Properties

Label 912.2.a.b.1.1
Level $912$
Weight $2$
Character 912.1
Self dual yes
Analytic conductor $7.282$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,2,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.28235666434\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 912.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{5} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -2.00000 q^{5} +1.00000 q^{9} +6.00000 q^{13} +2.00000 q^{15} -6.00000 q^{17} +1.00000 q^{19} -4.00000 q^{23} -1.00000 q^{25} -1.00000 q^{27} +2.00000 q^{29} -8.00000 q^{31} -10.0000 q^{37} -6.00000 q^{39} -2.00000 q^{41} +4.00000 q^{43} -2.00000 q^{45} -12.0000 q^{47} -7.00000 q^{49} +6.00000 q^{51} -6.00000 q^{53} -1.00000 q^{57} +12.0000 q^{59} -2.00000 q^{61} -12.0000 q^{65} +4.00000 q^{67} +4.00000 q^{69} +10.0000 q^{73} +1.00000 q^{75} +1.00000 q^{81} -16.0000 q^{83} +12.0000 q^{85} -2.00000 q^{87} -2.00000 q^{89} +8.00000 q^{93} -2.00000 q^{95} +10.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.0000 −1.48842
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 0 0
\(117\) 6.00000 0.554700
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 7.00000 0.577350
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −24.0000 −1.85718 −0.928588 0.371113i \(-0.878976\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 20.0000 1.47043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.00000 0.279372
\(206\) 0 0
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) −36.0000 −2.42162
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.0000 0.655122 0.327561 0.944830i \(-0.393773\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 14.0000 0.894427
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 24.0000 1.51487 0.757433 0.652913i \(-0.226453\pi\)
0.757433 + 0.652913i \(0.226453\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −12.0000 −0.751469
\(256\) 0 0
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 2.00000 0.118470
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.0000 −1.38796
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) −10.0000 −0.547997
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −8.00000 −0.430706
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) −22.0000 −1.17094 −0.585471 0.810693i \(-0.699090\pi\)
−0.585471 + 0.810693i \(0.699090\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) −20.0000 −1.04685
\(366\) 0 0
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) 8.00000 0.403547
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 38.0000 1.89763 0.948815 0.315833i \(-0.102284\pi\)
0.948815 + 0.315833i \(0.102284\pi\)
\(402\) 0 0
\(403\) −48.0000 −2.39105
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 32.0000 1.57082
\(416\) 0 0
\(417\) 4.00000 0.195881
\(418\) 0 0
\(419\) −8.00000 −0.390826 −0.195413 0.980721i \(-0.562605\pi\)
−0.195413 + 0.980721i \(0.562605\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 0 0
\(423\) −12.0000 −0.583460
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 0 0
\(437\) −4.00000 −0.191346
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −8.00000 −0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 0 0
\(465\) −16.0000 −0.741982
\(466\) 0 0
\(467\) 32.0000 1.48078 0.740392 0.672176i \(-0.234640\pi\)
0.740392 + 0.672176i \(0.234640\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −20.0000 −0.913823 −0.456912 0.889512i \(-0.651044\pi\)
−0.456912 + 0.889512i \(0.651044\pi\)
\(480\) 0 0
\(481\) −60.0000 −2.73576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) 32.0000 1.44414 0.722070 0.691820i \(-0.243191\pi\)
0.722070 + 0.691820i \(0.243191\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 24.0000 1.07224
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 0 0
\(509\) −22.0000 −0.975133 −0.487566 0.873086i \(-0.662115\pi\)
−0.487566 + 0.873086i \(0.662115\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) 0 0
\(537\) −4.00000 −0.172613
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) −14.0000 −0.600798
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −20.0000 −0.848953
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) −12.0000 −0.504844
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 22.0000 0.894427
\(606\) 0 0
\(607\) −24.0000 −0.974130 −0.487065 0.873366i \(-0.661933\pi\)
−0.487065 + 0.873366i \(0.661933\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −72.0000 −2.91281
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 0 0
\(615\) −4.00000 −0.161296
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) 28.0000 1.12542 0.562708 0.826656i \(-0.309760\pi\)
0.562708 + 0.826656i \(0.309760\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) −42.0000 −1.66410
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.0000 1.50091 0.750455 0.660922i \(-0.229834\pi\)
0.750455 + 0.660922i \(0.229834\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) 0 0
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 6.00000 0.233373 0.116686 0.993169i \(-0.462773\pi\)
0.116686 + 0.993169i \(0.462773\pi\)
\(662\) 0 0
\(663\) 36.0000 1.39812
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.00000 −0.309761
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −22.0000 −0.845529 −0.422764 0.906240i \(-0.638940\pi\)
−0.422764 + 0.906240i \(0.638940\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) −36.0000 −1.37149
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) 0 0
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) −24.0000 −0.903892
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.0000 −0.448148
\(718\) 0 0
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 6.00000 0.223142
\(724\) 0 0
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) 0 0
\(733\) 46.0000 1.69905 0.849524 0.527549i \(-0.176889\pi\)
0.849524 + 0.527549i \(0.176889\pi\)
\(734\) 0 0
\(735\) −14.0000 −0.516398
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) −16.0000 −0.585409
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) −24.0000 −0.874609
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 50.0000 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 12.0000 0.433861
\(766\) 0 0
\(767\) 72.0000 2.59977
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.00000 −0.0716574
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) −44.0000 −1.56843 −0.784215 0.620489i \(-0.786934\pi\)
−0.784215 + 0.620489i \(0.786934\pi\)
\(788\) 0 0
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 72.0000 2.54718
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 0 0
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) −44.0000 −1.54505 −0.772524 0.634985i \(-0.781006\pi\)
−0.772524 + 0.634985i \(0.781006\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 32.0000 1.11545 0.557725 0.830026i \(-0.311674\pi\)
0.557725 + 0.830026i \(0.311674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 0 0
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 0 0
\(833\) 42.0000 1.45521
\(834\) 0 0
\(835\) 48.0000 1.66111
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 10.0000 0.344418
\(844\) 0 0
\(845\) −46.0000 −1.58245
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) 40.0000 1.37118
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) −2.00000 −0.0683986
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) 28.0000 0.955348 0.477674 0.878537i \(-0.341480\pi\)
0.477674 + 0.878537i \(0.341480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.0000 1.36162 0.680808 0.732462i \(-0.261629\pi\)
0.680808 + 0.732462i \(0.261629\pi\)
\(864\) 0 0
\(865\) 44.0000 1.49604
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.0000 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) 0 0
\(879\) 14.0000 0.472208
\(880\) 0 0
\(881\) −38.0000 −1.28025 −0.640126 0.768270i \(-0.721118\pi\)
−0.640126 + 0.768270i \(0.721118\pi\)
\(882\) 0 0
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) 24.0000 0.806751
\(886\) 0 0
\(887\) 40.0000 1.34307 0.671534 0.740973i \(-0.265636\pi\)
0.671534 + 0.740973i \(0.265636\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) −8.00000 −0.267411
\(896\) 0 0
\(897\) 24.0000 0.801337
\(898\) 0 0
\(899\) −16.0000 −0.533630
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −28.0000 −0.930751
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) 0 0
\(909\) −10.0000 −0.331679
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −4.00000 −0.132236
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) −7.00000 −0.229416
\(932\) 0 0
\(933\) 4.00000 0.130954
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) −22.0000 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.00000 0.259965 0.129983 0.991516i \(-0.458508\pi\)
0.129983 + 0.991516i \(0.458508\pi\)
\(948\) 0 0
\(949\) 60.0000 1.94768
\(950\) 0 0
\(951\) 6.00000 0.194563
\(952\) 0 0
\(953\) 38.0000 1.23094 0.615470 0.788160i \(-0.288966\pi\)
0.615470 + 0.788160i \(0.288966\pi\)
\(954\) 0 0
\(955\) −24.0000 −0.776622
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) 28.0000 0.901352
\(966\) 0 0
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) 0 0
\(969\) 6.00000 0.192748
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 6.00000 0.192154
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) 8.00000 0.255160 0.127580 0.991828i \(-0.459279\pi\)
0.127580 + 0.991828i \(0.459279\pi\)
\(984\) 0 0
\(985\) 4.00000 0.127451
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 12.0000 0.380808
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) −58.0000 −1.83688 −0.918439 0.395562i \(-0.870550\pi\)
−0.918439 + 0.395562i \(0.870550\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 912.2.a.b.1.1 1
3.2 odd 2 2736.2.a.s.1.1 1
4.3 odd 2 57.2.a.c.1.1 1
8.3 odd 2 3648.2.a.o.1.1 1
8.5 even 2 3648.2.a.bf.1.1 1
12.11 even 2 171.2.a.a.1.1 1
20.3 even 4 1425.2.c.g.799.1 2
20.7 even 4 1425.2.c.g.799.2 2
20.19 odd 2 1425.2.a.a.1.1 1
28.27 even 2 2793.2.a.i.1.1 1
44.43 even 2 6897.2.a.a.1.1 1
52.51 odd 2 9633.2.a.h.1.1 1
60.59 even 2 4275.2.a.m.1.1 1
76.75 even 2 1083.2.a.a.1.1 1
84.83 odd 2 8379.2.a.e.1.1 1
228.227 odd 2 3249.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.a.c.1.1 1 4.3 odd 2
171.2.a.a.1.1 1 12.11 even 2
912.2.a.b.1.1 1 1.1 even 1 trivial
1083.2.a.a.1.1 1 76.75 even 2
1425.2.a.a.1.1 1 20.19 odd 2
1425.2.c.g.799.1 2 20.3 even 4
1425.2.c.g.799.2 2 20.7 even 4
2736.2.a.s.1.1 1 3.2 odd 2
2793.2.a.i.1.1 1 28.27 even 2
3249.2.a.g.1.1 1 228.227 odd 2
3648.2.a.o.1.1 1 8.3 odd 2
3648.2.a.bf.1.1 1 8.5 even 2
4275.2.a.m.1.1 1 60.59 even 2
6897.2.a.a.1.1 1 44.43 even 2
8379.2.a.e.1.1 1 84.83 odd 2
9633.2.a.h.1.1 1 52.51 odd 2