Properties

Label 91.2.u.b.88.3
Level $91$
Weight $2$
Character 91.88
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.u (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 88.3
Root \(0.655911 - 1.25291i\) of defining polynomial
Character \(\chi\) \(=\) 91.88
Dual form 91.2.u.b.30.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.156598 - 0.0904119i) q^{2} -1.82601 q^{3} +(-0.983651 - 1.70373i) q^{4} +(2.32670 - 1.34332i) q^{5} +(0.285950 + 0.165093i) q^{6} +(-0.393717 - 2.61629i) q^{7} +0.717383i q^{8} +0.334323 q^{9} +O(q^{10})\) \(q+(-0.156598 - 0.0904119i) q^{2} -1.82601 q^{3} +(-0.983651 - 1.70373i) q^{4} +(2.32670 - 1.34332i) q^{5} +(0.285950 + 0.165093i) q^{6} +(-0.393717 - 2.61629i) q^{7} +0.717383i q^{8} +0.334323 q^{9} -0.485809 q^{10} -2.69424i q^{11} +(1.79616 + 3.11104i) q^{12} +(1.92153 + 3.05086i) q^{13} +(-0.174889 + 0.445303i) q^{14} +(-4.24858 + 2.45292i) q^{15} +(-1.90244 + 3.29513i) q^{16} +(2.38247 + 4.12655i) q^{17} +(-0.0523543 - 0.0302268i) q^{18} +0.188424i q^{19} +(-4.57732 - 2.64272i) q^{20} +(0.718933 + 4.77738i) q^{21} +(-0.243592 + 0.421913i) q^{22} +(2.19964 - 3.80989i) q^{23} -1.30995i q^{24} +(1.10902 - 1.92088i) q^{25} +(-0.0250743 - 0.651487i) q^{26} +4.86756 q^{27} +(-4.07019 + 3.24431i) q^{28} +(-3.54280 - 6.13631i) q^{29} +0.887093 q^{30} +(3.20369 + 1.84965i) q^{31} +(1.83838 - 1.06139i) q^{32} +4.91972i q^{33} -0.861613i q^{34} +(-4.43058 - 5.55844i) q^{35} +(-0.328857 - 0.569598i) q^{36} +(6.88848 + 3.97707i) q^{37} +(0.0170358 - 0.0295069i) q^{38} +(-3.50874 - 5.57090i) q^{39} +(0.963675 + 1.66913i) q^{40} +(4.70215 - 2.71479i) q^{41} +(0.319349 - 0.813129i) q^{42} +(-4.00533 + 6.93743i) q^{43} +(-4.59027 + 2.65020i) q^{44} +(0.777869 - 0.449103i) q^{45} +(-0.688919 + 0.397748i) q^{46} +(1.60118 - 0.924445i) q^{47} +(3.47389 - 6.01695i) q^{48} +(-6.68997 + 2.06016i) q^{49} +(-0.347341 + 0.200538i) q^{50} +(-4.35041 - 7.53514i) q^{51} +(3.30773 - 6.27476i) q^{52} +(3.53622 - 6.12491i) q^{53} +(-0.762250 - 0.440085i) q^{54} +(-3.61923 - 6.26869i) q^{55} +(1.87688 - 0.282446i) q^{56} -0.344066i q^{57} +1.28125i q^{58} +(-6.57216 + 3.79444i) q^{59} +(8.35825 + 4.82564i) q^{60} -0.411564 q^{61} +(-0.334461 - 0.579304i) q^{62} +(-0.131629 - 0.874687i) q^{63} +7.22592 q^{64} +(8.56910 + 4.51719i) q^{65} +(0.444801 - 0.770418i) q^{66} +11.4010i q^{67} +(4.68703 - 8.11818i) q^{68} +(-4.01658 + 6.95692i) q^{69} +(0.191271 + 1.27102i) q^{70} +(2.89675 + 1.67244i) q^{71} +0.239838i q^{72} +(-12.3112 - 7.10790i) q^{73} +(-0.719148 - 1.24560i) q^{74} +(-2.02509 + 3.50756i) q^{75} +(0.321025 - 0.185344i) q^{76} +(-7.04893 + 1.06077i) q^{77} +(0.0457859 + 1.18962i) q^{78} +(-4.55529 - 7.89000i) q^{79} +10.2224i q^{80} -9.89120 q^{81} -0.981797 q^{82} +16.5866i q^{83} +(7.43221 - 5.92415i) q^{84} +(11.0866 + 6.40083i) q^{85} +(1.25445 - 0.724258i) q^{86} +(6.46920 + 11.2050i) q^{87} +1.93280 q^{88} +(-5.10232 - 2.94582i) q^{89} -0.162417 q^{90} +(7.22539 - 6.22846i) q^{91} -8.65473 q^{92} +(-5.84998 - 3.37749i) q^{93} -0.334323 q^{94} +(0.253115 + 0.438407i) q^{95} +(-3.35691 + 1.93811i) q^{96} +(0.390659 + 0.225547i) q^{97} +(1.23390 + 0.282236i) q^{98} -0.900747i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{3} + 4q^{4} + 3q^{5} - 9q^{6} + 3q^{7} + 2q^{9} + O(q^{10}) \) \( 12q + 6q^{3} + 4q^{4} + 3q^{5} - 9q^{6} + 3q^{7} + 2q^{9} - 24q^{10} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} - 8q^{16} + 17q^{17} - 3q^{18} - 3q^{20} - 21q^{21} - 15q^{22} + 3q^{23} - 5q^{25} - 9q^{26} + 12q^{27} + 27q^{28} - q^{29} - 22q^{30} - 18q^{31} + 18q^{32} + 18q^{35} - 13q^{36} + 15q^{37} + 19q^{38} - q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} + 33q^{44} - 9q^{45} - 30q^{46} + 15q^{47} + 19q^{48} + 9q^{49} + 18q^{50} + 4q^{51} + 47q^{52} - 8q^{53} + 6q^{54} - 15q^{55} + 27q^{59} + 30q^{60} - 10q^{61} + 41q^{62} - 54q^{63} + 2q^{64} - 3q^{65} - 34q^{66} - 11q^{68} + 7q^{69} - 3q^{70} + 30q^{71} - 42q^{73} - 33q^{74} + q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 28q^{81} - 10q^{82} + 3q^{84} - 21q^{85} + 57q^{86} + 10q^{87} + 28q^{88} + 48q^{89} - 16q^{91} - 66q^{92} - 81q^{93} - 2q^{94} + 2q^{95} - 21q^{96} - 3q^{97} - 36q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.156598 0.0904119i −0.110731 0.0639308i 0.443611 0.896219i \(-0.353697\pi\)
−0.554343 + 0.832288i \(0.687030\pi\)
\(3\) −1.82601 −1.05425 −0.527125 0.849788i \(-0.676730\pi\)
−0.527125 + 0.849788i \(0.676730\pi\)
\(4\) −0.983651 1.70373i −0.491826 0.851867i
\(5\) 2.32670 1.34332i 1.04053 0.600751i 0.120548 0.992708i \(-0.461535\pi\)
0.919984 + 0.391956i \(0.128201\pi\)
\(6\) 0.285950 + 0.165093i 0.116739 + 0.0673990i
\(7\) −0.393717 2.61629i −0.148811 0.988866i
\(8\) 0.717383i 0.253633i
\(9\) 0.334323 0.111441
\(10\) −0.485809 −0.153626
\(11\) 2.69424i 0.812345i −0.913796 0.406172i \(-0.866863\pi\)
0.913796 0.406172i \(-0.133137\pi\)
\(12\) 1.79616 + 3.11104i 0.518507 + 0.898080i
\(13\) 1.92153 + 3.05086i 0.532937 + 0.846155i
\(14\) −0.174889 + 0.445303i −0.0467409 + 0.119012i
\(15\) −4.24858 + 2.45292i −1.09698 + 0.633342i
\(16\) −1.90244 + 3.29513i −0.475611 + 0.823782i
\(17\) 2.38247 + 4.12655i 0.577833 + 1.00084i 0.995727 + 0.0923405i \(0.0294348\pi\)
−0.417894 + 0.908496i \(0.637232\pi\)
\(18\) −0.0523543 0.0302268i −0.0123400 0.00712452i
\(19\) 0.188424i 0.0432275i 0.999766 + 0.0216138i \(0.00688041\pi\)
−0.999766 + 0.0216138i \(0.993120\pi\)
\(20\) −4.57732 2.64272i −1.02352 0.590930i
\(21\) 0.718933 + 4.77738i 0.156884 + 1.04251i
\(22\) −0.243592 + 0.421913i −0.0519339 + 0.0899521i
\(23\) 2.19964 3.80989i 0.458657 0.794418i −0.540233 0.841516i \(-0.681664\pi\)
0.998890 + 0.0470977i \(0.0149972\pi\)
\(24\) 1.30995i 0.267392i
\(25\) 1.10902 1.92088i 0.221804 0.384177i
\(26\) −0.0250743 0.651487i −0.00491747 0.127767i
\(27\) 4.86756 0.936762
\(28\) −4.07019 + 3.24431i −0.769193 + 0.613117i
\(29\) −3.54280 6.13631i −0.657882 1.13948i −0.981163 0.193182i \(-0.938119\pi\)
0.323281 0.946303i \(-0.395214\pi\)
\(30\) 0.887093 0.161960
\(31\) 3.20369 + 1.84965i 0.575400 + 0.332207i 0.759303 0.650737i \(-0.225540\pi\)
−0.183903 + 0.982944i \(0.558873\pi\)
\(32\) 1.83838 1.06139i 0.324983 0.187629i
\(33\) 4.91972i 0.856414i
\(34\) 0.861613i 0.147765i
\(35\) −4.43058 5.55844i −0.748905 0.939548i
\(36\) −0.328857 0.569598i −0.0548096 0.0949329i
\(37\) 6.88848 + 3.97707i 1.13246 + 0.653826i 0.944552 0.328361i \(-0.106496\pi\)
0.187907 + 0.982187i \(0.439830\pi\)
\(38\) 0.0170358 0.0295069i 0.00276357 0.00478665i
\(39\) −3.50874 5.57090i −0.561848 0.892058i
\(40\) 0.963675 + 1.66913i 0.152370 + 0.263913i
\(41\) 4.70215 2.71479i 0.734353 0.423979i −0.0856594 0.996324i \(-0.527300\pi\)
0.820013 + 0.572345i \(0.193966\pi\)
\(42\) 0.319349 0.813129i 0.0492766 0.125468i
\(43\) −4.00533 + 6.93743i −0.610807 + 1.05795i 0.380298 + 0.924864i \(0.375821\pi\)
−0.991105 + 0.133084i \(0.957512\pi\)
\(44\) −4.59027 + 2.65020i −0.692010 + 0.399532i
\(45\) 0.777869 0.449103i 0.115958 0.0669483i
\(46\) −0.688919 + 0.397748i −0.101576 + 0.0586447i
\(47\) 1.60118 0.924445i 0.233557 0.134844i −0.378655 0.925538i \(-0.623613\pi\)
0.612212 + 0.790694i \(0.290280\pi\)
\(48\) 3.47389 6.01695i 0.501412 0.868471i
\(49\) −6.68997 + 2.06016i −0.955710 + 0.294308i
\(50\) −0.347341 + 0.200538i −0.0491215 + 0.0283603i
\(51\) −4.35041 7.53514i −0.609180 1.05513i
\(52\) 3.30773 6.27476i 0.458700 0.870152i
\(53\) 3.53622 6.12491i 0.485737 0.841321i −0.514128 0.857713i \(-0.671885\pi\)
0.999866 + 0.0163917i \(0.00521788\pi\)
\(54\) −0.762250 0.440085i −0.103729 0.0598880i
\(55\) −3.61923 6.26869i −0.488017 0.845271i
\(56\) 1.87688 0.282446i 0.250809 0.0377434i
\(57\) 0.344066i 0.0455726i
\(58\) 1.28125i 0.168236i
\(59\) −6.57216 + 3.79444i −0.855623 + 0.493994i −0.862544 0.505982i \(-0.831130\pi\)
0.00692130 + 0.999976i \(0.497797\pi\)
\(60\) 8.35825 + 4.82564i 1.07905 + 0.622987i
\(61\) −0.411564 −0.0526954 −0.0263477 0.999653i \(-0.508388\pi\)
−0.0263477 + 0.999653i \(0.508388\pi\)
\(62\) −0.334461 0.579304i −0.0424766 0.0735716i
\(63\) −0.131629 0.874687i −0.0165837 0.110200i
\(64\) 7.22592 0.903240
\(65\) 8.56910 + 4.51719i 1.06287 + 0.560289i
\(66\) 0.444801 0.770418i 0.0547512 0.0948319i
\(67\) 11.4010i 1.39286i 0.717626 + 0.696429i \(0.245229\pi\)
−0.717626 + 0.696429i \(0.754771\pi\)
\(68\) 4.68703 8.11818i 0.568386 0.984474i
\(69\) −4.01658 + 6.95692i −0.483539 + 0.837514i
\(70\) 0.191271 + 1.27102i 0.0228613 + 0.151916i
\(71\) 2.89675 + 1.67244i 0.343781 + 0.198482i 0.661943 0.749554i \(-0.269732\pi\)
−0.318162 + 0.948037i \(0.603065\pi\)
\(72\) 0.239838i 0.0282651i
\(73\) −12.3112 7.10790i −1.44092 0.831917i −0.443011 0.896516i \(-0.646090\pi\)
−0.997911 + 0.0645994i \(0.979423\pi\)
\(74\) −0.719148 1.24560i −0.0835993 0.144798i
\(75\) −2.02509 + 3.50756i −0.233837 + 0.405018i
\(76\) 0.321025 0.185344i 0.0368241 0.0212604i
\(77\) −7.04893 + 1.06077i −0.803300 + 0.120886i
\(78\) 0.0457859 + 1.18962i 0.00518423 + 0.134698i
\(79\) −4.55529 7.89000i −0.512511 0.887695i −0.999895 0.0145069i \(-0.995382\pi\)
0.487384 0.873188i \(-0.337951\pi\)
\(80\) 10.2224i 1.14290i
\(81\) −9.89120 −1.09902
\(82\) −0.981797 −0.108421
\(83\) 16.5866i 1.82061i 0.413934 + 0.910307i \(0.364155\pi\)
−0.413934 + 0.910307i \(0.635845\pi\)
\(84\) 7.43221 5.92415i 0.810921 0.646378i
\(85\) 11.0866 + 6.40083i 1.20251 + 0.694268i
\(86\) 1.25445 0.724258i 0.135271 0.0780988i
\(87\) 6.46920 + 11.2050i 0.693571 + 1.20130i
\(88\) 1.93280 0.206037
\(89\) −5.10232 2.94582i −0.540844 0.312257i 0.204577 0.978851i \(-0.434418\pi\)
−0.745421 + 0.666594i \(0.767752\pi\)
\(90\) −0.162417 −0.0171203
\(91\) 7.22539 6.22846i 0.757427 0.652920i
\(92\) −8.65473 −0.902318
\(93\) −5.84998 3.37749i −0.606615 0.350229i
\(94\) −0.334323 −0.0344828
\(95\) 0.253115 + 0.438407i 0.0259690 + 0.0449796i
\(96\) −3.35691 + 1.93811i −0.342613 + 0.197808i
\(97\) 0.390659 + 0.225547i 0.0396654 + 0.0229008i 0.519702 0.854348i \(-0.326043\pi\)
−0.480036 + 0.877249i \(0.659376\pi\)
\(98\) 1.23390 + 0.282236i 0.124643 + 0.0285102i
\(99\) 0.900747i 0.0905285i
\(100\) −4.36356 −0.436356
\(101\) 7.65680 0.761880 0.380940 0.924600i \(-0.375600\pi\)
0.380940 + 0.924600i \(0.375600\pi\)
\(102\) 1.57332i 0.155782i
\(103\) 2.57870 + 4.46644i 0.254087 + 0.440091i 0.964647 0.263545i \(-0.0848918\pi\)
−0.710560 + 0.703636i \(0.751558\pi\)
\(104\) −2.18863 + 1.37847i −0.214613 + 0.135170i
\(105\) 8.09030 + 10.1498i 0.789532 + 0.990517i
\(106\) −1.10753 + 0.639433i −0.107573 + 0.0621072i
\(107\) −4.01644 + 6.95669i −0.388284 + 0.672528i −0.992219 0.124506i \(-0.960265\pi\)
0.603935 + 0.797034i \(0.293599\pi\)
\(108\) −4.78798 8.29303i −0.460724 0.797997i
\(109\) −1.15490 0.666781i −0.110619 0.0638660i 0.443670 0.896190i \(-0.353676\pi\)
−0.554289 + 0.832324i \(0.687010\pi\)
\(110\) 1.30889i 0.124797i
\(111\) −12.5785 7.26217i −1.19389 0.689295i
\(112\) 9.37004 + 3.68000i 0.885386 + 0.347727i
\(113\) 9.96917 17.2671i 0.937821 1.62435i 0.168296 0.985736i \(-0.446173\pi\)
0.769525 0.638617i \(-0.220493\pi\)
\(114\) −0.0311076 + 0.0538800i −0.00291349 + 0.00504632i
\(115\) 11.8193i 1.10216i
\(116\) −6.96976 + 12.0720i −0.647126 + 1.12086i
\(117\) 0.642412 + 1.01997i 0.0593910 + 0.0942964i
\(118\) 1.37225 0.126326
\(119\) 9.85825 7.85792i 0.903704 0.720335i
\(120\) −1.75968 3.04786i −0.160636 0.278230i
\(121\) 3.74106 0.340096
\(122\) 0.0644501 + 0.0372103i 0.00583503 + 0.00336886i
\(123\) −8.58619 + 4.95724i −0.774191 + 0.446979i
\(124\) 7.27765i 0.653553i
\(125\) 7.47412i 0.668505i
\(126\) −0.0584693 + 0.148875i −0.00520886 + 0.0132628i
\(127\) −3.98361 6.89981i −0.353488 0.612259i 0.633370 0.773849i \(-0.281671\pi\)
−0.986858 + 0.161590i \(0.948338\pi\)
\(128\) −4.80833 2.77609i −0.425000 0.245374i
\(129\) 7.31378 12.6678i 0.643942 1.11534i
\(130\) −0.933496 1.48213i −0.0818730 0.129992i
\(131\) −5.00897 8.67579i −0.437636 0.758007i 0.559871 0.828580i \(-0.310851\pi\)
−0.997507 + 0.0705727i \(0.977517\pi\)
\(132\) 8.38190 4.83929i 0.729551 0.421206i
\(133\) 0.492974 0.0741860i 0.0427462 0.00643274i
\(134\) 1.03079 1.78538i 0.0890465 0.154233i
\(135\) 11.3254 6.53870i 0.974731 0.562761i
\(136\) −2.96032 + 1.70914i −0.253845 + 0.146558i
\(137\) 4.38811 2.53348i 0.374902 0.216450i −0.300696 0.953720i \(-0.597219\pi\)
0.675598 + 0.737270i \(0.263886\pi\)
\(138\) 1.25798 0.726293i 0.107086 0.0618261i
\(139\) −3.86289 + 6.69073i −0.327646 + 0.567500i −0.982044 0.188650i \(-0.939589\pi\)
0.654398 + 0.756150i \(0.272922\pi\)
\(140\) −5.11195 + 13.0161i −0.432039 + 1.10006i
\(141\) −2.92378 + 1.68805i −0.246227 + 0.142159i
\(142\) −0.302417 0.523802i −0.0253783 0.0439565i
\(143\) 8.21974 5.17707i 0.687370 0.432928i
\(144\) −0.636031 + 1.10164i −0.0530025 + 0.0918031i
\(145\) −16.4861 9.51824i −1.36909 0.790447i
\(146\) 1.28528 + 2.22617i 0.106370 + 0.184239i
\(147\) 12.2160 3.76188i 1.00756 0.310274i
\(148\) 15.6482i 1.28627i
\(149\) 14.3185i 1.17301i 0.809944 + 0.586507i \(0.199498\pi\)
−0.809944 + 0.586507i \(0.800502\pi\)
\(150\) 0.634250 0.366184i 0.0517863 0.0298988i
\(151\) −5.60534 3.23624i −0.456156 0.263362i 0.254271 0.967133i \(-0.418165\pi\)
−0.710427 + 0.703771i \(0.751498\pi\)
\(152\) −0.135172 −0.0109639
\(153\) 0.796513 + 1.37960i 0.0643943 + 0.111534i
\(154\) 1.19975 + 0.471192i 0.0966789 + 0.0379698i
\(155\) 9.93871 0.798296
\(156\) −6.03996 + 11.4578i −0.483584 + 0.917357i
\(157\) −7.95937 + 13.7860i −0.635227 + 1.10025i 0.351240 + 0.936285i \(0.385760\pi\)
−0.986467 + 0.163960i \(0.947573\pi\)
\(158\) 1.64741i 0.131061i
\(159\) −6.45718 + 11.1842i −0.512088 + 0.886962i
\(160\) 2.85157 4.93907i 0.225437 0.390468i
\(161\) −10.8338 4.25489i −0.853826 0.335332i
\(162\) 1.54894 + 0.894282i 0.121696 + 0.0702614i
\(163\) 4.78162i 0.374525i −0.982310 0.187263i \(-0.940038\pi\)
0.982310 0.187263i \(-0.0599616\pi\)
\(164\) −9.25056 5.34081i −0.722348 0.417048i
\(165\) 6.60876 + 11.4467i 0.514492 + 0.891126i
\(166\) 1.49962 2.59743i 0.116393 0.201599i
\(167\) −2.34729 + 1.35521i −0.181639 + 0.104869i −0.588062 0.808816i \(-0.700109\pi\)
0.406424 + 0.913685i \(0.366776\pi\)
\(168\) −3.42721 + 0.515750i −0.264415 + 0.0397910i
\(169\) −5.61544 + 11.7246i −0.431957 + 0.901894i
\(170\) −1.15742 2.00472i −0.0887703 0.153755i
\(171\) 0.0629946i 0.00481732i
\(172\) 15.7594 1.20164
\(173\) 0.899816 0.0684118 0.0342059 0.999415i \(-0.489110\pi\)
0.0342059 + 0.999415i \(0.489110\pi\)
\(174\) 2.33957i 0.177362i
\(175\) −5.46223 2.14524i −0.412906 0.162165i
\(176\) 8.87787 + 5.12564i 0.669195 + 0.386360i
\(177\) 12.0009 6.92870i 0.902039 0.520793i
\(178\) 0.532675 + 0.922620i 0.0399257 + 0.0691533i
\(179\) 11.0558 0.826351 0.413175 0.910651i \(-0.364420\pi\)
0.413175 + 0.910651i \(0.364420\pi\)
\(180\) −1.53030 0.883522i −0.114062 0.0658538i
\(181\) −3.52898 −0.262307 −0.131153 0.991362i \(-0.541868\pi\)
−0.131153 + 0.991362i \(0.541868\pi\)
\(182\) −1.69461 + 0.322103i −0.125613 + 0.0238759i
\(183\) 0.751521 0.0555540
\(184\) 2.73315 + 1.57799i 0.201491 + 0.116331i
\(185\) 21.3699 1.57115
\(186\) 0.610730 + 1.05782i 0.0447809 + 0.0775628i
\(187\) 11.1179 6.41894i 0.813024 0.469400i
\(188\) −3.15002 1.81866i −0.229738 0.132640i
\(189\) −1.91644 12.7350i −0.139401 0.926332i
\(190\) 0.0915382i 0.00664088i
\(191\) −20.4004 −1.47612 −0.738059 0.674736i \(-0.764258\pi\)
−0.738059 + 0.674736i \(0.764258\pi\)
\(192\) −13.1946 −0.952240
\(193\) 17.2646i 1.24273i 0.783521 + 0.621365i \(0.213422\pi\)
−0.783521 + 0.621365i \(0.786578\pi\)
\(194\) −0.0407842 0.0706403i −0.00292814 0.00507168i
\(195\) −15.6473 8.24845i −1.12053 0.590684i
\(196\) 10.0906 + 9.37146i 0.720755 + 0.669390i
\(197\) −4.29264 + 2.47836i −0.305838 + 0.176576i −0.645063 0.764130i \(-0.723169\pi\)
0.339224 + 0.940705i \(0.389835\pi\)
\(198\) −0.0814383 + 0.141055i −0.00578757 + 0.0100244i
\(199\) 3.59097 + 6.21975i 0.254557 + 0.440906i 0.964775 0.263076i \(-0.0847369\pi\)
−0.710218 + 0.703982i \(0.751404\pi\)
\(200\) 1.37801 + 0.795593i 0.0974399 + 0.0562569i
\(201\) 20.8184i 1.46842i
\(202\) −1.19904 0.692265i −0.0843641 0.0487076i
\(203\) −14.6595 + 11.6850i −1.02890 + 0.820125i
\(204\) −8.55858 + 14.8239i −0.599221 + 1.03788i
\(205\) 7.29367 12.6330i 0.509412 0.882327i
\(206\) 0.932580i 0.0649759i
\(207\) 0.735392 1.27374i 0.0511132 0.0885307i
\(208\) −13.7086 + 0.527611i −0.950518 + 0.0365833i
\(209\) 0.507661 0.0351157
\(210\) −0.349264 2.32089i −0.0241015 0.160157i
\(211\) 8.79636 + 15.2357i 0.605566 + 1.04887i 0.991962 + 0.126539i \(0.0403868\pi\)
−0.386395 + 0.922333i \(0.626280\pi\)
\(212\) −13.9136 −0.955592
\(213\) −5.28951 3.05390i −0.362431 0.209250i
\(214\) 1.25793 0.726269i 0.0859906 0.0496467i
\(215\) 21.5218i 1.46777i
\(216\) 3.49190i 0.237594i
\(217\) 3.57788 9.11004i 0.242883 0.618430i
\(218\) 0.120570 + 0.208833i 0.00816602 + 0.0141440i
\(219\) 22.4805 + 12.9791i 1.51909 + 0.877048i
\(220\) −7.12013 + 12.3324i −0.480039 + 0.831452i
\(221\) −8.01153 + 15.1979i −0.538914 + 1.02232i
\(222\) 1.31317 + 2.27448i 0.0881344 + 0.152653i
\(223\) 12.2157 7.05271i 0.818020 0.472284i −0.0317129 0.999497i \(-0.510096\pi\)
0.849733 + 0.527213i \(0.176763\pi\)
\(224\) −3.50071 4.39185i −0.233901 0.293443i
\(225\) 0.370772 0.642195i 0.0247181 0.0428130i
\(226\) −3.12230 + 1.80266i −0.207693 + 0.119911i
\(227\) 2.48443 1.43439i 0.164897 0.0952035i −0.415280 0.909694i \(-0.636316\pi\)
0.580178 + 0.814490i \(0.302983\pi\)
\(228\) −0.586196 + 0.338441i −0.0388218 + 0.0224138i
\(229\) −7.59860 + 4.38706i −0.502130 + 0.289905i −0.729593 0.683882i \(-0.760290\pi\)
0.227463 + 0.973787i \(0.426957\pi\)
\(230\) −1.06861 + 1.85088i −0.0704618 + 0.122043i
\(231\) 12.8714 1.93698i 0.846878 0.127444i
\(232\) 4.40208 2.54154i 0.289011 0.166861i
\(233\) 2.55371 + 4.42316i 0.167299 + 0.289771i 0.937469 0.348068i \(-0.113162\pi\)
−0.770170 + 0.637839i \(0.779829\pi\)
\(234\) −0.00838290 0.217807i −0.000548007 0.0142385i
\(235\) 2.48365 4.30181i 0.162016 0.280619i
\(236\) 12.9294 + 7.46481i 0.841634 + 0.485918i
\(237\) 8.31803 + 14.4072i 0.540314 + 0.935851i
\(238\) −2.25423 + 0.339232i −0.146120 + 0.0219891i
\(239\) 2.49797i 0.161580i 0.996731 + 0.0807901i \(0.0257443\pi\)
−0.996731 + 0.0807901i \(0.974256\pi\)
\(240\) 18.6662i 1.20490i
\(241\) 6.91532 3.99256i 0.445455 0.257183i −0.260454 0.965486i \(-0.583872\pi\)
0.705909 + 0.708303i \(0.250539\pi\)
\(242\) −0.585842 0.338236i −0.0376593 0.0217426i
\(243\) 3.45877 0.221880
\(244\) 0.404835 + 0.701195i 0.0259169 + 0.0448894i
\(245\) −12.7981 + 13.7802i −0.817641 + 0.880382i
\(246\) 1.79277 0.114303
\(247\) −0.574856 + 0.362063i −0.0365772 + 0.0230375i
\(248\) −1.32691 + 2.29827i −0.0842588 + 0.145941i
\(249\) 30.2873i 1.91938i
\(250\) 0.675749 1.17043i 0.0427381 0.0740246i
\(251\) 12.6285 21.8732i 0.797105 1.38063i −0.124389 0.992234i \(-0.539697\pi\)
0.921494 0.388393i \(-0.126970\pi\)
\(252\) −1.36076 + 1.08465i −0.0857196 + 0.0683264i
\(253\) −10.2648 5.92637i −0.645341 0.372588i
\(254\) 1.44066i 0.0903952i
\(255\) −20.2442 11.6880i −1.26774 0.731931i
\(256\) −6.72394 11.6462i −0.420246 0.727888i
\(257\) −1.68682 + 2.92165i −0.105221 + 0.182248i −0.913828 0.406101i \(-0.866888\pi\)
0.808608 + 0.588348i \(0.200222\pi\)
\(258\) −2.29065 + 1.32250i −0.142609 + 0.0823355i
\(259\) 7.69305 19.5881i 0.478023 1.21715i
\(260\) −0.732915 19.0428i −0.0454535 1.18099i
\(261\) −1.18444 2.05151i −0.0733150 0.126985i
\(262\) 1.81148i 0.111914i
\(263\) −0.158935 −0.00980037 −0.00490019 0.999988i \(-0.501560\pi\)
−0.00490019 + 0.999988i \(0.501560\pi\)
\(264\) −3.52932 −0.217215
\(265\) 19.0011i 1.16723i
\(266\) −0.0839059 0.0329533i −0.00514460 0.00202050i
\(267\) 9.31689 + 5.37911i 0.570185 + 0.329196i
\(268\) 19.4243 11.2146i 1.18653 0.685043i
\(269\) 11.6633 + 20.2014i 0.711124 + 1.23170i 0.964435 + 0.264318i \(0.0851470\pi\)
−0.253311 + 0.967385i \(0.581520\pi\)
\(270\) −2.36470 −0.143911
\(271\) 10.2373 + 5.91049i 0.621870 + 0.359037i 0.777597 0.628763i \(-0.216439\pi\)
−0.155727 + 0.987800i \(0.549772\pi\)
\(272\) −18.1300 −1.09929
\(273\) −13.1937 + 11.3733i −0.798516 + 0.688340i
\(274\) −0.916226 −0.0553513
\(275\) −5.17532 2.98797i −0.312084 0.180182i
\(276\) 15.8036 0.951268
\(277\) −13.6827 23.6991i −0.822111 1.42394i −0.904107 0.427306i \(-0.859463\pi\)
0.0819961 0.996633i \(-0.473870\pi\)
\(278\) 1.20984 0.698503i 0.0725615 0.0418934i
\(279\) 1.07107 + 0.618382i 0.0641232 + 0.0370215i
\(280\) 3.98753 3.17842i 0.238300 0.189947i
\(281\) 28.5383i 1.70245i −0.524801 0.851225i \(-0.675860\pi\)
0.524801 0.851225i \(-0.324140\pi\)
\(282\) 0.610478 0.0363534
\(283\) −17.9721 −1.06833 −0.534165 0.845380i \(-0.679374\pi\)
−0.534165 + 0.845380i \(0.679374\pi\)
\(284\) 6.58040i 0.390475i
\(285\) −0.462190 0.800537i −0.0273778 0.0474197i
\(286\) −1.75526 + 0.0675561i −0.103791 + 0.00399468i
\(287\) −8.95400 11.2334i −0.528538 0.663084i
\(288\) 0.614613 0.354847i 0.0362164 0.0209096i
\(289\) −2.85229 + 4.94032i −0.167782 + 0.290607i
\(290\) 1.72112 + 2.98107i 0.101068 + 0.175055i
\(291\) −0.713347 0.411851i −0.0418172 0.0241432i
\(292\) 27.9668i 1.63663i
\(293\) 12.8943 + 7.44453i 0.753293 + 0.434914i 0.826882 0.562375i \(-0.190112\pi\)
−0.0735896 + 0.997289i \(0.523446\pi\)
\(294\) −2.25312 0.515367i −0.131404 0.0300568i
\(295\) −10.1943 + 17.6570i −0.593535 + 1.02803i
\(296\) −2.85308 + 4.94168i −0.165832 + 0.287229i
\(297\) 13.1144i 0.760974i
\(298\) 1.29456 2.24224i 0.0749918 0.129890i
\(299\) 15.8501 0.610035i 0.916636 0.0352792i
\(300\) 7.96793 0.460028
\(301\) 19.7273 + 7.74772i 1.13706 + 0.446571i
\(302\) 0.585190 + 1.01358i 0.0336739 + 0.0583249i
\(303\) −13.9814 −0.803211
\(304\) −0.620883 0.358467i −0.0356101 0.0205595i
\(305\) −0.957586 + 0.552862i −0.0548312 + 0.0316568i
\(306\) 0.288057i 0.0164671i
\(307\) 23.5161i 1.34214i 0.741396 + 0.671068i \(0.234164\pi\)
−0.741396 + 0.671068i \(0.765836\pi\)
\(308\) 8.74096 + 10.9661i 0.498062 + 0.624850i
\(309\) −4.70874 8.15577i −0.267871 0.463966i
\(310\) −1.55638 0.898577i −0.0883965 0.0510358i
\(311\) 0.815450 1.41240i 0.0462399 0.0800899i −0.841979 0.539510i \(-0.818609\pi\)
0.888219 + 0.459420i \(0.151943\pi\)
\(312\) 3.99647 2.51711i 0.226255 0.142503i
\(313\) 0.348367 + 0.603389i 0.0196909 + 0.0341056i 0.875703 0.482850i \(-0.160398\pi\)
−0.856012 + 0.516956i \(0.827065\pi\)
\(314\) 2.49284 1.43924i 0.140679 0.0812212i
\(315\) −1.48125 1.85831i −0.0834587 0.104704i
\(316\) −8.96164 + 15.5220i −0.504132 + 0.873182i
\(317\) −18.5579 + 10.7144i −1.04231 + 0.601780i −0.920488 0.390771i \(-0.872208\pi\)
−0.121826 + 0.992551i \(0.538875\pi\)
\(318\) 2.02236 1.16761i 0.113409 0.0654764i
\(319\) −16.5327 + 9.54517i −0.925654 + 0.534427i
\(320\) 16.8126 9.70673i 0.939850 0.542623i
\(321\) 7.33408 12.7030i 0.409348 0.709012i
\(322\) 1.31186 + 1.64581i 0.0731073 + 0.0917177i
\(323\) −0.777544 + 0.448915i −0.0432637 + 0.0249783i
\(324\) 9.72949 + 16.8520i 0.540527 + 0.936221i
\(325\) 7.99136 0.307569i 0.443281 0.0170609i
\(326\) −0.432315 + 0.748792i −0.0239437 + 0.0414717i
\(327\) 2.10886 + 1.21755i 0.116620 + 0.0673307i
\(328\) 1.94754 + 3.37324i 0.107535 + 0.186256i
\(329\) −3.04903 3.82520i −0.168099 0.210890i
\(330\) 2.39004i 0.131568i
\(331\) 1.52046i 0.0835722i −0.999127 0.0417861i \(-0.986695\pi\)
0.999127 0.0417861i \(-0.0133048\pi\)
\(332\) 28.2591 16.3154i 1.55092 0.895425i
\(333\) 2.30298 + 1.32962i 0.126202 + 0.0728630i
\(334\) 0.490108 0.0268175
\(335\) 15.3152 + 26.5268i 0.836761 + 1.44931i
\(336\) −17.1098 6.71972i −0.933417 0.366591i
\(337\) −32.2304 −1.75570 −0.877850 0.478936i \(-0.841023\pi\)
−0.877850 + 0.478936i \(0.841023\pi\)
\(338\) 1.93941 1.32835i 0.105490 0.0722527i
\(339\) −18.2038 + 31.5300i −0.988697 + 1.71247i
\(340\) 25.1848i 1.36584i
\(341\) 4.98341 8.63153i 0.269867 0.467423i
\(342\) 0.00569546 0.00986483i 0.000307975 0.000533429i
\(343\) 8.02394 + 16.6918i 0.433252 + 0.901273i
\(344\) −4.97679 2.87335i −0.268331 0.154921i
\(345\) 21.5822i 1.16195i
\(346\) −0.140909 0.0813541i −0.00757534 0.00437362i
\(347\) −4.09215 7.08782i −0.219678 0.380494i 0.735031 0.678033i \(-0.237167\pi\)
−0.954710 + 0.297539i \(0.903834\pi\)
\(348\) 12.7269 22.0436i 0.682232 1.18166i
\(349\) −18.9220 + 10.9246i −1.01287 + 0.584782i −0.912031 0.410120i \(-0.865487\pi\)
−0.100841 + 0.994903i \(0.532153\pi\)
\(350\) 0.661419 + 0.829791i 0.0353543 + 0.0443542i
\(351\) 9.35317 + 14.8502i 0.499235 + 0.792646i
\(352\) −2.85964 4.95304i −0.152419 0.263998i
\(353\) 0.567179i 0.0301879i 0.999886 + 0.0150940i \(0.00480474\pi\)
−0.999886 + 0.0150940i \(0.995195\pi\)
\(354\) −2.50575 −0.133179
\(355\) 8.98650 0.476954
\(356\) 11.5907i 0.614303i
\(357\) −18.0013 + 14.3487i −0.952730 + 0.759412i
\(358\) −1.73132 0.999577i −0.0915030 0.0528293i
\(359\) 28.0630 16.2022i 1.48111 0.855118i 0.481336 0.876536i \(-0.340152\pi\)
0.999771 + 0.0214184i \(0.00681822\pi\)
\(360\) 0.322179 + 0.558030i 0.0169803 + 0.0294108i
\(361\) 18.9645 0.998131
\(362\) 0.552631 + 0.319061i 0.0290456 + 0.0167695i
\(363\) −6.83122 −0.358546
\(364\) −17.7189 6.18351i −0.928723 0.324104i
\(365\) −38.1928 −1.99910
\(366\) −0.117687 0.0679464i −0.00615158 0.00355162i
\(367\) −7.86888 −0.410752 −0.205376 0.978683i \(-0.565842\pi\)
−0.205376 + 0.978683i \(0.565842\pi\)
\(368\) 8.36939 + 14.4962i 0.436285 + 0.755667i
\(369\) 1.57204 0.907617i 0.0818371 0.0472487i
\(370\) −3.34648 1.93209i −0.173975 0.100445i
\(371\) −17.4168 6.84030i −0.904237 0.355131i
\(372\) 13.2891i 0.689007i
\(373\) −2.09163 −0.108300 −0.0541502 0.998533i \(-0.517245\pi\)
−0.0541502 + 0.998533i \(0.517245\pi\)
\(374\) −2.32139 −0.120036
\(375\) 13.6478i 0.704771i
\(376\) 0.663180 + 1.14866i 0.0342009 + 0.0592377i
\(377\) 11.9134 22.5997i 0.613571 1.16394i
\(378\) −0.851281 + 2.16754i −0.0437852 + 0.111486i
\(379\) 12.3983 7.15817i 0.636859 0.367691i −0.146545 0.989204i \(-0.546815\pi\)
0.783404 + 0.621513i \(0.213482\pi\)
\(380\) 0.497953 0.862480i 0.0255444 0.0442443i
\(381\) 7.27412 + 12.5991i 0.372665 + 0.645474i
\(382\) 3.19466 + 1.84444i 0.163453 + 0.0943695i
\(383\) 25.1873i 1.28701i 0.765441 + 0.643507i \(0.222521\pi\)
−0.765441 + 0.643507i \(0.777479\pi\)
\(384\) 8.78006 + 5.06917i 0.448056 + 0.258685i
\(385\) −14.9758 + 11.9371i −0.763237 + 0.608369i
\(386\) 1.56092 2.70359i 0.0794488 0.137609i
\(387\) −1.33907 + 2.31934i −0.0680689 + 0.117899i
\(388\) 0.887438i 0.0450528i
\(389\) 14.0512 24.3373i 0.712422 1.23395i −0.251524 0.967851i \(-0.580932\pi\)
0.963946 0.266099i \(-0.0857350\pi\)
\(390\) 1.70458 + 2.70639i 0.0863146 + 0.137043i
\(391\) 20.9623 1.06011
\(392\) −1.47792 4.79927i −0.0746463 0.242400i
\(393\) 9.14644 + 15.8421i 0.461377 + 0.799128i
\(394\) 0.896292 0.0451546
\(395\) −21.1976 12.2384i −1.06657 0.615783i
\(396\) −1.53463 + 0.886021i −0.0771183 + 0.0445243i
\(397\) 21.7765i 1.09293i −0.837482 0.546465i \(-0.815973\pi\)
0.837482 0.546465i \(-0.184027\pi\)
\(398\) 1.29867i 0.0650963i
\(399\) −0.900176 + 0.135465i −0.0450652 + 0.00678171i
\(400\) 4.21970 + 7.30874i 0.210985 + 0.365437i
\(401\) −17.7786 10.2645i −0.887821 0.512584i −0.0145918 0.999894i \(-0.504645\pi\)
−0.873229 + 0.487310i \(0.837978\pi\)
\(402\) −1.88223 + 3.26012i −0.0938772 + 0.162600i
\(403\) 0.512971 + 13.3282i 0.0255529 + 0.663923i
\(404\) −7.53162 13.0451i −0.374712 0.649020i
\(405\) −23.0138 + 13.2871i −1.14357 + 0.660239i
\(406\) 3.35211 0.504448i 0.166363 0.0250354i
\(407\) 10.7152 18.5592i 0.531132 0.919947i
\(408\) 5.40558 3.12091i 0.267616 0.154508i
\(409\) 5.42879 3.13431i 0.268436 0.154982i −0.359741 0.933052i \(-0.617135\pi\)
0.628177 + 0.778071i \(0.283801\pi\)
\(410\) −2.28435 + 1.31887i −0.112816 + 0.0651343i
\(411\) −8.01275 + 4.62616i −0.395240 + 0.228192i
\(412\) 5.07308 8.78683i 0.249933 0.432896i
\(413\) 12.5149 + 15.7008i 0.615820 + 0.772584i
\(414\) −0.230322 + 0.132976i −0.0113197 + 0.00653543i
\(415\) 22.2811 + 38.5920i 1.09374 + 1.89441i
\(416\) 6.77065 + 3.56914i 0.331958 + 0.174991i
\(417\) 7.05369 12.2174i 0.345421 0.598286i
\(418\) −0.0794987 0.0458986i −0.00388841 0.00224497i
\(419\) −17.0817 29.5864i −0.834497 1.44539i −0.894439 0.447189i \(-0.852425\pi\)
0.0599424 0.998202i \(-0.480908\pi\)
\(420\) 9.33450 23.7676i 0.455477 1.15974i
\(421\) 11.5233i 0.561613i 0.959764 + 0.280806i \(0.0906019\pi\)
−0.959764 + 0.280806i \(0.909398\pi\)
\(422\) 3.18118i 0.154858i
\(423\) 0.535313 0.309063i 0.0260278 0.0150272i
\(424\) 4.39391 + 2.53682i 0.213387 + 0.123199i
\(425\) 10.5688 0.512664
\(426\) 0.552218 + 0.956469i 0.0267550 + 0.0463411i
\(427\) 0.162040 + 1.07677i 0.00784165 + 0.0521086i
\(428\) 15.8031 0.763873
\(429\) −15.0094 + 9.45340i −0.724659 + 0.456414i
\(430\) 1.94582 3.37026i 0.0938359 0.162529i
\(431\) 8.77001i 0.422436i 0.977439 + 0.211218i \(0.0677431\pi\)
−0.977439 + 0.211218i \(0.932257\pi\)
\(432\) −9.26026 + 16.0392i −0.445534 + 0.771688i
\(433\) 11.0535 19.1452i 0.531196 0.920058i −0.468141 0.883654i \(-0.655076\pi\)
0.999337 0.0364046i \(-0.0115905\pi\)
\(434\) −1.38394 + 1.10313i −0.0664315 + 0.0529519i
\(435\) 30.1038 + 17.3804i 1.44337 + 0.833328i
\(436\) 2.62352i 0.125644i
\(437\) 0.717877 + 0.414467i 0.0343407 + 0.0198266i
\(438\) −2.34693 4.06501i −0.112141 0.194234i
\(439\) −5.18547 + 8.98150i −0.247489 + 0.428664i −0.962828 0.270114i \(-0.912939\pi\)
0.715339 + 0.698777i \(0.246272\pi\)
\(440\) 4.49705 2.59637i 0.214389 0.123777i
\(441\) −2.23661 + 0.688759i −0.106505 + 0.0327980i
\(442\) 2.62866 1.65562i 0.125032 0.0787496i
\(443\) −17.9068 31.0156i −0.850780 1.47359i −0.880506 0.474036i \(-0.842797\pi\)
0.0297257 0.999558i \(-0.490537\pi\)
\(444\) 28.5738i 1.35605i
\(445\) −15.8287 −0.750354
\(446\) −2.55059 −0.120774
\(447\) 26.1457i 1.23665i
\(448\) −2.84497 18.9051i −0.134412 0.893183i
\(449\) −19.7023 11.3751i −0.929809 0.536825i −0.0430575 0.999073i \(-0.513710\pi\)
−0.886751 + 0.462247i \(0.847043\pi\)
\(450\) −0.116124 + 0.0670443i −0.00547415 + 0.00316050i
\(451\) −7.31430 12.6687i −0.344417 0.596548i
\(452\) −39.2248 −1.84498
\(453\) 10.2354 + 5.90942i 0.480902 + 0.277649i
\(454\) −0.518742 −0.0243458
\(455\) 8.44449 24.1978i 0.395884 1.13441i
\(456\) 0.246827 0.0115587
\(457\) −27.1215 15.6586i −1.26869 0.732478i −0.293949 0.955821i \(-0.594969\pi\)
−0.974740 + 0.223344i \(0.928303\pi\)
\(458\) 1.58657 0.0741354
\(459\) 11.5968 + 20.0862i 0.541292 + 0.937546i
\(460\) −20.1370 + 11.6261i −0.938891 + 0.542069i
\(461\) −7.28113 4.20376i −0.339116 0.195789i 0.320765 0.947159i \(-0.396060\pi\)
−0.659881 + 0.751370i \(0.729393\pi\)
\(462\) −2.19077 0.860403i −0.101924 0.0400296i
\(463\) 10.0392i 0.466563i −0.972409 0.233281i \(-0.925054\pi\)
0.972409 0.233281i \(-0.0749463\pi\)
\(464\) 26.9599 1.25158
\(465\) −18.1482 −0.841603
\(466\) 0.923545i 0.0427824i
\(467\) −13.1756 22.8209i −0.609696 1.05602i −0.991290 0.131695i \(-0.957958\pi\)
0.381594 0.924330i \(-0.375375\pi\)
\(468\) 1.10585 2.09780i 0.0511180 0.0969706i
\(469\) 29.8284 4.48878i 1.37735 0.207273i
\(470\) −0.777869 + 0.449103i −0.0358804 + 0.0207156i
\(471\) 14.5339 25.1735i 0.669687 1.15993i
\(472\) −2.72206 4.71475i −0.125293 0.217014i
\(473\) 18.6911 + 10.7913i 0.859418 + 0.496185i
\(474\) 3.00819i 0.138171i
\(475\) 0.361941 + 0.208967i 0.0166070 + 0.00958806i
\(476\) −23.0849 9.06638i −1.05809 0.415557i
\(477\) 1.18224 2.04770i 0.0541310 0.0937577i
\(478\) 0.225846 0.391177i 0.0103300 0.0178920i
\(479\) 8.58414i 0.392220i 0.980582 + 0.196110i \(0.0628309\pi\)
−0.980582 + 0.196110i \(0.937169\pi\)
\(480\) −5.20701 + 9.01880i −0.237666 + 0.411650i
\(481\) 1.10297 + 28.6578i 0.0502913 + 1.30668i
\(482\) −1.44390 −0.0657678
\(483\) 19.7827 + 7.76948i 0.900145 + 0.353524i
\(484\) −3.67990 6.37377i −0.167268 0.289717i
\(485\) 1.21193 0.0550308
\(486\) −0.541637 0.312714i −0.0245691 0.0141850i
\(487\) 18.4084 10.6281i 0.834166 0.481606i −0.0211110 0.999777i \(-0.506720\pi\)
0.855277 + 0.518171i \(0.173387\pi\)
\(488\) 0.295249i 0.0133653i
\(489\) 8.73130i 0.394843i
\(490\) 3.25005 1.00084i 0.146822 0.0452135i
\(491\) −11.2268 19.4453i −0.506657 0.877556i −0.999970 0.00770409i \(-0.997548\pi\)
0.493313 0.869852i \(-0.335786\pi\)
\(492\) 16.8916 + 9.75240i 0.761534 + 0.439672i
\(493\) 16.8812 29.2391i 0.760292 1.31686i
\(494\) 0.122756 0.00472460i 0.00552306 0.000212570i
\(495\) −1.20999 2.09577i −0.0543851 0.0941978i
\(496\) −12.1897 + 7.03772i −0.547333 + 0.316003i
\(497\) 3.23509 8.23722i 0.145114 0.369490i
\(498\) −2.73833 + 4.74293i −0.122708 + 0.212536i
\(499\) 33.6694 19.4390i 1.50725 0.870210i 0.507284 0.861779i \(-0.330650\pi\)
0.999964 0.00843082i \(-0.00268365\pi\)
\(500\) 12.7339 7.35193i 0.569478 0.328788i
\(501\) 4.28619 2.47463i 0.191493 0.110558i
\(502\) −3.95520 + 2.28354i −0.176529 + 0.101919i
\(503\) −2.72850 + 4.72591i −0.121658 + 0.210718i −0.920422 0.390927i \(-0.872154\pi\)
0.798764 + 0.601645i \(0.205488\pi\)
\(504\) 0.627485 0.0944282i 0.0279504 0.00420616i
\(505\) 17.8151 10.2855i 0.792760 0.457700i
\(506\) 1.07163 + 1.85612i 0.0476397 + 0.0825144i
\(507\) 10.2539 21.4093i 0.455390 0.950821i
\(508\) −7.83697 + 13.5740i −0.347709 + 0.602250i
\(509\) 9.43315 + 5.44623i 0.418117 + 0.241400i 0.694271 0.719713i \(-0.255727\pi\)
−0.276154 + 0.961113i \(0.589060\pi\)
\(510\) 2.11347 + 3.66064i 0.0935860 + 0.162096i
\(511\) −13.7492 + 35.0083i −0.608229 + 1.54868i
\(512\) 13.5360i 0.598214i
\(513\) 0.917168i 0.0404939i
\(514\) 0.528304 0.305017i 0.0233025 0.0134537i
\(515\) 11.9997 + 6.92804i 0.528771 + 0.305286i
\(516\) −28.7768 −1.26683
\(517\) −2.49068 4.31398i −0.109540 0.189729i
\(518\) −2.97572 + 2.37192i −0.130745 + 0.104216i
\(519\) −1.64308 −0.0721230
\(520\) −3.24056 + 6.14733i −0.142108 + 0.269578i
\(521\) −13.9480 + 24.1587i −0.611074 + 1.05841i 0.379985 + 0.924993i \(0.375929\pi\)
−0.991060 + 0.133419i \(0.957404\pi\)
\(522\) 0.428350i 0.0187484i
\(523\) −8.36180 + 14.4831i −0.365636 + 0.633300i −0.988878 0.148729i \(-0.952482\pi\)
0.623242 + 0.782029i \(0.285815\pi\)
\(524\) −9.85416 + 17.0679i −0.430481 + 0.745615i
\(525\) 9.97411 + 3.91724i 0.435306 + 0.170962i
\(526\) 0.0248890 + 0.0143696i 0.00108521 + 0.000626546i
\(527\) 17.6269i 0.767842i
\(528\) −16.2111 9.35949i −0.705498 0.407319i
\(529\) 1.82314 + 3.15777i 0.0792668 + 0.137294i
\(530\) −1.71793 + 2.97554i −0.0746219 + 0.129249i
\(531\) −2.19723 + 1.26857i −0.0953515 + 0.0550512i
\(532\) −0.611307 0.766923i −0.0265035 0.0332503i
\(533\) 17.3178 + 9.12904i 0.750116 + 0.395423i
\(534\) −0.972671 1.68472i −0.0420916 0.0729048i
\(535\) 21.5815i 0.933049i
\(536\) −8.17890 −0.353275
\(537\) −20.1881 −0.871179
\(538\) 4.21800i 0.181851i
\(539\) 5.55057 + 18.0244i 0.239080 + 0.776366i
\(540\) −22.2804 12.8636i −0.958796 0.553561i
\(541\) −9.66528 + 5.58025i −0.415543 + 0.239914i −0.693169 0.720776i \(-0.743786\pi\)
0.277626 + 0.960689i \(0.410453\pi\)
\(542\) −1.06876 1.85114i −0.0459070 0.0795133i
\(543\) 6.44396 0.276537
\(544\) 8.75976 + 5.05745i 0.375572 + 0.216836i
\(545\) −3.58280 −0.153470
\(546\) 3.09438 0.588165i 0.132427 0.0251711i
\(547\) 36.6556 1.56728 0.783640 0.621215i \(-0.213361\pi\)
0.783640 + 0.621215i \(0.213361\pi\)
\(548\) −8.63275 4.98412i −0.368773 0.212911i
\(549\) −0.137595 −0.00587242
\(550\) 0.540297 + 0.935821i 0.0230383 + 0.0399036i
\(551\) 1.15623 0.667551i 0.0492571 0.0284386i
\(552\) −4.99077 2.88142i −0.212421 0.122641i
\(553\) −18.8491 + 15.0244i −0.801543 + 0.638903i
\(554\) 4.94830i 0.210233i
\(555\) −39.0217 −1.65638
\(556\) 15.1990 0.644579
\(557\) 33.0776i 1.40154i 0.713386 + 0.700772i \(0.247161\pi\)
−0.713386 + 0.700772i \(0.752839\pi\)
\(558\) −0.111818 0.193675i −0.00473364 0.00819890i
\(559\) −28.8615 + 1.11081i −1.22071 + 0.0469823i
\(560\) 26.7447 4.02472i 1.13017 0.170076i
\(561\) −20.3015 + 11.7211i −0.857130 + 0.494864i
\(562\) −2.58020 + 4.46903i −0.108839 + 0.188515i
\(563\) 8.89836 + 15.4124i 0.375021 + 0.649556i 0.990330 0.138730i \(-0.0443021\pi\)
−0.615309 + 0.788286i \(0.710969\pi\)
\(564\) 5.75197 + 3.32090i 0.242202 + 0.139835i
\(565\) 53.5672i 2.25359i
\(566\) 2.81439 + 1.62489i 0.118298 + 0.0682992i
\(567\) 3.89433 + 25.8783i 0.163547 + 1.08679i
\(568\) −1.19978 + 2.07808i −0.0503417 + 0.0871943i
\(569\) −4.11047 + 7.11954i −0.172320 + 0.298467i −0.939231 0.343287i \(-0.888460\pi\)
0.766911 + 0.641754i \(0.221793\pi\)
\(570\) 0.167150i 0.00700114i
\(571\) −12.8776 + 22.3047i −0.538912 + 0.933424i 0.460051 + 0.887893i \(0.347831\pi\)
−0.998963 + 0.0455309i \(0.985502\pi\)
\(572\) −16.9057 8.91183i −0.706863 0.372622i
\(573\) 37.2513 1.55620
\(574\) 0.386550 + 2.56867i 0.0161343 + 0.107214i
\(575\) −4.87891 8.45051i −0.203464 0.352411i
\(576\) 2.41579 0.100658
\(577\) 0.666314 + 0.384697i 0.0277390 + 0.0160151i 0.513805 0.857907i \(-0.328235\pi\)
−0.486066 + 0.873922i \(0.661569\pi\)
\(578\) 0.893326 0.515762i 0.0371575 0.0214529i
\(579\) 31.5253i 1.31015i
\(580\) 37.4505i 1.55505i
\(581\) 43.3954 6.53042i 1.80034 0.270928i
\(582\) 0.0744725 + 0.128990i 0.00308698 + 0.00534681i
\(583\) −16.5020 9.52743i −0.683443 0.394586i
\(584\) 5.09908 8.83187i 0.211002 0.365465i
\(585\) 2.86485 + 1.51020i 0.118447 + 0.0624392i
\(586\) −1.34615 2.33159i −0.0556088 0.0963173i
\(587\) −10.4727 + 6.04644i −0.432256 + 0.249563i −0.700307 0.713841i \(-0.746954\pi\)
0.268051 + 0.963405i \(0.413620\pi\)
\(588\) −18.4255 17.1124i −0.759855 0.705704i
\(589\) −0.348520 + 0.603654i −0.0143605 + 0.0248731i
\(590\) 3.19281 1.84337i 0.131446 0.0758904i
\(591\) 7.83842 4.52552i 0.322430 0.186155i
\(592\) −26.2099 + 15.1323i −1.07722 + 0.621933i
\(593\) 13.8115 7.97406i 0.567170 0.327456i −0.188848 0.982006i \(-0.560475\pi\)
0.756018 + 0.654551i \(0.227142\pi\)
\(594\) −1.18570 + 2.05369i −0.0486497 + 0.0842638i
\(595\) 12.3815 31.5258i 0.507591 1.29243i
\(596\) 24.3949 14.0844i 0.999253 0.576919i
\(597\) −6.55717 11.3573i −0.268367 0.464825i
\(598\) −2.53725 1.33751i −0.103756 0.0546948i
\(599\) 3.55511 6.15763i 0.145258 0.251594i −0.784211 0.620494i \(-0.786932\pi\)
0.929469 + 0.368900i \(0.120266\pi\)
\(600\) −2.51626 1.45276i −0.102726 0.0593088i
\(601\) −10.3953 18.0051i −0.424032 0.734445i 0.572297 0.820046i \(-0.306052\pi\)
−0.996329 + 0.0856011i \(0.972719\pi\)
\(602\) −2.38877 2.99686i −0.0973590 0.122143i
\(603\) 3.81163i 0.155221i
\(604\) 12.7333i 0.518112i
\(605\) 8.70432 5.02544i 0.353881 0.204313i
\(606\) 2.18946 + 1.26409i 0.0889408 + 0.0513500i
\(607\) −7.71405 −0.313104 −0.156552 0.987670i \(-0.550038\pi\)
−0.156552 + 0.987670i \(0.550038\pi\)
\(608\) 0.199992 + 0.346396i 0.00811074 + 0.0140482i
\(609\) 26.7685 21.3369i 1.08471 0.864616i
\(610\) 0.199941 0.00809539
\(611\) 5.89707 + 3.10864i 0.238570 + 0.125762i
\(612\) 1.56698 2.71409i 0.0633415 0.109711i
\(613\) 20.4378i 0.825476i 0.910850 + 0.412738i \(0.135428\pi\)
−0.910850 + 0.412738i \(0.864572\pi\)
\(614\) 2.12614 3.68257i 0.0858038 0.148617i
\(615\) −13.3183 + 23.0680i −0.537047 + 0.930193i
\(616\) −0.760978 5.05678i −0.0306607 0.203743i
\(617\) −3.98209 2.29906i −0.160313 0.0925567i 0.417697 0.908586i \(-0.362837\pi\)
−0.578010 + 0.816030i \(0.696171\pi\)
\(618\) 1.70290i 0.0685008i
\(619\) 8.70599 + 5.02641i 0.349923 + 0.202028i 0.664651 0.747154i \(-0.268580\pi\)
−0.314728 + 0.949182i \(0.601913\pi\)
\(620\) −9.77623 16.9329i −0.392623 0.680042i
\(621\) 10.7069 18.5449i 0.429653 0.744181i
\(622\) −0.255396 + 0.147453i −0.0102404 + 0.00591232i
\(623\) −5.69827 + 14.5090i −0.228296 + 0.581290i
\(624\) 25.0320 0.963425i 1.00208 0.0385679i
\(625\) 15.5853 + 26.9944i 0.623410 + 1.07978i
\(626\) 0.125986i 0.00503541i
\(627\) −0.926996 −0.0370207
\(628\) 31.3170 1.24968
\(629\) 37.9009i 1.51121i
\(630\) 0.0639464 + 0.424930i 0.00254768 + 0.0169296i
\(631\) −6.29923 3.63686i −0.250768 0.144781i 0.369348 0.929291i \(-0.379581\pi\)
−0.620116 + 0.784510i \(0.712914\pi\)
\(632\) 5.66015 3.26789i 0.225149 0.129990i
\(633\) −16.0623 27.8207i −0.638418 1.10577i
\(634\) 3.87483 0.153889
\(635\) −18.5373 10.7025i −0.735631 0.424717i
\(636\) 25.4065 1.00743
\(637\) −19.1402 16.4515i −0.758364 0.651831i
\(638\) 3.45199 0.136665
\(639\) 0.968451 + 0.559136i 0.0383113 + 0.0221191i
\(640\) −14.9167 −0.589635
\(641\) 1.92516 + 3.33448i 0.0760394 + 0.131704i 0.901538 0.432700i \(-0.142439\pi\)
−0.825498 + 0.564404i \(0.809106\pi\)
\(642\) −2.29700 + 1.32618i −0.0906555 + 0.0523400i
\(643\) 2.49163 + 1.43855i 0.0982605 + 0.0567307i 0.548325 0.836265i \(-0.315266\pi\)
−0.450065 + 0.892996i \(0.648599\pi\)
\(644\) 3.40752 + 22.6433i 0.134275 + 0.892271i
\(645\) 39.2990i 1.54740i
\(646\) 0.162349 0.00638754
\(647\) −37.1001 −1.45856 −0.729278 0.684218i \(-0.760144\pi\)
−0.729278 + 0.684218i \(0.760144\pi\)
\(648\) 7.09577i 0.278748i
\(649\) 10.2231 + 17.7070i 0.401293 + 0.695061i
\(650\) −1.27924 0.674349i −0.0501758 0.0264501i
\(651\) −6.53326 + 16.6350i −0.256059 + 0.651979i
\(652\) −8.14661 + 4.70345i −0.319046 + 0.184201i
\(653\) −10.0475 + 17.4028i −0.393189 + 0.681023i −0.992868 0.119218i \(-0.961961\pi\)
0.599679 + 0.800240i \(0.295295\pi\)
\(654\) −0.220162 0.381332i −0.00860902 0.0149113i
\(655\) −23.3087 13.4573i −0.910748 0.525820i
\(656\) 20.6589i 0.806596i
\(657\) −4.11593 2.37634i −0.160578 0.0927097i
\(658\) 0.131629 + 0.874687i 0.00513142 + 0.0340988i
\(659\) −4.95529 + 8.58281i −0.193031 + 0.334339i −0.946253 0.323427i \(-0.895165\pi\)
0.753223 + 0.657766i \(0.228498\pi\)
\(660\) 13.0014 22.5192i 0.506080 0.876557i
\(661\) 47.2266i 1.83690i −0.395537 0.918450i \(-0.629442\pi\)
0.395537 0.918450i \(-0.370558\pi\)
\(662\) −0.137468 + 0.238102i −0.00534284 + 0.00925408i
\(663\) 14.6292 27.7515i 0.568150 1.07778i
\(664\) −11.8989 −0.461768
\(665\) 1.04735 0.834830i 0.0406143 0.0323733i
\(666\) −0.240428 0.416433i −0.00931639 0.0161365i
\(667\) −31.1716 −1.20697
\(668\) 4.61783 + 2.66611i 0.178669 + 0.103155i
\(669\) −22.3059 + 12.8783i −0.862397 + 0.497905i
\(670\) 5.53872i 0.213979i
\(671\) 1.10885i 0.0428068i
\(672\) 6.39234 + 8.01958i 0.246590 + 0.309362i
\(673\) 3.45845 + 5.99020i 0.133313 + 0.230905i 0.924952 0.380084i \(-0.124105\pi\)
−0.791639 + 0.610990i \(0.790772\pi\)
\(674\) 5.04721 + 2.91401i 0.194411 + 0.112243i
\(675\) 5.39823 9.35001i 0.207778 0.359882i
\(676\) 25.4993 1.96573i 0.980742 0.0756050i
\(677\) 6.16453 + 10.6773i 0.236922 + 0.410361i 0.959830 0.280584i \(-0.0905281\pi\)
−0.722908 + 0.690945i \(0.757195\pi\)
\(678\) 5.70137 3.29169i 0.218960 0.126416i
\(679\) 0.436287 1.11088i 0.0167432 0.0426316i
\(680\) −4.59185 + 7.95331i −0.176089 + 0.304996i
\(681\) −4.53660 + 2.61921i −0.173843 + 0.100368i
\(682\) −1.56078 + 0.901120i −0.0597655 + 0.0345057i
\(683\) 21.2491 12.2682i 0.813076 0.469430i −0.0349470 0.999389i \(-0.511126\pi\)
0.848023 + 0.529960i \(0.177793\pi\)
\(684\) 0.107326 0.0619648i 0.00410372 0.00236928i
\(685\) 6.80655 11.7893i 0.260065 0.450446i
\(686\) 0.252606 3.33936i 0.00964453 0.127497i
\(687\) 13.8751 8.01082i 0.529370 0.305632i
\(688\) −15.2398 26.3961i −0.581012 1.00634i
\(689\) 25.4812 0.980713i 0.970756 0.0373622i
\(690\) 1.95129 3.37973i 0.0742843 0.128664i
\(691\) −7.88703 4.55358i −0.300037 0.173226i 0.342423 0.939546i \(-0.388753\pi\)
−0.642459 + 0.766320i \(0.722086\pi\)
\(692\) −0.885106 1.53305i −0.0336467 0.0582777i
\(693\) −2.35662 + 0.354640i −0.0895205 + 0.0134717i
\(694\) 1.47992i 0.0561769i
\(695\) 20.7564i 0.787336i
\(696\) −8.03826 + 4.64089i −0.304690 + 0.175913i
\(697\) 22.4055 + 12.9358i 0.848667 + 0.489978i
\(698\) 3.95087 0.149542
\(699\) −4.66312 8.07675i −0.176375 0.305491i
\(700\) 1.71801 + 11.4164i 0.0649347 + 0.431498i
\(701\) 0.286950 0.0108380 0.00541898 0.999985i \(-0.498275\pi\)
0.00541898 + 0.999985i \(0.498275\pi\)
\(702\) −0.122050 3.17115i −0.00460650 0.119687i
\(703\) −0.749377 + 1.29796i −0.0282633 + 0.0489534i
\(704\) 19.4684i 0.733742i
\(705\) −4.53518 + 7.85516i −0.170805 + 0.295842i
\(706\) 0.0512797 0.0888191i 0.00192994 0.00334275i
\(707\) −3.01461 20.0324i −0.113376 0.753397i
\(708\) −23.6093 13.6308i −0.887292 0.512278i
\(709\) 18.5848i 0.697967i 0.937129 + 0.348984i \(0.113473\pi\)
−0.937129 + 0.348984i \(0.886527\pi\)
\(710\) −1.40727 0.812486i −0.0528138 0.0304921i
\(711\) −1.52294 2.63781i −0.0571147 0.0989256i
\(712\) 2.11328 3.66031i 0.0791986 0.137176i
\(713\) 14.0940 8.13715i 0.527823 0.304739i
\(714\) 4.11626 0.619442i 0.154047 0.0231820i
\(715\) 12.1704 23.0872i 0.455148 0.863414i
\(716\) −10.8751 18.8362i −0.406421 0.703941i
\(717\) 4.56132i 0.170346i
\(718\) −5.85947 −0.218674
\(719\) −41.6949 −1.55496 −0.777479 0.628909i \(-0.783502\pi\)
−0.777479 + 0.628909i \(0.783502\pi\)
\(720\) 3.41757i 0.127365i
\(721\) 10.6702 8.50514i 0.397380 0.316748i
\(722\) −2.96980 1.71462i −0.110525 0.0638114i
\(723\) −12.6275 + 7.29046i −0.469620 + 0.271135i
\(724\) 3.47128 + 6.01244i 0.129009 + 0.223451i
\(725\) −15.7162 −0.583684
\(726\) 1.06975 + 0.617623i 0.0397023 + 0.0229221i
\(727\) 32.7039 1.21292 0.606461 0.795113i \(-0.292589\pi\)
0.606461 + 0.795113i \(0.292589\pi\)
\(728\) 4.46819 + 5.18337i 0.165602 + 0.192108i
\(729\) 23.3578 0.865105
\(730\) 5.98091 + 3.45308i 0.221363 + 0.127804i
\(731\) −38.1702 −1.41178
\(732\) −0.739235 1.28039i −0.0273229 0.0473246i
\(733\) −8.60423 + 4.96765i −0.317804 + 0.183484i −0.650413 0.759580i \(-0.725404\pi\)
0.332609 + 0.943065i \(0.392071\pi\)
\(734\) 1.23225 + 0.711440i 0.0454832 + 0.0262597i
\(735\) 23.3695 25.1627i 0.861997 0.928142i
\(736\) 9.33871i 0.344230i
\(737\) 30.7171 1.13148
\(738\) −0.328237 −0.0120826
\(739\) 10.4022i 0.382649i 0.981527 + 0.191325i \(0.0612784\pi\)
−0.981527 + 0.191325i \(0.938722\pi\)
\(740\) −21.0205 36.4086i −0.772730 1.33841i
\(741\) 1.04969 0.661133i 0.0385615 0.0242873i
\(742\) 2.10900 + 2.64587i 0.0774237 + 0.0971328i
\(743\) −1.47972 + 0.854317i −0.0542857 + 0.0313419i −0.526897 0.849929i \(-0.676645\pi\)
0.472612 + 0.881271i \(0.343311\pi\)
\(744\) 2.42295 4.19668i 0.0888297 0.153858i
\(745\) 19.2343 + 33.3148i 0.704690 + 1.22056i
\(746\) 0.327545 + 0.189108i 0.0119923 + 0.00692374i
\(747\) 5.54528i 0.202891i
\(748\) −21.8723 12.6280i −0.799732 0.461726i
\(749\) 19.7821 + 7.76923i 0.722821 + 0.283881i
\(750\) −1.23393 + 2.13722i −0.0450566 + 0.0780404i
\(751\) 14.9906 25.9645i 0.547015 0.947458i −0.451462 0.892290i \(-0.649097\pi\)
0.998477 0.0551673i \(-0.0175692\pi\)
\(752\) 7.03481i 0.256533i
\(753\) −23.0598 + 39.9408i −0.840347 + 1.45552i
\(754\) −3.90890 + 2.46195i −0.142354 + 0.0896590i
\(755\) −17.3893 −0.632860
\(756\) −19.8119 + 15.7919i −0.720551 + 0.574345i
\(757\) −4.20229 7.27858i −0.152735 0.264545i 0.779497 0.626406i \(-0.215475\pi\)
−0.932232 + 0.361861i \(0.882141\pi\)
\(758\) −2.58874 −0.0940271
\(759\) 18.7436 + 10.8216i 0.680350 + 0.392800i
\(760\) −0.314506 + 0.181580i −0.0114083 + 0.00658660i
\(761\) 51.0590i 1.85089i 0.378885 + 0.925444i \(0.376308\pi\)
−0.378885 + 0.925444i \(0.623692\pi\)
\(762\) 2.63067i 0.0952990i
\(763\) −1.28979 + 3.28407i −0.0466935 + 0.118891i
\(764\) 20.0668 + 34.7568i 0.725993 + 1.25746i
\(765\) 3.70650 + 2.13995i 0.134009 + 0.0773699i
\(766\) 2.27723 3.94429i 0.0822798 0.142513i
\(767\) −24.2049 12.7596i −0.873988 0.460722i
\(768\) 12.2780 + 21.2661i 0.443044 + 0.767375i
\(769\) −0.610062 + 0.352220i −0.0219994 + 0.0127014i −0.510959 0.859605i \(-0.670710\pi\)
0.488960 + 0.872306i \(0.337376\pi\)
\(770\) 3.42443 0.515331i 0.123408 0.0185712i
\(771\) 3.08015 5.33498i 0.110929 0.192134i
\(772\) 29.4142 16.9823i 1.05864 0.611206i
\(773\) −1.09571 + 0.632607i −0.0394099 + 0.0227533i −0.519575 0.854425i \(-0.673910\pi\)
0.480166 + 0.877178i \(0.340577\pi\)
\(774\) 0.419392 0.242136i 0.0150747 0.00870341i