Newspace parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(28.4270373191\) |
Analytic rank: | \(0\) |
Dimension: | \(58\) |
Relative dimension: | \(29\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 | −11.1978 | − | 19.3951i | 34.3559 | − | 59.5061i | −186.780 | + | 323.513i | 189.321 | + | 327.914i | −1538.84 | −105.148 | − | 901.381i | 5499.45 | −1267.15 | − | 2194.77i | 4239.95 | − | 7343.80i | ||||
53.2 | −10.9318 | − | 18.9344i | −36.9978 | + | 64.0821i | −175.008 | + | 303.123i | −66.9050 | − | 115.883i | 1617.81 | 901.581 | − | 103.412i | 4854.07 | −1644.18 | − | 2847.80i | −1462.78 | + | 2533.61i | ||||
53.3 | −10.7904 | − | 18.6896i | 26.1873 | − | 45.3577i | −168.867 | + | 292.486i | −237.704 | − | 411.715i | −1130.29 | −163.395 | + | 892.662i | 4526.24 | −278.045 | − | 481.589i | −5129.85 | + | 8885.17i | ||||
53.4 | −9.22341 | − | 15.9754i | 3.04138 | − | 5.26783i | −106.143 | + | 183.845i | 108.094 | + | 187.224i | −112.208 | −906.844 | − | 34.3060i | 1554.80 | 1075.00 | + | 1861.95i | 1993.99 | − | 3453.70i | ||||
53.5 | −8.46022 | − | 14.6535i | −15.0269 | + | 26.0273i | −79.1507 | + | 137.093i | 198.041 | + | 343.017i | 508.523 | 843.909 | − | 333.707i | 512.713 | 641.886 | + | 1111.78i | 3350.94 | − | 5804.00i | ||||
53.6 | −7.61807 | − | 13.1949i | 39.7374 | − | 68.8273i | −52.0700 | + | 90.1878i | 179.532 | + | 310.959i | −1210.89 | 568.450 | + | 707.395i | −363.535 | −2064.63 | − | 3576.04i | 2735.38 | − | 4737.82i | ||||
53.7 | −7.20296 | − | 12.4759i | −36.3036 | + | 62.8796i | −39.7654 | + | 68.8756i | −62.6575 | − | 108.526i | 1045.97 | −607.927 | + | 673.771i | −698.245 | −1542.40 | − | 2671.51i | −902.640 | + | 1563.42i | ||||
53.8 | −6.60583 | − | 11.4416i | 33.9784 | − | 58.8524i | −23.2740 | + | 40.3117i | −146.782 | − | 254.233i | −897.823 | 420.880 | − | 803.992i | −1076.12 | −1215.57 | − | 2105.43i | −1939.23 | + | 3358.84i | ||||
53.9 | −6.25043 | − | 10.8261i | 2.85376 | − | 4.94285i | −14.1357 | + | 24.4837i | −229.621 | − | 397.716i | −71.3488 | 873.653 | + | 245.508i | −1246.69 | 1077.21 | + | 1865.79i | −2870.46 | + | 4971.78i | ||||
53.10 | −5.99820 | − | 10.3892i | 7.37665 | − | 12.7767i | −7.95676 | + | 13.7815i | 30.9424 | + | 53.5939i | −176.986 | −376.848 | + | 825.547i | −1344.63 | 984.670 | + | 1705.50i | 371.198 | − | 642.933i | ||||
53.11 | −4.21209 | − | 7.29555i | −9.89272 | + | 17.1347i | 28.5167 | − | 49.3923i | 32.7323 | + | 56.6940i | 166.676 | −264.708 | − | 868.028i | −1558.75 | 897.768 | + | 1554.98i | 275.742 | − | 477.600i | ||||
53.12 | −2.36379 | − | 4.09421i | −41.6183 | + | 72.0850i | 52.8250 | − | 91.4955i | 95.2956 | + | 165.057i | 393.508 | 739.487 | + | 526.025i | −1104.60 | −2370.66 | − | 4106.11i | 450.518 | − | 780.320i | ||||
53.13 | −2.14228 | − | 3.71054i | 31.8589 | − | 55.1812i | 54.8212 | − | 94.9532i | −6.65070 | − | 11.5193i | −273.003 | −200.823 | − | 884.993i | −1018.20 | −936.475 | − | 1622.02i | −28.4954 | + | 49.3554i | ||||
53.14 | −1.65473 | − | 2.86607i | −41.7818 | + | 72.3681i | 58.5238 | − | 101.366i | −271.168 | − | 469.677i | 276.550 | −86.3153 | − | 903.378i | −810.974 | −2397.93 | − | 4153.34i | −897.419 | + | 1554.38i | ||||
53.15 | −0.413075 | − | 0.715467i | −4.44124 | + | 7.69245i | 63.6587 | − | 110.260i | −30.3570 | − | 52.5798i | 7.33826 | 888.005 | + | 187.058i | −210.931 | 1054.05 | + | 1825.67i | −25.0794 | + | 43.4388i | ||||
53.16 | −0.0355890 | − | 0.0616420i | −26.4772 | + | 45.8599i | 63.9975 | − | 110.847i | 184.974 | + | 320.384i | 3.76919 | −905.689 | − | 57.1831i | −18.2212 | −308.586 | − | 534.486i | 13.1661 | − | 22.8043i | ||||
53.17 | 0.305464 | + | 0.529079i | 39.4641 | − | 68.3538i | 63.8134 | − | 110.528i | 214.121 | + | 370.869i | 48.2194 | −779.036 | + | 465.452i | 156.169 | −2021.33 | − | 3501.05i | −130.813 | + | 226.574i | ||||
53.18 | 1.72165 | + | 2.98198i | 25.0145 | − | 43.3264i | 58.0719 | − | 100.583i | −175.303 | − | 303.634i | 172.265 | −837.808 | − | 348.741i | 840.659 | −157.950 | − | 273.577i | 603.621 | − | 1045.50i | ||||
53.19 | 2.17186 | + | 3.76177i | 8.57877 | − | 14.8589i | 54.5660 | − | 94.5112i | 225.848 | + | 391.181i | 74.5276 | 886.944 | − | 192.023i | 1030.04 | 946.309 | + | 1639.06i | −981.022 | + | 1699.18i | ||||
53.20 | 2.78054 | + | 4.81603i | −15.5186 | + | 26.8790i | 48.5372 | − | 84.0689i | −150.624 | − | 260.889i | −172.600 | −256.901 | + | 870.370i | 1251.66 | 611.846 | + | 1059.75i | 837.634 | − | 1450.82i | ||||
See all 58 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 91.8.e.b | ✓ | 58 |
7.c | even | 3 | 1 | inner | 91.8.e.b | ✓ | 58 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.8.e.b | ✓ | 58 | 1.a | even | 1 | 1 | trivial |
91.8.e.b | ✓ | 58 | 7.c | even | 3 | 1 | inner |