Properties

Label 91.8
Level 91
Weight 8
Dimension 2172
Nonzero newspaces 15
Newform subspaces 21
Sturm bound 5376
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 91 = 7 \cdot 13 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 15 \)
Newform subspaces: \( 21 \)
Sturm bound: \(5376\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(91))\).

Total New Old
Modular forms 2424 2284 140
Cusp forms 2280 2172 108
Eisenstein series 144 112 32

Trace form

\( 2172 q - 18 q^{2} - 72 q^{3} + 494 q^{4} - 12 q^{5} - 2604 q^{6} + 826 q^{7} - 5610 q^{8} + 12954 q^{9} + 38076 q^{10} - 10428 q^{11} - 109872 q^{12} - 24982 q^{13} - 82158 q^{14} + 93084 q^{15} + 341958 q^{16}+ \cdots - 278491440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(91))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
91.8.a \(\chi_{91}(1, \cdot)\) 91.8.a.a 1 1
91.8.a.b 9
91.8.a.c 10
91.8.a.d 10
91.8.a.e 12
91.8.c \(\chi_{91}(64, \cdot)\) 91.8.c.a 50 1
91.8.e \(\chi_{91}(53, \cdot)\) 91.8.e.a 54 2
91.8.e.b 58
91.8.f \(\chi_{91}(22, \cdot)\) 91.8.f.a 48 2
91.8.f.b 48
91.8.g \(\chi_{91}(9, \cdot)\) 91.8.g.a 126 2
91.8.h \(\chi_{91}(16, \cdot)\) 91.8.h.a 126 2
91.8.i \(\chi_{91}(34, \cdot)\) 91.8.i.a 124 2
91.8.k \(\chi_{91}(4, \cdot)\) 91.8.k.a 126 2
91.8.q \(\chi_{91}(36, \cdot)\) 91.8.q.a 100 2
91.8.r \(\chi_{91}(25, \cdot)\) 91.8.r.a 128 2
91.8.u \(\chi_{91}(30, \cdot)\) 91.8.u.a 126 2
91.8.w \(\chi_{91}(19, \cdot)\) 91.8.w.a 252 4
91.8.ba \(\chi_{91}(45, \cdot)\) 91.8.ba.a 252 4
91.8.bb \(\chi_{91}(5, \cdot)\) 91.8.bb.a 256 4
91.8.bc \(\chi_{91}(6, \cdot)\) 91.8.bc.a 256 4

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(91))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(91)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)