.46410i 0.201008i
\(298\) 0 0
\(299\) 9.00000 + 15.5885i 0.520483 + 0.901504i
\(300\) 0 0
\(301\) −4.50000 7.79423i −0.259376 0.449252i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000 + 3.46410i 0.114146 + 0.197707i 0.917438 0.397879i \(-0.130253\pi\)
−0.803292 + 0.595585i \(0.796920\pi\)
\(308\) 0 0
\(309\) 0.500000 + 0.866025i 0.0284440 + 0.0492665i
\(310\) 0 0
\(311\) 20.7846i 1.17859i −0.807919 0.589294i \(-0.799406\pi\)
0.807919 0.589294i \(-0.200594\pi\)
\(312\) 0 0
\(313\) −5.00000 + 8.66025i −0.282617 + 0.489506i −0.972028 0.234863i \(-0.924536\pi\)
0.689412 + 0.724370i \(0.257869\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.0000 + 13.8564i 1.34797 + 0.778253i 0.987962 0.154694i \(-0.0494393\pi\)
0.360012 + 0.932948i \(0.382773\pi\)
\(318\) 0 0
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 21.0000 + 15.5885i 1.16847 + 0.867365i
\(324\) 0 0
\(325\) −22.5000 + 12.9904i −1.24808 + 0.720577i
\(326\) 0 0
\(327\) 12.0000 + 6.92820i 0.663602 + 0.383131i
\(328\) 0 0
\(329\) 9.00000 15.5885i 0.496186 0.859419i
\(330\) 0 0
\(331\) −25.0000 −1.37412 −0.687062 0.726599i \(-0.741100\pi\)
−0.687062 + 0.726599i \(0.741100\pi\)
\(332\) 0 0
\(333\) −7.50000 4.33013i −0.410997 0.237289i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.50000 + 4.33013i −0.408551 + 0.235877i −0.690167 0.723650i \(-0.742463\pi\)
0.281616 + 0.959527i \(0.409130\pi\)
\(338\) 0 0
\(339\) 6.00000 3.46410i 0.325875 0.188144i
\(340\) 0 0
\(341\) 3.46410i 0.187592i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0000 + 6.92820i −0.644194 + 0.371925i −0.786228 0.617936i \(-0.787969\pi\)
0.142034 + 0.989862i \(0.454636\pi\)
\(348\) 0 0
\(349\) −19.0000 −1.01705 −0.508523 0.861048i \(-0.669808\pi\)
−0.508523 + 0.861048i \(0.669808\pi\)
\(350\) 0 0
\(351\) −4.50000 2.59808i −0.240192 0.138675i
\(352\) 0 0
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −9.00000 5.19615i −0.476331 0.275010i
\(358\) 0 0
\(359\) −18.0000 + 10.3923i −0.950004 + 0.548485i −0.893082 0.449894i \(-0.851462\pi\)
−0.0569216 + 0.998379i \(0.518129\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 0 0
\(363\) 0.500000 + 0.866025i 0.0262432 + 0.0454545i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.50000 + 0.866025i 0.0782994 + 0.0452062i 0.538639 0.842537i \(-0.318939\pi\)
−0.460339 + 0.887743i \(0.652272\pi\)
\(368\) 0 0
\(369\) 6.92820i 0.360668i
\(370\) 0 0
\(371\) 9.00000 15.5885i 0.467257 0.809312i
\(372\) 0 0
\(373\) 13.8564i 0.717458i −0.933442 0.358729i \(-0.883210\pi\)
0.933442 0.358729i \(-0.116790\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000 + 15.5885i 0.463524 + 0.802846i
\(378\) 0 0
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) −9.00000 15.5885i −0.459879 0.796533i 0.539076 0.842257i \(-0.318774\pi\)
−0.998954 + 0.0457244i \(0.985440\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.19615i 0.264135i
\(388\) 0 0
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 20.7846i 1.05112i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.50000 + 6.06218i 0.175660 + 0.304252i 0.940389 0.340099i \(-0.110461\pi\)
−0.764730 + 0.644351i \(0.777127\pi\)
\(398\) 0 0
\(399\) −4.50000 + 6.06218i −0.225282 + 0.303488i
\(400\) 0 0
\(401\) 24.0000 13.8564i 1.19850 0.691956i 0.238282 0.971196i \(-0.423416\pi\)
0.960221 + 0.279240i \(0.0900826\pi\)
\(402\) 0 0
\(403\) −4.50000 2.59808i −0.224161 0.129419i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.0000 −1.48704
\(408\) 0 0
\(409\) −18.0000 10.3923i −0.890043 0.513866i −0.0160862 0.999871i \(-0.505121\pi\)
−0.873956 + 0.486004i \(0.838454\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) −18.0000 + 10.3923i −0.885722 + 0.511372i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.66025i 0.424094i
\(418\) 0 0
\(419\) 31.1769i 1.52309i 0.648111 + 0.761546i \(0.275559\pi\)
−0.648111 + 0.761546i \(0.724441\pi\)
\(420\) 0 0
\(421\) 18.0000 10.3923i 0.877266 0.506490i 0.00751023 0.999972i \(-0.497609\pi\)
0.869756 + 0.493482i \(0.164276\pi\)
\(422\) 0 0
\(423\) 9.00000 5.19615i 0.437595 0.252646i
\(424\) 0 0
\(425\) −30.0000 −1.45521
\(426\) 0 0
\(427\) 7.50000 + 4.33013i 0.362950 + 0.209550i
\(428\) 0 0
\(429\) −18.0000 −0.869048
\(430\) 0 0
\(431\) −15.0000 + 25.9808i −0.722525 + 1.25145i 0.237460 + 0.971397i \(0.423685\pi\)
−0.959985 + 0.280052i \(0.909648\pi\)
\(432\) 0 0
\(433\) −22.5000 12.9904i −1.08128 0.624278i −0.150039 0.988680i \(-0.547940\pi\)
−0.931242 + 0.364402i \(0.881273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.0000 + 1.73205i 0.717547 + 0.0828552i
\(438\) 0 0
\(439\) 9.50000 + 16.4545i 0.453410 + 0.785330i 0.998595 0.0529862i \(-0.0168739\pi\)
−0.545185 + 0.838316i \(0.683541\pi\)
\(440\) 0 0
\(441\) −2.00000 + 3.46410i −0.0952381 + 0.164957i
\(442\) 0 0
\(443\) 21.0000 + 12.1244i 0.997740 + 0.576046i 0.907579 0.419882i \(-0.137928\pi\)
0.0901612 + 0.995927i \(0.471262\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −9.00000 + 15.5885i −0.425685 + 0.737309i
\(448\) 0 0
\(449\) 10.3923i 0.490443i 0.969467 + 0.245222i \(0.0788607\pi\)
−0.969467 + 0.245222i \(0.921139\pi\)
\(450\) 0 0
\(451\) −12.0000 20.7846i −0.565058 0.978709i
\(452\) 0 0
\(453\) −4.00000 6.92820i −0.187936 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.00000 −0.233890 −0.116945 0.993138i \(-0.537310\pi\)
−0.116945 + 0.993138i \(0.537310\pi\)
\(458\) 0 0
\(459\) −3.00000 5.19615i −0.140028 0.242536i
\(460\) 0 0
\(461\) −6.00000 10.3923i −0.279448 0.484018i 0.691800 0.722089i \(-0.256818\pi\)
−0.971248 + 0.238071i \(0.923485\pi\)
\(462\) 0 0
\(463\) 5.19615i 0.241486i 0.992684 + 0.120743i \(0.0385276\pi\)
−0.992684 + 0.120743i \(0.961472\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −19.5000 11.2583i −0.900426 0.519861i
\(470\) 0 0
\(471\) 8.50000 14.7224i 0.391659 0.678374i
\(472\) 0 0
\(473\) −9.00000 15.5885i −0.413820 0.716758i
\(474\) 0 0
\(475\) −2.50000 + 21.6506i −0.114708 + 0.993399i
\(476\) 0 0
\(477\) 9.00000 5.19615i 0.412082 0.237915i
\(478\) 0 0
\(479\) 12.0000 + 6.92820i 0.548294 + 0.316558i 0.748434 0.663210i \(-0.230806\pi\)
−0.200140 + 0.979767i \(0.564140\pi\)
\(480\) 0 0
\(481\) 22.5000 38.9711i 1.02591 1.77693i
\(482\) 0 0
\(483\) −6.00000 −0.273009
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) −19.5000 + 11.2583i −0.881820 + 0.509119i
\(490\) 0 0
\(491\) −12.0000 + 6.92820i −0.541552 + 0.312665i −0.745708 0.666273i \(-0.767889\pi\)
0.204155 + 0.978938i \(0.434555\pi\)
\(492\) 0 0
\(493\) 20.7846i 0.936092i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −7.50000 + 4.33013i −0.335746 + 0.193843i −0.658389 0.752678i \(-0.728762\pi\)
0.322643 + 0.946521i \(0.395429\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) −15.0000 8.66025i −0.668817 0.386142i 0.126811 0.991927i \(-0.459526\pi\)
−0.795628 + 0.605785i \(0.792859\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.00000 12.1244i 0.310881 0.538462i
\(508\) 0 0
\(509\) −21.0000 12.1244i −0.930809 0.537403i −0.0437414 0.999043i \(-0.513928\pi\)
−0.887067 + 0.461640i \(0.847261\pi\)
\(510\) 0 0
\(511\) −7.50000 + 4.33013i −0.331780 + 0.191554i
\(512\) 0 0
\(513\) −4.00000 + 1.73205i −0.176604 + 0.0764719i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 18.0000 31.1769i 0.791639 1.37116i
\(518\) 0 0
\(519\) 21.0000 + 12.1244i 0.921798 + 0.532200i
\(520\) 0 0
\(521\) 3.46410i 0.151765i 0.997117 + 0.0758825i \(0.0241774\pi\)
−0.997117 + 0.0758825i \(0.975823\pi\)
\(522\) 0 0
\(523\) 14.5000 25.1147i 0.634041 1.09819i −0.352677 0.935745i \(-0.614728\pi\)
0.986718 0.162446i \(-0.0519382\pi\)
\(524\) 0 0
\(525\) 8.66025i 0.377964i
\(526\) 0 0
\(527\) −3.00000 5.19615i −0.130682 0.226348i
\(528\) 0 0
\(529\) −5.50000 9.52628i −0.239130 0.414186i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 36.0000 1.55933
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −3.00000 5.19615i −0.129460 0.224231i
\(538\) 0 0
\(539\) 13.8564i 0.596838i
\(540\) 0 0
\(541\) −12.5000 + 21.6506i −0.537417 + 0.930834i 0.461625 + 0.887075i \(0.347267\pi\)
−0.999042 + 0.0437584i \(0.986067\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.50000 11.2583i 0.277920 0.481371i −0.692948 0.720988i \(-0.743688\pi\)
0.970868 + 0.239616i \(0.0770217\pi\)
\(548\) 0 0
\(549\) 2.50000 + 4.33013i 0.106697 + 0.184805i
\(550\) 0 0
\(551\) 15.0000 + 1.73205i 0.639021 + 0.0737878i
\(552\) 0 0
\(553\) −1.50000 + 0.866025i −0.0637865 + 0.0368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000 20.7846i 0.508456 0.880672i −0.491496 0.870880i \(-0.663550\pi\)
0.999952 0.00979220i \(-0.00311700\pi\)
\(558\) 0 0
\(559\) 27.0000 1.14198
\(560\) 0 0
\(561\) −18.0000 10.3923i −0.759961 0.438763i
\(562\) 0 0
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.50000 0.866025i 0.0629941 0.0363696i
\(568\) 0 0
\(569\) 34.6410i 1.45223i 0.687575 + 0.726113i \(0.258675\pi\)
−0.687575 + 0.726113i \(0.741325\pi\)
\(570\) 0 0
\(571\) 32.9090i 1.37720i −0.725143 0.688599i \(-0.758226\pi\)
0.725143 0.688599i \(-0.241774\pi\)
\(572\) 0 0
\(573\) 6.00000 3.46410i 0.250654 0.144715i
\(574\) 0 0
\(575\) −15.0000 + 8.66025i −0.625543 + 0.361158i
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 0 0
\(579\) −13.5000 7.79423i −0.561041 0.323917i
\(580\) 0 0
\(581\) 30.0000 1.24461
\(582\) 0 0
\(583\) 18.0000 31.1769i 0.745484 1.29122i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −36.0000 + 20.7846i −1.48588 + 0.857873i −0.999871 0.0160815i \(-0.994881\pi\)
−0.486008 + 0.873954i \(0.661548\pi\)
\(588\) 0 0
\(589\) −4.00000 + 1.73205i −0.164817 + 0.0713679i
\(590\) 0 0
\(591\) 6.00000 + 10.3923i 0.246807 + 0.427482i
\(592\) 0 0
\(593\) 12.0000 20.7846i 0.492781 0.853522i −0.507184 0.861838i \(-0.669314\pi\)
0.999965 + 0.00831589i \(0.00264706\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 12.1244i 0.496217i
\(598\) 0 0
\(599\) −21.0000 + 36.3731i −0.858037 + 1.48616i 0.0157622 + 0.999876i \(0.494983\pi\)
−0.873799 + 0.486287i \(0.838351\pi\)
\(600\) 0 0
\(601\) 46.7654i 1.90760i 0.300443 + 0.953800i \(0.402865\pi\)
−0.300443 + 0.953800i \(0.597135\pi\)
\(602\) 0 0
\(603\) −6.50000 11.2583i −0.264700 0.458475i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −47.0000 −1.90767 −0.953836 0.300329i \(-0.902903\pi\)
−0.953836 + 0.300329i \(0.902903\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 27.0000 + 46.7654i 1.09230 + 1.89192i
\(612\) 0 0
\(613\) 19.0000 + 32.9090i 0.767403 + 1.32918i 0.938967 + 0.344008i \(0.111785\pi\)
−0.171564 + 0.985173i \(0.554882\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21.0000 + 36.3731i −0.845428 + 1.46432i 0.0398207 + 0.999207i \(0.487321\pi\)
−0.885249 + 0.465118i \(0.846012\pi\)
\(618\) 0 0
\(619\) 39.8372i 1.60119i 0.599205 + 0.800595i \(0.295483\pi\)
−0.599205 + 0.800595i \(0.704517\pi\)
\(620\) 0 0
\(621\) −3.00000 1.73205i −0.120386 0.0695048i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) −9.00000 + 12.1244i −0.359425 + 0.484200i
\(628\) 0 0
\(629\) 45.0000 25.9808i 1.79427 1.03592i
\(630\) 0 0
\(631\) −19.5000 11.2583i −0.776283 0.448187i 0.0588285 0.998268i \(-0.481263\pi\)
−0.835111 + 0.550081i \(0.814597\pi\)
\(632\) 0 0
\(633\) 2.50000 4.33013i 0.0993661 0.172107i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −18.0000 10.3923i −0.713186 0.411758i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.00000 1.73205i 0.118493 0.0684119i −0.439582 0.898202i \(-0.644873\pi\)
0.558075 + 0.829790i \(0.311540\pi\)
\(642\) 0 0
\(643\) −10.5000 + 6.06218i −0.414080 + 0.239069i −0.692541 0.721378i \(-0.743509\pi\)
0.278462 + 0.960447i \(0.410176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.2487i 0.953315i −0.879089 0.476658i \(-0.841848\pi\)
0.879089 0.476658i \(-0.158152\pi\)
\(648\) 0 0
\(649\) −36.0000 + 20.7846i −1.41312 + 0.815867i
\(650\) 0 0
\(651\) 1.50000 0.866025i 0.0587896 0.0339422i
\(652\) 0 0
\(653\) 48.0000 1.87839 0.939193 0.343391i \(-0.111576\pi\)
0.939193 + 0.343391i \(0.111576\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.00000 −0.195069
\(658\) 0 0
\(659\) −9.00000 + 15.5885i −0.350590 + 0.607240i −0.986353 0.164644i \(-0.947352\pi\)
0.635763 + 0.771885i \(0.280686\pi\)
\(660\) 0 0
\(661\) −6.00000 3.46410i −0.233373 0.134738i 0.378754 0.925497i \(-0.376353\pi\)
−0.612127 + 0.790759i \(0.709686\pi\)
\(662\) 0 0
\(663\) 27.0000 15.5885i 1.04859 0.605406i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.00000 + 10.3923i 0.232321 + 0.402392i
\(668\) 0 0
\(669\) −5.50000 + 9.52628i −0.212642 + 0.368307i
\(670\) 0 0
\(671\) 15.0000 + 8.66025i 0.579069 + 0.334325i
\(672\) 0 0
\(673\) 8.66025i 0.333828i −0.985971 0.166914i \(-0.946620\pi\)
0.985971 0.166914i \(-0.0533803\pi\)
\(674\) 0 0
\(675\) 2.50000 4.33013i 0.0962250 0.166667i
\(676\) 0 0
\(677\) 17.3205i 0.665681i 0.942983 + 0.332841i \(0.108007\pi\)
−0.942983 + 0.332841i \(0.891993\pi\)
\(678\) 0 0
\(679\) 12.0000 + 20.7846i 0.460518 + 0.797640i
\(680\) 0 0
\(681\) −6.00000 10.3923i −0.229920 0.398234i
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −11.5000 19.9186i −0.438752 0.759941i
\(688\) 0 0
\(689\) 27.0000 + 46.7654i 1.02862 + 1.78162i
\(690\) 0 0
\(691\) 3.46410i 0.131781i −0.997827 0.0658903i \(-0.979011\pi\)
0.997827 0.0658903i \(-0.0209887\pi\)
\(692\) 0 0
\(693\) 3.00000 5.19615i 0.113961 0.197386i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000 + 20.7846i 1.36360 + 0.787273i
\(698\) 0 0
\(699\) 12.0000 20.7846i 0.453882 0.786146i
\(700\) 0 0
\(701\) 12.0000 + 20.7846i 0.453234 + 0.785024i 0.998585 0.0531839i \(-0.0169370\pi\)
−0.545351 + 0.838208i \(0.683604\pi\)
\(702\) 0 0
\(703\) −15.0000 34.6410i −0.565736 1.30651i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.5000 30.3109i 0.657226 1.13835i −0.324104 0.946021i \(-0.605063\pi\)
0.981331 0.192328i \(-0.0616038\pi\)
\(710\) 0 0
\(711\) −1.00000 −0.0375029
\(712\) 0 0
\(713\) −3.00000 1.73205i −0.112351 0.0648658i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.00000 + 3.46410i −0.224074 + 0.129369i
\(718\) 0 0
\(719\) 39.0000 22.5167i 1.45445 0.839730i 0.455725 0.890121i \(-0.349380\pi\)
0.998730 + 0.0503909i \(0.0160467\pi\)
\(720\) 0 0
\(721\) 1.73205i 0.0645049i
\(722\) 0 0
\(723\) 8.66025i 0.322078i
\(724\) 0 0
\(725\) −15.0000 + 8.66025i −0.557086 + 0.321634i
\(726\) 0 0
\(727\) 16.5000 9.52628i 0.611951 0.353310i −0.161778 0.986827i \(-0.551723\pi\)
0.773729 + 0.633517i \(0.218389\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 27.0000 + 15.5885i 0.998631 + 0.576560i
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.0000 22.5167i −1.43658 0.829412i
\(738\) 0 0
\(739\) 28.5000 16.4545i 1.04839 0.605288i 0.126191 0.992006i \(-0.459725\pi\)
0.922198 + 0.386718i \(0.126391\pi\)
\(740\) 0 0
\(741\) −9.00000 20.7846i −0.330623 0.763542i
\(742\) 0 0
\(743\) −21.0000 36.3731i −0.770415 1.33440i −0.937336 0.348428i \(-0.886716\pi\)
0.166920 0.985970i \(-0.446618\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 15.0000 + 8.66025i 0.548821 + 0.316862i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.50000 11.2583i 0.237188 0.410822i −0.722718 0.691143i \(-0.757107\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(752\) 0 0
\(753\) 17.3205i 0.631194i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −17.5000 30.3109i −0.636048 1.10167i −0.986292 0.165009i \(-0.947235\pi\)
0.350244 0.936659i \(-0.386099\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) −12.0000 20.7846i −0.434429 0.752453i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 62.3538i 2.25147i
\(768\) 0 0
\(769\) −0.500000 + 0.866025i −0.0180305 + 0.0312297i −0.874900 0.484304i \(-0.839073\pi\)
0.856869 + 0.515534i \(0.172406\pi\)
\(770\) 0 0
\(771\) 3.46410i 0.124757i
\(772\) 0 0
\(773\) −3.00000 1.73205i −0.107903 0.0622975i 0.445078 0.895492i \(-0.353176\pi\)
−0.552980 + 0.833194i \(0.686509\pi\)
\(774\) 0 0
\(775\) 2.50000 4.33013i 0.0898027 0.155543i
\(776\) 0 0
\(777\) 7.50000 + 12.9904i 0.269061 + 0.466027i
\(778\) 0 0
\(779\) 18.0000 24.2487i 0.644917 0.868800i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3.00000 1.73205i −0.107211 0.0618984i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 31.0000 1.10503 0.552515 0.833503i \(-0.313668\pi\)
0.552515 + 0.833503i \(0.313668\pi\)
\(788\) 0 0
\(789\) 18.0000 + 10.3923i 0.640817 + 0.369976i
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) −22.5000 + 12.9904i −0.798998 + 0.461302i