# Properties

 Label 912.2.a.i Level $912$ Weight $2$ Character orbit 912.a Self dual yes Analytic conductor $7.282$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [912,2,Mod(1,912)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(912, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("912.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$912 = 2^{4} \cdot 3 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 912.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$7.28235666434$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 456) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{5} + 3 q^{7} + q^{9}+O(q^{10})$$ q + q^3 + q^5 + 3 * q^7 + q^9 $$q + q^{3} + q^{5} + 3 q^{7} + q^{9} + 5 q^{11} - 2 q^{13} + q^{15} - q^{17} - q^{19} + 3 q^{21} - 4 q^{23} - 4 q^{25} + q^{27} - 6 q^{29} + 10 q^{31} + 5 q^{33} + 3 q^{35} - 2 q^{39} + 11 q^{43} + q^{45} - 9 q^{47} + 2 q^{49} - q^{51} + 10 q^{53} + 5 q^{55} - q^{57} - 4 q^{59} - 5 q^{61} + 3 q^{63} - 2 q^{65} + 4 q^{67} - 4 q^{69} - 8 q^{71} + 13 q^{73} - 4 q^{75} + 15 q^{77} - 4 q^{79} + q^{81} + 4 q^{83} - q^{85} - 6 q^{87} - 6 q^{89} - 6 q^{91} + 10 q^{93} - q^{95} + 2 q^{97} + 5 q^{99}+O(q^{100})$$ q + q^3 + q^5 + 3 * q^7 + q^9 + 5 * q^11 - 2 * q^13 + q^15 - q^17 - q^19 + 3 * q^21 - 4 * q^23 - 4 * q^25 + q^27 - 6 * q^29 + 10 * q^31 + 5 * q^33 + 3 * q^35 - 2 * q^39 + 11 * q^43 + q^45 - 9 * q^47 + 2 * q^49 - q^51 + 10 * q^53 + 5 * q^55 - q^57 - 4 * q^59 - 5 * q^61 + 3 * q^63 - 2 * q^65 + 4 * q^67 - 4 * q^69 - 8 * q^71 + 13 * q^73 - 4 * q^75 + 15 * q^77 - 4 * q^79 + q^81 + 4 * q^83 - q^85 - 6 * q^87 - 6 * q^89 - 6 * q^91 + 10 * q^93 - q^95 + 2 * q^97 + 5 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 1.00000 0 3.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.2.a.i 1
3.b odd 2 1 2736.2.a.i 1
4.b odd 2 1 456.2.a.a 1
8.b even 2 1 3648.2.a.g 1
8.d odd 2 1 3648.2.a.z 1
12.b even 2 1 1368.2.a.d 1
76.d even 2 1 8664.2.a.l 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
456.2.a.a 1 4.b odd 2 1
912.2.a.i 1 1.a even 1 1 trivial
1368.2.a.d 1 12.b even 2 1
2736.2.a.i 1 3.b odd 2 1
3648.2.a.g 1 8.b even 2 1
3648.2.a.z 1 8.d odd 2 1
8664.2.a.l 1 76.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(912))$$:

 $$T_{5} - 1$$ T5 - 1 $$T_{7} - 3$$ T7 - 3 $$T_{11} - 5$$ T11 - 5

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 1$$
$5$ $$T - 1$$
$7$ $$T - 3$$
$11$ $$T - 5$$
$13$ $$T + 2$$
$17$ $$T + 1$$
$19$ $$T + 1$$
$23$ $$T + 4$$
$29$ $$T + 6$$
$31$ $$T - 10$$
$37$ $$T$$
$41$ $$T$$
$43$ $$T - 11$$
$47$ $$T + 9$$
$53$ $$T - 10$$
$59$ $$T + 4$$
$61$ $$T + 5$$
$67$ $$T - 4$$
$71$ $$T + 8$$
$73$ $$T - 13$$
$79$ $$T + 4$$
$83$ $$T - 4$$
$89$ $$T + 6$$
$97$ $$T - 2$$