Newspace parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(28.4270373191\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(64\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | −19.2835 | + | 11.1333i | 26.6444 | − | 46.1495i | 183.903 | − | 318.529i | −122.796 | + | 70.8965i | 1186.57i | 646.881 | − | 636.466i | 5339.67i | −326.351 | − | 565.257i | 1578.63 | − | 2734.27i | ||||
25.2 | −18.4363 | + | 10.6442i | −3.90686 | + | 6.76688i | 162.597 | − | 281.627i | 454.211 | − | 262.239i | − | 166.341i | −231.201 | − | 877.547i | 4197.94i | 1062.97 | + | 1841.12i | −5582.63 | + | 9669.41i | |||
25.3 | −18.3178 | + | 10.5758i | −26.3747 | + | 45.6824i | 159.695 | − | 276.600i | −32.1615 | + | 18.5685i | − | 1115.74i | 767.468 | + | 484.289i | 4048.20i | −297.754 | − | 515.725i | 392.752 | − | 680.267i | |||
25.4 | −17.5746 | + | 10.1467i | −9.13036 | + | 15.8143i | 141.910 | − | 245.795i | −149.843 | + | 86.5119i | − | 370.571i | −905.314 | − | 62.8521i | 3162.10i | 926.773 | + | 1605.22i | 1755.62 | − | 3040.82i | |||
25.5 | −17.0172 | + | 9.82489i | 40.5593 | − | 70.2508i | 129.057 | − | 223.533i | 227.842 | − | 131.545i | 1593.96i | −454.805 | + | 785.299i | 2556.71i | −2196.61 | − | 3804.65i | −2584.82 | + | 4477.05i | ||||
25.6 | −16.7709 | + | 9.68269i | −45.1459 | + | 78.1950i | 123.509 | − | 213.924i | 25.4254 | − | 14.6793i | − | 1748.54i | −897.233 | − | 136.071i | 2304.83i | −2982.81 | − | 5166.37i | −284.271 | + | 492.372i | |||
25.7 | −16.7440 | + | 9.66716i | 14.6384 | − | 25.3545i | 122.908 | − | 212.883i | −318.778 | + | 184.047i | 566.049i | −46.7306 | + | 906.289i | 2277.90i | 664.932 | + | 1151.70i | 3558.42 | − | 6163.36i | ||||
25.8 | −16.2488 | + | 9.38127i | −13.0103 | + | 22.5344i | 112.016 | − | 194.018i | 334.391 | − | 193.061i | − | 488.211i | −212.350 | + | 882.298i | 1801.81i | 754.966 | + | 1307.64i | −3622.31 | + | 6274.02i | |||
25.9 | −15.3790 | + | 8.87907i | −27.8080 | + | 48.1649i | 93.6757 | − | 162.251i | −158.175 | + | 91.3222i | − | 987.638i | 870.250 | − | 257.311i | 1053.97i | −453.074 | − | 784.748i | 1621.71 | − | 2808.89i | |||
25.10 | −15.3472 | + | 8.86073i | 35.5987 | − | 61.6587i | 93.0250 | − | 161.124i | −94.1334 | + | 54.3479i | 1261.72i | −632.542 | − | 650.717i | 1028.73i | −1441.03 | − | 2495.94i | 963.125 | − | 1668.18i | ||||
25.11 | −14.1249 | + | 8.15502i | 19.6075 | − | 33.9612i | 69.0088 | − | 119.527i | 255.306 | − | 147.401i | 639.600i | 784.629 | + | 455.961i | 163.389i | 324.589 | + | 562.205i | −2404.11 | + | 4164.05i | ||||
25.12 | −13.5528 | + | 7.82474i | −9.72553 | + | 16.8451i | 58.4531 | − | 101.244i | −434.311 | + | 250.749i | − | 304.399i | −299.078 | − | 856.794i | − | 173.614i | 904.328 | + | 1566.34i | 3924.10 | − | 6796.74i | ||
25.13 | −13.0889 | + | 7.55687i | 9.02507 | − | 15.6319i | 50.2126 | − | 86.9708i | 23.7868 | − | 13.7333i | 272.805i | 635.750 | − | 647.584i | − | 416.758i | 930.596 | + | 1611.84i | −207.562 | + | 359.507i | |||
25.14 | −12.1057 | + | 6.98926i | 20.9404 | − | 36.2699i | 33.6994 | − | 58.3691i | 235.809 | − | 136.145i | 585.432i | −735.146 | − | 532.075i | − | 847.114i | 216.498 | + | 374.985i | −1903.10 | + | 3296.27i | |||
25.15 | −11.6400 | + | 6.72038i | −33.7165 | + | 58.3987i | 26.3270 | − | 45.5996i | 196.222 | − | 113.289i | − | 906.350i | 90.8149 | − | 902.937i | − | 1012.71i | −1180.10 | − | 2044.00i | −1522.69 | + | 2637.37i | ||
25.16 | −11.0974 | + | 6.40707i | 40.2137 | − | 69.6521i | 18.1011 | − | 31.3520i | −402.415 | + | 232.335i | 1030.61i | 893.492 | + | 158.790i | − | 1176.31i | −2140.78 | − | 3707.94i | 2977.17 | − | 5156.61i | |||
25.17 | −10.9207 | + | 6.30508i | −7.65371 | + | 13.2566i | 15.5082 | − | 26.8609i | 37.8419 | − | 21.8480i | − | 193.029i | −534.194 | + | 733.608i | − | 1222.98i | 976.341 | + | 1691.07i | −275.507 | + | 477.192i | ||
25.18 | −10.4074 | + | 6.00872i | −40.8107 | + | 70.6862i | 8.20937 | − | 14.2190i | −437.809 | + | 252.769i | − | 980.880i | −207.112 | + | 883.543i | − | 1340.92i | −2237.53 | − | 3875.52i | 3037.64 | − | 5261.34i | ||
25.19 | −9.58245 | + | 5.53243i | −34.1390 | + | 59.1305i | −2.78448 | + | 4.82285i | 414.916 | − | 239.552i | − | 755.486i | 670.273 | + | 611.781i | − | 1477.92i | −1237.44 | − | 2143.31i | −2650.61 | + | 4590.99i | ||
25.20 | −8.90167 | + | 5.13938i | 28.1429 | − | 48.7449i | −11.1735 | + | 19.3530i | −295.835 | + | 170.800i | 578.549i | −852.238 | + | 311.822i | − | 1545.38i | −490.546 | − | 849.650i | 1755.62 | − | 3040.82i | |||
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
13.b | even | 2 | 1 | inner |
91.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 91.8.r.a | ✓ | 128 |
7.c | even | 3 | 1 | inner | 91.8.r.a | ✓ | 128 |
13.b | even | 2 | 1 | inner | 91.8.r.a | ✓ | 128 |
91.r | even | 6 | 1 | inner | 91.8.r.a | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.8.r.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
91.8.r.a | ✓ | 128 | 7.c | even | 3 | 1 | inner |
91.8.r.a | ✓ | 128 | 13.b | even | 2 | 1 | inner |
91.8.r.a | ✓ | 128 | 91.r | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{8}^{\mathrm{new}}(91, [\chi])\).