Properties

Label 91.2.u.b.88.1
Level $91$
Weight $2$
Character 91.88
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.u (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 88.1
Root \(1.32725 + 0.488273i\) of defining polynomial
Character \(\chi\) \(=\) 91.88
Dual form 91.2.u.b.30.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.24179 - 1.29430i) q^{2} +0.518466 q^{3} +(2.35043 + 4.07106i) q^{4} +(1.39608 - 0.806027i) q^{5} +(-1.16229 - 0.671051i) q^{6} +(2.62954 - 0.292422i) q^{7} -6.99143i q^{8} -2.73119 q^{9} +O(q^{10})\) \(q+(-2.24179 - 1.29430i) q^{2} +0.518466 q^{3} +(2.35043 + 4.07106i) q^{4} +(1.39608 - 0.806027i) q^{5} +(-1.16229 - 0.671051i) q^{6} +(2.62954 - 0.292422i) q^{7} -6.99143i q^{8} -2.73119 q^{9} -4.17296 q^{10} -2.70496i q^{11} +(1.21862 + 2.11070i) q^{12} +(2.36840 - 2.71858i) q^{13} +(-6.27337 - 2.74787i) q^{14} +(0.723819 - 0.417897i) q^{15} +(-4.34816 + 7.53123i) q^{16} +(1.56330 + 2.70772i) q^{17} +(6.12277 + 3.53498i) q^{18} +3.68150i q^{19} +(6.56276 + 3.78901i) q^{20} +(1.36333 - 0.151611i) q^{21} +(-3.50103 + 6.06396i) q^{22} +(0.993019 - 1.71996i) q^{23} -3.62482i q^{24} +(-1.20064 + 2.07957i) q^{25} +(-8.82813 + 3.02907i) q^{26} -2.97143 q^{27} +(7.37101 + 10.0177i) q^{28} +(2.68636 + 4.65290i) q^{29} -2.16354 q^{30} +(-9.07425 - 5.23902i) q^{31} +(7.38583 - 4.26421i) q^{32} -1.40243i q^{33} -8.09354i q^{34} +(3.43535 - 2.52773i) q^{35} +(-6.41947 - 11.1188i) q^{36} +(5.15585 + 2.97673i) q^{37} +(4.76497 - 8.25317i) q^{38} +(1.22794 - 1.40949i) q^{39} +(-5.63528 - 9.76059i) q^{40} +(-6.66970 + 3.85075i) q^{41} +(-3.25253 - 1.42468i) q^{42} +(-1.67800 + 2.90638i) q^{43} +(11.0120 - 6.35780i) q^{44} +(-3.81296 + 2.20141i) q^{45} +(-4.45229 + 2.57053i) q^{46} +(-0.913730 + 0.527542i) q^{47} +(-2.25437 + 3.90469i) q^{48} +(6.82898 - 1.53787i) q^{49} +(5.38318 - 3.10798i) q^{50} +(0.810520 + 1.40386i) q^{51} +(16.6343 + 3.25208i) q^{52} +(-3.63284 + 6.29226i) q^{53} +(6.66133 + 3.84592i) q^{54} +(-2.18027 - 3.77633i) q^{55} +(-2.04445 - 18.3843i) q^{56} +1.90873i q^{57} -13.9078i q^{58} +(-9.89352 + 5.71203i) q^{59} +(3.40257 + 1.96447i) q^{60} -2.92507 q^{61} +(13.5617 + 23.4896i) q^{62} +(-7.18179 + 0.798661i) q^{63} -4.68406 q^{64} +(1.11523 - 5.70435i) q^{65} +(-1.81516 + 3.14395i) q^{66} -13.5818i q^{67} +(-7.34886 + 12.7286i) q^{68} +(0.514846 - 0.891740i) q^{69} +(-10.9730 + 1.22027i) q^{70} +(1.17009 + 0.675554i) q^{71} +19.0949i q^{72} +(7.88374 + 4.55168i) q^{73} +(-7.70557 - 13.3464i) q^{74} +(-0.622492 + 1.07819i) q^{75} +(-14.9876 + 8.65311i) q^{76} +(-0.790989 - 7.11280i) q^{77} +(-4.57708 + 1.57047i) q^{78} +(3.10289 + 5.37436i) q^{79} +14.0189i q^{80} +6.65300 q^{81} +19.9361 q^{82} -2.69672i q^{83} +(3.82162 + 5.19384i) q^{84} +(4.36499 + 2.52013i) q^{85} +(7.52346 - 4.34367i) q^{86} +(1.39278 + 2.41237i) q^{87} -18.9115 q^{88} +(1.52410 + 0.879938i) q^{89} +11.3972 q^{90} +(5.43284 - 7.84119i) q^{91} +9.33607 q^{92} +(-4.70469 - 2.71625i) q^{93} +2.73119 q^{94} +(2.96739 + 5.13967i) q^{95} +(3.82930 - 2.21085i) q^{96} +(-13.4078 - 7.74102i) q^{97} +(-17.2996 - 5.39116i) q^{98} +7.38776i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{3} + 4q^{4} + 3q^{5} - 9q^{6} + 3q^{7} + 2q^{9} + O(q^{10}) \) \( 12q + 6q^{3} + 4q^{4} + 3q^{5} - 9q^{6} + 3q^{7} + 2q^{9} - 24q^{10} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} - 8q^{16} + 17q^{17} - 3q^{18} - 3q^{20} - 21q^{21} - 15q^{22} + 3q^{23} - 5q^{25} - 9q^{26} + 12q^{27} + 27q^{28} - q^{29} - 22q^{30} - 18q^{31} + 18q^{32} + 18q^{35} - 13q^{36} + 15q^{37} + 19q^{38} - q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} + 33q^{44} - 9q^{45} - 30q^{46} + 15q^{47} + 19q^{48} + 9q^{49} + 18q^{50} + 4q^{51} + 47q^{52} - 8q^{53} + 6q^{54} - 15q^{55} + 27q^{59} + 30q^{60} - 10q^{61} + 41q^{62} - 54q^{63} + 2q^{64} - 3q^{65} - 34q^{66} - 11q^{68} + 7q^{69} - 3q^{70} + 30q^{71} - 42q^{73} - 33q^{74} + q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 28q^{81} - 10q^{82} + 3q^{84} - 21q^{85} + 57q^{86} + 10q^{87} + 28q^{88} + 48q^{89} - 16q^{91} - 66q^{92} - 81q^{93} - 2q^{94} + 2q^{95} - 21q^{96} - 3q^{97} - 36q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.24179 1.29430i −1.58519 0.915209i −0.994084 0.108613i \(-0.965359\pi\)
−0.591104 0.806596i \(-0.701308\pi\)
\(3\) 0.518466 0.299336 0.149668 0.988736i \(-0.452179\pi\)
0.149668 + 0.988736i \(0.452179\pi\)
\(4\) 2.35043 + 4.07106i 1.17521 + 2.03553i
\(5\) 1.39608 0.806027i 0.624346 0.360466i −0.154213 0.988038i \(-0.549284\pi\)
0.778559 + 0.627571i \(0.215951\pi\)
\(6\) −1.16229 0.671051i −0.474504 0.273955i
\(7\) 2.62954 0.292422i 0.993873 0.110525i
\(8\) 6.99143i 2.47184i
\(9\) −2.73119 −0.910398
\(10\) −4.17296 −1.31961
\(11\) 2.70496i 0.815575i −0.913077 0.407788i \(-0.866300\pi\)
0.913077 0.407788i \(-0.133700\pi\)
\(12\) 1.21862 + 2.11070i 0.351784 + 0.609308i
\(13\) 2.36840 2.71858i 0.656876 0.753998i
\(14\) −6.27337 2.74787i −1.67663 0.734398i
\(15\) 0.723819 0.417897i 0.186889 0.107901i
\(16\) −4.34816 + 7.53123i −1.08704 + 1.88281i
\(17\) 1.56330 + 2.70772i 0.379157 + 0.656719i 0.990940 0.134307i \(-0.0428808\pi\)
−0.611783 + 0.791026i \(0.709547\pi\)
\(18\) 6.12277 + 3.53498i 1.44315 + 0.833204i
\(19\) 3.68150i 0.844595i 0.906457 + 0.422297i \(0.138776\pi\)
−0.906457 + 0.422297i \(0.861224\pi\)
\(20\) 6.56276 + 3.78901i 1.46748 + 0.847249i
\(21\) 1.36333 0.151611i 0.297502 0.0330842i
\(22\) −3.50103 + 6.06396i −0.746421 + 1.29284i
\(23\) 0.993019 1.71996i 0.207059 0.358636i −0.743728 0.668482i \(-0.766944\pi\)
0.950787 + 0.309846i \(0.100278\pi\)
\(24\) 3.62482i 0.739913i
\(25\) −1.20064 + 2.07957i −0.240128 + 0.415914i
\(26\) −8.82813 + 3.02907i −1.73134 + 0.594050i
\(27\) −2.97143 −0.571852
\(28\) 7.37101 + 10.0177i 1.39299 + 1.89317i
\(29\) 2.68636 + 4.65290i 0.498844 + 0.864023i 0.999999 0.00133469i \(-0.000424845\pi\)
−0.501155 + 0.865357i \(0.667092\pi\)
\(30\) −2.16354 −0.395006
\(31\) −9.07425 5.23902i −1.62978 0.940956i −0.984156 0.177303i \(-0.943263\pi\)
−0.645627 0.763653i \(-0.723404\pi\)
\(32\) 7.38583 4.26421i 1.30564 0.753813i
\(33\) 1.40243i 0.244131i
\(34\) 8.09354i 1.38803i
\(35\) 3.43535 2.52773i 0.580680 0.427264i
\(36\) −6.41947 11.1188i −1.06991 1.85314i
\(37\) 5.15585 + 2.97673i 0.847616 + 0.489371i 0.859846 0.510554i \(-0.170560\pi\)
−0.0122297 + 0.999925i \(0.503893\pi\)
\(38\) 4.76497 8.25317i 0.772981 1.33884i
\(39\) 1.22794 1.40949i 0.196627 0.225699i
\(40\) −5.63528 9.76059i −0.891016 1.54329i
\(41\) −6.66970 + 3.85075i −1.04163 + 0.601386i −0.920295 0.391225i \(-0.872051\pi\)
−0.121337 + 0.992611i \(0.538718\pi\)
\(42\) −3.25253 1.42468i −0.501876 0.219832i
\(43\) −1.67800 + 2.90638i −0.255892 + 0.443219i −0.965138 0.261743i \(-0.915703\pi\)
0.709245 + 0.704962i \(0.249036\pi\)
\(44\) 11.0120 6.35780i 1.66013 0.958475i
\(45\) −3.81296 + 2.20141i −0.568403 + 0.328168i
\(46\) −4.45229 + 2.57053i −0.656454 + 0.379004i
\(47\) −0.913730 + 0.527542i −0.133281 + 0.0769500i −0.565158 0.824983i \(-0.691185\pi\)
0.431877 + 0.901933i \(0.357852\pi\)
\(48\) −2.25437 + 3.90469i −0.325390 + 0.563593i
\(49\) 6.82898 1.53787i 0.975568 0.219696i
\(50\) 5.38318 3.10798i 0.761297 0.439535i
\(51\) 0.810520 + 1.40386i 0.113495 + 0.196580i
\(52\) 16.6343 + 3.25208i 2.30676 + 0.450982i
\(53\) −3.63284 + 6.29226i −0.499009 + 0.864308i −0.999999 0.00114437i \(-0.999636\pi\)
0.500991 + 0.865453i \(0.332969\pi\)
\(54\) 6.66133 + 3.84592i 0.906492 + 0.523363i
\(55\) −2.18027 3.77633i −0.293987 0.509201i
\(56\) −2.04445 18.3843i −0.273201 2.45670i
\(57\) 1.90873i 0.252818i
\(58\) 13.9078i 1.82618i
\(59\) −9.89352 + 5.71203i −1.28803 + 0.743643i −0.978302 0.207183i \(-0.933570\pi\)
−0.309725 + 0.950826i \(0.600237\pi\)
\(60\) 3.40257 + 1.96447i 0.439270 + 0.253613i
\(61\) −2.92507 −0.374517 −0.187259 0.982311i \(-0.559960\pi\)
−0.187259 + 0.982311i \(0.559960\pi\)
\(62\) 13.5617 + 23.4896i 1.72234 + 2.98318i
\(63\) −7.18179 + 0.798661i −0.904820 + 0.100622i
\(64\) −4.68406 −0.585507
\(65\) 1.11523 5.70435i 0.138327 0.707537i
\(66\) −1.81516 + 3.14395i −0.223431 + 0.386994i
\(67\) 13.5818i 1.65928i −0.558296 0.829642i \(-0.688545\pi\)
0.558296 0.829642i \(-0.311455\pi\)
\(68\) −7.34886 + 12.7286i −0.891180 + 1.54357i
\(69\) 0.514846 0.891740i 0.0619802 0.107353i
\(70\) −10.9730 + 1.22027i −1.31152 + 0.145850i
\(71\) 1.17009 + 0.675554i 0.138865 + 0.0801736i 0.567823 0.823151i \(-0.307786\pi\)
−0.428958 + 0.903324i \(0.641119\pi\)
\(72\) 19.0949i 2.25036i
\(73\) 7.88374 + 4.55168i 0.922721 + 0.532733i 0.884502 0.466536i \(-0.154498\pi\)
0.0382192 + 0.999269i \(0.487831\pi\)
\(74\) −7.70557 13.3464i −0.895754 1.55149i
\(75\) −0.622492 + 1.07819i −0.0718791 + 0.124498i
\(76\) −14.9876 + 8.65311i −1.71920 + 0.992579i
\(77\) −0.790989 7.11280i −0.0901416 0.810578i
\(78\) −4.57708 + 1.57047i −0.518252 + 0.177821i
\(79\) 3.10289 + 5.37436i 0.349102 + 0.604663i 0.986090 0.166211i \(-0.0531532\pi\)
−0.636988 + 0.770874i \(0.719820\pi\)
\(80\) 14.0189i 1.56736i
\(81\) 6.65300 0.739222
\(82\) 19.9361 2.20158
\(83\) 2.69672i 0.296003i −0.988987 0.148002i \(-0.952716\pi\)
0.988987 0.148002i \(-0.0472841\pi\)
\(84\) 3.82162 + 5.19384i 0.416973 + 0.566694i
\(85\) 4.36499 + 2.52013i 0.473450 + 0.273346i
\(86\) 7.52346 4.34367i 0.811275 0.468390i
\(87\) 1.39278 + 2.41237i 0.149322 + 0.258633i
\(88\) −18.9115 −2.01597
\(89\) 1.52410 + 0.879938i 0.161554 + 0.0932732i 0.578597 0.815613i \(-0.303600\pi\)
−0.417043 + 0.908887i \(0.636934\pi\)
\(90\) 11.3972 1.20137
\(91\) 5.43284 7.84119i 0.569516 0.821980i
\(92\) 9.33607 0.973353
\(93\) −4.70469 2.71625i −0.487853 0.281662i
\(94\) 2.73119 0.281701
\(95\) 2.96739 + 5.13967i 0.304448 + 0.527319i
\(96\) 3.82930 2.21085i 0.390827 0.225644i
\(97\) −13.4078 7.74102i −1.36136 0.785981i −0.371555 0.928411i \(-0.621175\pi\)
−0.989805 + 0.142430i \(0.954509\pi\)
\(98\) −17.2996 5.39116i −1.74753 0.544589i
\(99\) 7.38776i 0.742498i
\(100\) −11.2881 −1.12881
\(101\) 1.27930 0.127295 0.0636477 0.997972i \(-0.479727\pi\)
0.0636477 + 0.997972i \(0.479727\pi\)
\(102\) 4.19622i 0.415488i
\(103\) −5.73367 9.93101i −0.564956 0.978532i −0.997054 0.0767054i \(-0.975560\pi\)
0.432098 0.901827i \(-0.357773\pi\)
\(104\) −19.0068 16.5585i −1.86377 1.62370i
\(105\) 1.78111 1.31054i 0.173819 0.127896i
\(106\) 16.2881 9.40397i 1.58204 0.913394i
\(107\) 2.56763 4.44726i 0.248222 0.429933i −0.714811 0.699318i \(-0.753487\pi\)
0.963033 + 0.269385i \(0.0868205\pi\)
\(108\) −6.98412 12.0969i −0.672048 1.16402i
\(109\) −1.49635 0.863916i −0.143324 0.0827481i 0.426623 0.904429i \(-0.359703\pi\)
−0.569947 + 0.821681i \(0.693036\pi\)
\(110\) 11.2877i 1.07624i
\(111\) 2.67313 + 1.54333i 0.253722 + 0.146487i
\(112\) −9.23136 + 21.0752i −0.872282 + 1.99142i
\(113\) 4.29556 7.44014i 0.404093 0.699909i −0.590123 0.807314i \(-0.700921\pi\)
0.994215 + 0.107404i \(0.0342540\pi\)
\(114\) 2.47048 4.27899i 0.231381 0.400764i
\(115\) 3.20160i 0.298551i
\(116\) −12.6282 + 21.8726i −1.17250 + 2.03082i
\(117\) −6.46856 + 7.42497i −0.598019 + 0.686438i
\(118\) 29.5723 2.72235
\(119\) 4.90257 + 6.66292i 0.449418 + 0.610789i
\(120\) −2.92170 5.06053i −0.266714 0.461961i
\(121\) 3.68321 0.334837
\(122\) 6.55741 + 3.78592i 0.593680 + 0.342761i
\(123\) −3.45801 + 1.99648i −0.311798 + 0.180017i
\(124\) 49.2557i 4.42330i
\(125\) 11.9313i 1.06716i
\(126\) 17.1338 + 7.50495i 1.52640 + 0.668595i
\(127\) −1.56206 2.70556i −0.138610 0.240080i 0.788361 0.615214i \(-0.210930\pi\)
−0.926971 + 0.375133i \(0.877597\pi\)
\(128\) −4.27097 2.46585i −0.377504 0.217952i
\(129\) −0.869985 + 1.50686i −0.0765979 + 0.132671i
\(130\) −9.88325 + 11.3445i −0.866818 + 0.994981i
\(131\) −5.10460 8.84142i −0.445991 0.772479i 0.552130 0.833758i \(-0.313815\pi\)
−0.998121 + 0.0612793i \(0.980482\pi\)
\(132\) 5.70937 3.29630i 0.496936 0.286906i
\(133\) 1.07655 + 9.68067i 0.0933490 + 0.839420i
\(134\) −17.5790 + 30.4476i −1.51859 + 2.63028i
\(135\) −4.14835 + 2.39505i −0.357033 + 0.206133i
\(136\) 18.9308 10.9297i 1.62331 0.937216i
\(137\) 8.65385 4.99630i 0.739348 0.426863i −0.0824839 0.996592i \(-0.526285\pi\)
0.821832 + 0.569729i \(0.192952\pi\)
\(138\) −2.30836 + 1.33273i −0.196501 + 0.113450i
\(139\) 0.832100 1.44124i 0.0705778 0.122244i −0.828577 0.559875i \(-0.810849\pi\)
0.899155 + 0.437631i \(0.144182\pi\)
\(140\) 18.3651 + 8.04427i 1.55213 + 0.679865i
\(141\) −0.473738 + 0.273513i −0.0398959 + 0.0230339i
\(142\) −1.74874 3.02891i −0.146751 0.254180i
\(143\) −7.35364 6.40642i −0.614942 0.535732i
\(144\) 11.8757 20.5692i 0.989638 1.71410i
\(145\) 7.50073 + 4.33055i 0.622902 + 0.359633i
\(146\) −11.7825 20.4078i −0.975124 1.68897i
\(147\) 3.54059 0.797334i 0.292023 0.0657630i
\(148\) 27.9863i 2.30046i
\(149\) 19.7980i 1.62192i 0.585103 + 0.810959i \(0.301054\pi\)
−0.585103 + 0.810959i \(0.698946\pi\)
\(150\) 2.79100 1.61138i 0.227884 0.131569i
\(151\) 6.52544 + 3.76746i 0.531033 + 0.306592i 0.741437 0.671023i \(-0.234145\pi\)
−0.210404 + 0.977614i \(0.567478\pi\)
\(152\) 25.7390 2.08771
\(153\) −4.26968 7.39531i −0.345183 0.597875i
\(154\) −7.43286 + 16.9692i −0.598957 + 1.36742i
\(155\) −16.8912 −1.35673
\(156\) 8.62429 + 1.68609i 0.690496 + 0.134995i
\(157\) −7.00223 + 12.1282i −0.558839 + 0.967938i 0.438755 + 0.898607i \(0.355420\pi\)
−0.997594 + 0.0693309i \(0.977914\pi\)
\(158\) 16.0643i 1.27801i
\(159\) −1.88350 + 3.26232i −0.149371 + 0.258719i
\(160\) 6.87414 11.9064i 0.543448 0.941280i
\(161\) 2.10823 4.81308i 0.166152 0.379324i
\(162\) −14.9146 8.61097i −1.17181 0.676542i
\(163\) 7.16995i 0.561594i 0.959767 + 0.280797i \(0.0905987\pi\)
−0.959767 + 0.280797i \(0.909401\pi\)
\(164\) −31.3533 18.1018i −2.44828 1.41351i
\(165\) −1.13039 1.95790i −0.0880011 0.152422i
\(166\) −3.49036 + 6.04548i −0.270904 + 0.469220i
\(167\) 15.5716 8.99027i 1.20497 0.695688i 0.243312 0.969948i \(-0.421766\pi\)
0.961656 + 0.274260i \(0.0884328\pi\)
\(168\) −1.05998 9.53161i −0.0817790 0.735380i
\(169\) −1.78135 12.8774i −0.137027 0.990567i
\(170\) −6.52361 11.2992i −0.500338 0.866611i
\(171\) 10.0549i 0.768917i
\(172\) −15.7761 −1.20291
\(173\) 12.8116 0.974047 0.487023 0.873389i \(-0.338083\pi\)
0.487023 + 0.873389i \(0.338083\pi\)
\(174\) 7.21072i 0.546643i
\(175\) −2.54902 + 5.81942i −0.192688 + 0.439906i
\(176\) 20.3717 + 11.7616i 1.53557 + 0.886562i
\(177\) −5.12945 + 2.96149i −0.385553 + 0.222599i
\(178\) −2.27781 3.94528i −0.170729 0.295711i
\(179\) −1.84022 −0.137545 −0.0687723 0.997632i \(-0.521908\pi\)
−0.0687723 + 0.997632i \(0.521908\pi\)
\(180\) −17.9242 10.3485i −1.33599 0.771334i
\(181\) −3.29928 −0.245234 −0.122617 0.992454i \(-0.539129\pi\)
−0.122617 + 0.992454i \(0.539129\pi\)
\(182\) −22.3282 + 10.5466i −1.65507 + 0.781767i
\(183\) −1.51655 −0.112107
\(184\) −12.0250 6.94262i −0.886493 0.511817i
\(185\) 9.59730 0.705607
\(186\) 7.03129 + 12.1786i 0.515560 + 0.892975i
\(187\) 7.32427 4.22867i 0.535604 0.309231i
\(188\) −4.29531 2.47990i −0.313268 0.180865i
\(189\) −7.81349 + 0.868911i −0.568348 + 0.0632040i
\(190\) 15.3628i 1.11453i
\(191\) 4.89614 0.354272 0.177136 0.984186i \(-0.443317\pi\)
0.177136 + 0.984186i \(0.443317\pi\)
\(192\) −2.42852 −0.175264
\(193\) 3.01910i 0.217320i −0.994079 0.108660i \(-0.965344\pi\)
0.994079 0.108660i \(-0.0346559\pi\)
\(194\) 20.0384 + 34.7075i 1.43867 + 2.49186i
\(195\) 0.578207 2.95751i 0.0414063 0.211792i
\(196\) 22.3118 + 24.1865i 1.59370 + 1.72761i
\(197\) 4.02694 2.32496i 0.286908 0.165646i −0.349639 0.936885i \(-0.613696\pi\)
0.636546 + 0.771238i \(0.280362\pi\)
\(198\) 9.56198 16.5618i 0.679540 1.17700i
\(199\) 0.205360 + 0.355694i 0.0145576 + 0.0252145i 0.873212 0.487340i \(-0.162033\pi\)
−0.858655 + 0.512554i \(0.828699\pi\)
\(200\) 14.5392 + 8.39420i 1.02808 + 0.593560i
\(201\) 7.04171i 0.496684i
\(202\) −2.86793 1.65580i −0.201787 0.116502i
\(203\) 8.42450 + 11.4495i 0.591284 + 0.803594i
\(204\) −3.81013 + 6.59934i −0.266763 + 0.462047i
\(205\) −6.20762 + 10.7519i −0.433559 + 0.750946i
\(206\) 29.6844i 2.06821i
\(207\) −2.71213 + 4.69754i −0.188506 + 0.326502i
\(208\) 10.1761 + 29.6578i 0.705583 + 2.05640i
\(209\) 9.95831 0.688831
\(210\) −5.68912 + 0.632666i −0.392586 + 0.0436581i
\(211\) 3.75800 + 6.50905i 0.258711 + 0.448101i 0.965897 0.258927i \(-0.0833688\pi\)
−0.707186 + 0.707028i \(0.750035\pi\)
\(212\) −34.1549 −2.34577
\(213\) 0.606654 + 0.350252i 0.0415672 + 0.0239989i
\(214\) −11.5122 + 6.64656i −0.786956 + 0.454349i
\(215\) 5.41005i 0.368962i
\(216\) 20.7745i 1.41353i
\(217\) −25.3931 11.1227i −1.72380 0.755059i
\(218\) 2.23633 + 3.87344i 0.151464 + 0.262343i
\(219\) 4.08745 + 2.35989i 0.276204 + 0.159467i
\(220\) 10.2491 17.7520i 0.690996 1.19684i
\(221\) 11.0637 + 2.16300i 0.744224 + 0.145499i
\(222\) −3.99507 6.91967i −0.268132 0.464418i
\(223\) −19.5544 + 11.2897i −1.30946 + 0.756016i −0.982006 0.188852i \(-0.939523\pi\)
−0.327452 + 0.944868i \(0.606190\pi\)
\(224\) 18.1744 13.3727i 1.21433 0.893502i
\(225\) 3.27918 5.67971i 0.218612 0.378648i
\(226\) −19.2595 + 11.1195i −1.28113 + 0.739658i
\(227\) 11.8401 6.83586i 0.785853 0.453712i −0.0526478 0.998613i \(-0.516766\pi\)
0.838500 + 0.544901i \(0.183433\pi\)
\(228\) −7.77057 + 4.48634i −0.514618 + 0.297115i
\(229\) −6.86832 + 3.96543i −0.453872 + 0.262043i −0.709464 0.704742i \(-0.751063\pi\)
0.255592 + 0.966785i \(0.417730\pi\)
\(230\) −4.14383 + 7.17733i −0.273236 + 0.473259i
\(231\) −0.410101 3.68774i −0.0269827 0.242636i
\(232\) 32.5305 18.7815i 2.13573 1.23306i
\(233\) −3.28585 5.69127i −0.215263 0.372847i 0.738091 0.674702i \(-0.235728\pi\)
−0.953354 + 0.301854i \(0.902394\pi\)
\(234\) 24.1113 8.27298i 1.57621 0.540822i
\(235\) −0.850427 + 1.47298i −0.0554757 + 0.0960868i
\(236\) −46.5080 26.8514i −3.02741 1.74788i
\(237\) 1.60874 + 2.78642i 0.104499 + 0.180998i
\(238\) −2.36673 21.2823i −0.153412 1.37953i
\(239\) 9.39284i 0.607572i −0.952740 0.303786i \(-0.901749\pi\)
0.952740 0.303786i \(-0.0982508\pi\)
\(240\) 7.26833i 0.469169i
\(241\) 8.73460 5.04292i 0.562645 0.324843i −0.191562 0.981481i \(-0.561355\pi\)
0.754206 + 0.656637i \(0.228022\pi\)
\(242\) −8.25699 4.76718i −0.530780 0.306446i
\(243\) 12.3636 0.793128
\(244\) −6.87517 11.9081i −0.440137 0.762340i
\(245\) 8.29423 7.65133i 0.529899 0.488826i
\(246\) 10.3362 0.659012
\(247\) 10.0085 + 8.71928i 0.636823 + 0.554794i
\(248\) −36.6282 + 63.4420i −2.32590 + 4.02857i
\(249\) 1.39816i 0.0886045i
\(250\) 15.4426 26.7474i 0.976678 1.69166i
\(251\) −5.17427 + 8.96209i −0.326597 + 0.565682i −0.981834 0.189741i \(-0.939235\pi\)
0.655237 + 0.755423i \(0.272569\pi\)
\(252\) −20.1317 27.3603i −1.26818 1.72354i
\(253\) −4.65242 2.68607i −0.292495 0.168872i
\(254\) 8.08709i 0.507429i
\(255\) 2.26310 + 1.30660i 0.141721 + 0.0818225i
\(256\) 11.0672 + 19.1689i 0.691697 + 1.19805i
\(257\) 3.99329 6.91658i 0.249095 0.431445i −0.714180 0.699962i \(-0.753200\pi\)
0.963275 + 0.268517i \(0.0865336\pi\)
\(258\) 3.90065 2.25204i 0.242844 0.140206i
\(259\) 14.4280 + 6.31975i 0.896511 + 0.392690i
\(260\) 25.8440 8.86749i 1.60278 0.549939i
\(261\) −7.33696 12.7080i −0.454146 0.786604i
\(262\) 26.4275i 1.63270i
\(263\) 5.05934 0.311972 0.155986 0.987759i \(-0.450144\pi\)
0.155986 + 0.987759i \(0.450144\pi\)
\(264\) −9.80498 −0.603455
\(265\) 11.7127i 0.719503i
\(266\) 10.1163 23.0954i 0.620269 1.41607i
\(267\) 0.790192 + 0.456218i 0.0483590 + 0.0279201i
\(268\) 55.2924 31.9231i 3.37752 1.95001i
\(269\) −6.94512 12.0293i −0.423451 0.733439i 0.572823 0.819679i \(-0.305848\pi\)
−0.996274 + 0.0862400i \(0.972515\pi\)
\(270\) 12.3997 0.754619
\(271\) −7.21158 4.16361i −0.438072 0.252921i 0.264707 0.964329i \(-0.414725\pi\)
−0.702780 + 0.711408i \(0.748058\pi\)
\(272\) −27.1900 −1.64863
\(273\) 2.81674 4.06539i 0.170477 0.246049i
\(274\) −25.8669 −1.56267
\(275\) 5.62515 + 3.24768i 0.339210 + 0.195843i
\(276\) 4.84043 0.291360
\(277\) −11.6058 20.1018i −0.697325 1.20780i −0.969391 0.245523i \(-0.921040\pi\)
0.272066 0.962279i \(-0.412293\pi\)
\(278\) −3.73080 + 2.15398i −0.223758 + 0.129187i
\(279\) 24.7835 + 14.3088i 1.48375 + 0.856644i
\(280\) −17.6724 24.0180i −1.05613 1.43535i
\(281\) 27.1595i 1.62020i −0.586292 0.810100i \(-0.699413\pi\)
0.586292 0.810100i \(-0.300587\pi\)
\(282\) 1.41603 0.0843234
\(283\) 16.1513 0.960092 0.480046 0.877243i \(-0.340620\pi\)
0.480046 + 0.877243i \(0.340620\pi\)
\(284\) 6.35136i 0.376884i
\(285\) 1.53849 + 2.66474i 0.0911323 + 0.157846i
\(286\) 8.19351 + 23.8797i 0.484493 + 1.41204i
\(287\) −16.4122 + 12.0761i −0.968782 + 0.712828i
\(288\) −20.1721 + 11.6464i −1.18865 + 0.686270i
\(289\) 3.61216 6.25645i 0.212480 0.368027i
\(290\) −11.2101 19.4164i −0.658278 1.14017i
\(291\) −6.95151 4.01345i −0.407504 0.235273i
\(292\) 42.7935i 2.50430i
\(293\) −12.6831 7.32260i −0.740956 0.427791i 0.0814609 0.996677i \(-0.474041\pi\)
−0.822417 + 0.568885i \(0.807375\pi\)
\(294\) −8.96927 2.79513i −0.523098 0.163015i
\(295\) −9.20810 + 15.9489i −0.536116 + 0.928580i
\(296\) 20.8116 36.0468i 1.20965 2.09517i
\(297\) 8.03758i 0.466388i
\(298\) 25.6246 44.3831i 1.48439 2.57104i
\(299\) −2.32398 6.77315i −0.134399 0.391702i
\(300\) −5.85248 −0.337893
\(301\) −3.56248 + 8.13313i −0.205338 + 0.468786i
\(302\) −9.75246 16.8918i −0.561191 0.972011i
\(303\) 0.663274 0.0381041
\(304\) −27.7263 16.0078i −1.59021 0.918108i
\(305\) −4.08363 + 2.35769i −0.233828 + 0.135001i
\(306\) 22.1050i 1.26366i
\(307\) 8.97844i 0.512427i 0.966620 + 0.256213i \(0.0824750\pi\)
−0.966620 + 0.256213i \(0.917525\pi\)
\(308\) 27.0975 19.9383i 1.54402 1.13609i
\(309\) −2.97271 5.14889i −0.169112 0.292910i
\(310\) 37.8665 + 21.8622i 2.15067 + 1.24169i
\(311\) 6.09080 10.5496i 0.345378 0.598212i −0.640045 0.768338i \(-0.721084\pi\)
0.985422 + 0.170126i \(0.0544175\pi\)
\(312\) −9.85436 8.58502i −0.557893 0.486031i
\(313\) −6.56198 11.3657i −0.370905 0.642427i 0.618800 0.785549i \(-0.287619\pi\)
−0.989705 + 0.143122i \(0.954286\pi\)
\(314\) 31.3951 18.1260i 1.77173 1.02291i
\(315\) −9.38260 + 6.90371i −0.528650 + 0.388980i
\(316\) −14.5862 + 25.2641i −0.820540 + 1.42122i
\(317\) −14.4761 + 8.35775i −0.813056 + 0.469418i −0.848016 0.529971i \(-0.822203\pi\)
0.0349599 + 0.999389i \(0.488870\pi\)
\(318\) 8.44485 4.87563i 0.473564 0.273412i
\(319\) 12.5859 7.26648i 0.704675 0.406845i
\(320\) −6.53932 + 3.77548i −0.365559 + 0.211056i
\(321\) 1.33123 2.30575i 0.0743018 0.128695i
\(322\) −10.9558 + 8.06126i −0.610543 + 0.449236i
\(323\) −9.96849 + 5.75531i −0.554661 + 0.320234i
\(324\) 15.6374 + 27.0847i 0.868743 + 1.50471i
\(325\) 2.80988 + 8.18930i 0.155864 + 0.454261i
\(326\) 9.28007 16.0736i 0.513976 0.890232i
\(327\) −0.775804 0.447911i −0.0429021 0.0247695i
\(328\) 26.9223 + 46.6307i 1.48653 + 2.57475i
\(329\) −2.24843 + 1.65439i −0.123960 + 0.0912094i
\(330\) 5.85228i 0.322157i
\(331\) 3.96665i 0.218027i −0.994040 0.109013i \(-0.965231\pi\)
0.994040 0.109013i \(-0.0347691\pi\)
\(332\) 10.9785 6.33843i 0.602523 0.347867i
\(333\) −14.0816 8.13002i −0.771668 0.445523i
\(334\) −46.5445 −2.54680
\(335\) −10.9473 18.9613i −0.598116 1.03597i
\(336\) −4.78615 + 10.9268i −0.261106 + 0.596104i
\(337\) −13.7032 −0.746461 −0.373230 0.927739i \(-0.621750\pi\)
−0.373230 + 0.927739i \(0.621750\pi\)
\(338\) −12.6738 + 31.1740i −0.689362 + 1.69564i
\(339\) 2.22710 3.85746i 0.120960 0.209508i
\(340\) 23.6935i 1.28496i
\(341\) −14.1713 + 24.5455i −0.767420 + 1.32921i
\(342\) −13.0141 + 22.5410i −0.703720 + 1.21888i
\(343\) 17.5074 6.04084i 0.945309 0.326175i
\(344\) 20.3197 + 11.7316i 1.09557 + 0.632526i
\(345\) 1.65992i 0.0893671i
\(346\) −28.7209 16.5820i −1.54405 0.891456i
\(347\) 13.1989 + 22.8612i 0.708556 + 1.22725i 0.965393 + 0.260800i \(0.0839863\pi\)
−0.256837 + 0.966455i \(0.582680\pi\)
\(348\) −6.54727 + 11.3402i −0.350971 + 0.607899i
\(349\) −4.23507 + 2.44512i −0.226698 + 0.130884i −0.609048 0.793133i \(-0.708448\pi\)
0.382350 + 0.924018i \(0.375115\pi\)
\(350\) 13.2465 9.74673i 0.708053 0.520984i
\(351\) −7.03753 + 8.07806i −0.375636 + 0.431175i
\(352\) −11.5345 19.9784i −0.614792 1.06485i
\(353\) 13.5577i 0.721605i 0.932642 + 0.360802i \(0.117497\pi\)
−0.932642 + 0.360802i \(0.882503\pi\)
\(354\) 15.3322 0.814899
\(355\) 2.17806 0.115599
\(356\) 8.27291i 0.438464i
\(357\) 2.54181 + 3.45450i 0.134527 + 0.182831i
\(358\) 4.12540 + 2.38180i 0.218034 + 0.125882i
\(359\) −7.43541 + 4.29284i −0.392426 + 0.226567i −0.683211 0.730221i \(-0.739417\pi\)
0.290785 + 0.956789i \(0.406084\pi\)
\(360\) 15.3910 + 26.6581i 0.811179 + 1.40500i
\(361\) 5.44653 0.286659
\(362\) 7.39632 + 4.27026i 0.388742 + 0.224440i
\(363\) 1.90962 0.100229
\(364\) 44.6914 + 3.68725i 2.34247 + 0.193264i
\(365\) 14.6751 0.768130
\(366\) 3.39979 + 1.96287i 0.177710 + 0.102601i
\(367\) −1.66322 −0.0868196 −0.0434098 0.999057i \(-0.513822\pi\)
−0.0434098 + 0.999057i \(0.513822\pi\)
\(368\) 8.63560 + 14.9573i 0.450162 + 0.779703i
\(369\) 18.2162 10.5171i 0.948299 0.547501i
\(370\) −21.5152 12.4218i −1.11852 0.645778i
\(371\) −7.71270 + 17.6081i −0.400424 + 0.914166i
\(372\) 25.5374i 1.32405i
\(373\) 13.9635 0.723002 0.361501 0.932372i \(-0.382264\pi\)
0.361501 + 0.932372i \(0.382264\pi\)
\(374\) −21.8927 −1.13204
\(375\) 6.18595i 0.319441i
\(376\) 3.68828 + 6.38828i 0.190208 + 0.329450i
\(377\) 19.0117 + 3.71687i 0.979150 + 0.191429i
\(378\) 18.6409 + 8.16509i 0.958783 + 0.419967i
\(379\) −27.3454 + 15.7879i −1.40464 + 0.810969i −0.994864 0.101218i \(-0.967726\pi\)
−0.409775 + 0.912187i \(0.634393\pi\)
\(380\) −13.9493 + 24.1608i −0.715582 + 1.23943i
\(381\) −0.809874 1.40274i −0.0414911 0.0718647i
\(382\) −10.9761 6.33707i −0.561588 0.324233i
\(383\) 31.9082i 1.63043i −0.579156 0.815217i \(-0.696618\pi\)
0.579156 0.815217i \(-0.303382\pi\)
\(384\) −2.21435 1.27846i −0.113001 0.0652410i
\(385\) −6.83739 9.29247i −0.348466 0.473588i
\(386\) −3.90762 + 6.76820i −0.198893 + 0.344492i
\(387\) 4.58294 7.93788i 0.232964 0.403505i
\(388\) 72.7788i 3.69478i
\(389\) −12.7075 + 22.0100i −0.644296 + 1.11595i 0.340168 + 0.940365i \(0.389516\pi\)
−0.984464 + 0.175589i \(0.943817\pi\)
\(390\) −5.12413 + 5.88175i −0.259470 + 0.297834i
\(391\) 6.20956 0.314031
\(392\) −10.7519 47.7443i −0.543054 2.41145i
\(393\) −2.64656 4.58398i −0.133501 0.231231i
\(394\) −12.0368 −0.606403
\(395\) 8.66376 + 5.00203i 0.435921 + 0.251679i
\(396\) −30.0760 + 17.3644i −1.51138 + 0.872593i
\(397\) 4.15897i 0.208733i −0.994539 0.104366i \(-0.966719\pi\)
0.994539 0.104366i \(-0.0332815\pi\)
\(398\) 1.06319i 0.0532930i
\(399\) 0.558156 + 5.01910i 0.0279427 + 0.251269i
\(400\) −10.4412 18.0846i −0.522058 0.904231i
\(401\) −16.9753 9.80067i −0.847704 0.489422i 0.0121716 0.999926i \(-0.496126\pi\)
−0.859875 + 0.510504i \(0.829459\pi\)
\(402\) −9.11409 + 15.7861i −0.454569 + 0.787337i
\(403\) −35.7342 + 12.2610i −1.78005 + 0.610762i
\(404\) 3.00691 + 5.20811i 0.149599 + 0.259113i
\(405\) 9.28811 5.36249i 0.461530 0.266464i
\(406\) −4.06695 36.5711i −0.201839 1.81500i
\(407\) 8.05193 13.9463i 0.399119 0.691295i
\(408\) 9.81500 5.66669i 0.485915 0.280543i
\(409\) −15.2712 + 8.81685i −0.755114 + 0.435965i −0.827539 0.561409i \(-0.810260\pi\)
0.0724249 + 0.997374i \(0.476926\pi\)
\(410\) 27.8324 16.0690i 1.37454 0.793594i
\(411\) 4.48673 2.59041i 0.221314 0.127776i
\(412\) 26.9532 46.6842i 1.32789 2.29997i
\(413\) −24.3451 + 17.9131i −1.19794 + 0.881446i
\(414\) 12.1601 7.02061i 0.597634 0.345044i
\(415\) −2.17363 3.76483i −0.106699 0.184808i
\(416\) 5.90001 30.1783i 0.289272 1.47962i
\(417\) 0.431416 0.747234i 0.0211265 0.0365922i
\(418\) −22.3245 12.8890i −1.09193 0.630424i
\(419\) −14.9455 25.8864i −0.730137 1.26463i −0.956824 0.290666i \(-0.906123\pi\)
0.226688 0.973968i \(-0.427210\pi\)
\(420\) 9.52165 + 4.17068i 0.464609 + 0.203508i
\(421\) 12.8528i 0.626407i −0.949686 0.313203i \(-0.898598\pi\)
0.949686 0.313203i \(-0.101402\pi\)
\(422\) 19.4559i 0.947100i
\(423\) 2.49557 1.44082i 0.121339 0.0700551i
\(424\) 43.9919 + 25.3987i 2.13644 + 1.23347i
\(425\) −7.50787 −0.364185
\(426\) −0.906662 1.57038i −0.0439279 0.0760854i
\(427\) −7.69160 + 0.855355i −0.372223 + 0.0413936i
\(428\) 24.1401 1.16685
\(429\) −3.81261 3.32151i −0.184075 0.160364i
\(430\) 7.00223 12.1282i 0.337677 0.584874i
\(431\) 8.97060i 0.432098i −0.976382 0.216049i \(-0.930683\pi\)
0.976382 0.216049i \(-0.0693172\pi\)
\(432\) 12.9202 22.3785i 0.621625 1.07669i
\(433\) −1.72531 + 2.98833i −0.0829132 + 0.143610i −0.904500 0.426473i \(-0.859756\pi\)
0.821587 + 0.570083i \(0.193089\pi\)
\(434\) 42.5300 + 57.8012i 2.04151 + 2.77454i
\(435\) 3.88887 + 2.24524i 0.186457 + 0.107651i
\(436\) 8.12228i 0.388987i
\(437\) 6.33204 + 3.65580i 0.302902 + 0.174881i
\(438\) −6.10881 10.5808i −0.291890 0.505569i
\(439\) −19.2572 + 33.3544i −0.919096 + 1.59192i −0.118304 + 0.992977i \(0.537746\pi\)
−0.800792 + 0.598943i \(0.795588\pi\)
\(440\) −26.4020 + 15.2432i −1.25867 + 0.726691i
\(441\) −18.6513 + 4.20023i −0.888155 + 0.200011i
\(442\) −22.0029 19.1687i −1.04657 0.911764i
\(443\) 7.51997 + 13.0250i 0.357284 + 0.618835i 0.987506 0.157580i \(-0.0503693\pi\)
−0.630222 + 0.776415i \(0.717036\pi\)
\(444\) 14.5100i 0.688612i
\(445\) 2.83701 0.134487
\(446\) 58.4492 2.76765
\(447\) 10.2646i 0.485499i
\(448\) −12.3169 + 1.36972i −0.581920 + 0.0647133i
\(449\) 33.7087 + 19.4617i 1.59081 + 0.918456i 0.993168 + 0.116696i \(0.0372304\pi\)
0.597646 + 0.801760i \(0.296103\pi\)
\(450\) −14.7025 + 8.48850i −0.693083 + 0.400152i
\(451\) 10.4161 + 18.0412i 0.490476 + 0.849529i
\(452\) 40.3856 1.89958
\(453\) 3.38322 + 1.95330i 0.158957 + 0.0917741i
\(454\) −35.3906 −1.66097
\(455\) 1.26446 15.3259i 0.0592788 0.718491i
\(456\) 13.3448 0.624927
\(457\) −12.0721 6.96982i −0.564708 0.326034i 0.190325 0.981721i \(-0.439046\pi\)
−0.755033 + 0.655687i \(0.772379\pi\)
\(458\) 20.5298 0.959295
\(459\) −4.64524 8.04580i −0.216821 0.375546i
\(460\) 13.0339 7.52512i 0.607709 0.350861i
\(461\) 32.4443 + 18.7317i 1.51108 + 0.872424i 0.999916 + 0.0129430i \(0.00412001\pi\)
0.511167 + 0.859481i \(0.329213\pi\)
\(462\) −3.85368 + 8.79795i −0.179290 + 0.409318i
\(463\) 6.75275i 0.313827i 0.987612 + 0.156913i \(0.0501544\pi\)
−0.987612 + 0.156913i \(0.949846\pi\)
\(464\) −46.7228 −2.16905
\(465\) −8.75749 −0.406119
\(466\) 17.0115i 0.788044i
\(467\) 2.52516 + 4.37371i 0.116851 + 0.202391i 0.918518 0.395379i \(-0.129387\pi\)
−0.801667 + 0.597770i \(0.796053\pi\)
\(468\) −45.4314 8.88205i −2.10006 0.410573i
\(469\) −3.97162 35.7140i −0.183393 1.64912i
\(470\) 3.81296 2.20141i 0.175879 0.101544i
\(471\) −3.63042 + 6.28807i −0.167281 + 0.289739i
\(472\) 39.9353 + 69.1699i 1.83817 + 3.18380i
\(473\) 7.86163 + 4.53892i 0.361478 + 0.208700i
\(474\) 8.32878i 0.382554i
\(475\) −7.65595 4.42017i −0.351279 0.202811i
\(476\) −15.6020 + 35.6194i −0.715117 + 1.63261i
\(477\) 9.92198 17.1854i 0.454296 0.786864i
\(478\) −12.1572 + 21.0568i −0.556055 + 0.963116i
\(479\) 9.45319i 0.431927i −0.976401 0.215964i \(-0.930711\pi\)
0.976401 0.215964i \(-0.0692892\pi\)
\(480\) 3.56401 6.17304i 0.162674 0.281759i
\(481\) 20.3036 6.96649i 0.925764 0.317645i
\(482\) −26.1082 −1.18920
\(483\) 1.09305 2.49542i 0.0497353 0.113546i
\(484\) 8.65711 + 14.9946i 0.393505 + 0.681571i
\(485\) −24.9579 −1.13328
\(486\) −27.7167 16.0023i −1.25726 0.725877i
\(487\) 34.6407 19.9998i 1.56972 0.906277i 0.573517 0.819194i \(-0.305579\pi\)
0.996201 0.0870831i \(-0.0277546\pi\)
\(488\) 20.4504i 0.925748i
\(489\) 3.71737i 0.168105i
\(490\) −28.4971 + 6.41748i −1.28737 + 0.289912i
\(491\) −3.38049 5.85517i −0.152559 0.264240i 0.779608 0.626267i \(-0.215418\pi\)
−0.932168 + 0.362027i \(0.882085\pi\)
\(492\) −16.2556 9.38518i −0.732859 0.423116i
\(493\) −8.39918 + 14.5478i −0.378280 + 0.655200i
\(494\) −11.1515 32.5008i −0.501732 1.46228i
\(495\) 5.95473 + 10.3139i 0.267645 + 0.463575i
\(496\) 78.9125 45.5602i 3.54328 2.04571i
\(497\) 3.27436 + 1.43424i 0.146875 + 0.0643343i
\(498\) −1.80963 + 3.13438i −0.0810916 + 0.140455i
\(499\) 9.83591 5.67877i 0.440316 0.254217i −0.263416 0.964682i \(-0.584849\pi\)
0.703732 + 0.710466i \(0.251516\pi\)
\(500\) −48.5729 + 28.0436i −2.17225 + 1.25415i
\(501\) 8.07335 4.66115i 0.360691 0.208245i
\(502\) 23.1993 13.3941i 1.03543 0.597808i
\(503\) 6.96423 12.0624i 0.310520 0.537836i −0.667955 0.744202i \(-0.732830\pi\)
0.978475 + 0.206365i \(0.0661635\pi\)
\(504\) 5.58378 + 50.2110i 0.248721 + 2.23657i
\(505\) 1.78601 1.03115i 0.0794763 0.0458857i
\(506\) 6.95317 + 12.0432i 0.309106 + 0.535388i
\(507\) −0.923570 6.67648i −0.0410172 0.296513i
\(508\) 7.34301 12.7185i 0.325793 0.564290i
\(509\) 17.1602 + 9.90746i 0.760614 + 0.439141i 0.829516 0.558483i \(-0.188616\pi\)
−0.0689022 + 0.997623i \(0.521950\pi\)
\(510\) −3.38227 5.85826i −0.149769 0.259408i
\(511\) 22.0616 + 9.66345i 0.975949 + 0.427486i
\(512\) 47.4335i 2.09628i
\(513\) 10.9393i 0.482983i
\(514\) −17.9043 + 10.3370i −0.789724 + 0.455947i
\(515\) −16.0093 9.24299i −0.705455 0.407295i
\(516\) −8.17934 −0.360076
\(517\) 1.42698 + 2.47160i 0.0627585 + 0.108701i
\(518\) −24.1649 32.8417i −1.06174 1.44298i
\(519\) 6.64237 0.291568
\(520\) −39.8816 7.79704i −1.74892 0.341923i
\(521\) 15.5476 26.9292i 0.681151 1.17979i −0.293479 0.955966i \(-0.594813\pi\)
0.974630 0.223823i \(-0.0718537\pi\)
\(522\) 37.9849i 1.66255i
\(523\) −11.3601 + 19.6763i −0.496742 + 0.860383i −0.999993 0.00375758i \(-0.998804\pi\)
0.503251 + 0.864140i \(0.332137\pi\)
\(524\) 23.9960 41.5622i 1.04827 1.81565i
\(525\) −1.32158 + 3.01717i −0.0576786 + 0.131680i
\(526\) −11.3420 6.54831i −0.494535 0.285520i
\(527\) 32.7607i 1.42708i
\(528\) 10.5620 + 6.09798i 0.459652 + 0.265380i
\(529\) 9.52783 + 16.5027i 0.414253 + 0.717508i
\(530\) 15.1597 26.2574i 0.658495 1.14055i
\(531\) 27.0211 15.6007i 1.17262 0.677011i
\(532\) −36.8802 + 27.1364i −1.59896 + 1.17651i
\(533\) −5.32794 + 27.2522i −0.230779 + 1.18043i
\(534\) −1.18097 2.04549i −0.0511054 0.0885171i
\(535\) 8.27830i 0.357902i
\(536\) −94.9564 −4.10149
\(537\) −0.954091 −0.0411721
\(538\) 35.9563i 1.55018i
\(539\) −4.15988 18.4721i −0.179179 0.795649i
\(540\) −19.5008 11.2588i −0.839180 0.484501i
\(541\) −1.81754 + 1.04936i −0.0781423 + 0.0451155i −0.538562 0.842586i \(-0.681032\pi\)
0.460420 + 0.887701i \(0.347699\pi\)
\(542\) 10.7779 + 18.6679i 0.462951 + 0.801855i
\(543\) −1.71057 −0.0734074
\(544\) 23.0926 + 13.3325i 0.990087 + 0.571627i
\(545\) −2.78536 −0.119312
\(546\) −11.5764 + 5.46806i −0.495424 + 0.234011i
\(547\) 25.3770 1.08504 0.542521 0.840042i \(-0.317470\pi\)
0.542521 + 0.840042i \(0.317470\pi\)
\(548\) 40.6805 + 23.4869i 1.73778 + 1.00331i
\(549\) 7.98894 0.340959
\(550\) −8.40696 14.5613i −0.358474 0.620895i
\(551\) −17.1297 + 9.88983i −0.729749 + 0.421321i
\(552\) −6.23454 3.59951i −0.265360 0.153205i
\(553\) 9.73076 + 13.2248i 0.413794 + 0.562374i
\(554\) 60.0855i 2.55279i
\(555\) 4.97587 0.211214
\(556\) 7.82316 0.331776
\(557\) 44.2503i 1.87495i 0.348058 + 0.937473i \(0.386841\pi\)
−0.348058 + 0.937473i \(0.613159\pi\)
\(558\) −37.0397 64.1547i −1.56802 2.71588i
\(559\) 3.92705 + 11.4452i 0.166097 + 0.484082i
\(560\) 4.09944 + 36.8634i 0.173233 + 1.55776i
\(561\) 3.79738 2.19242i 0.160326 0.0925641i
\(562\) −35.1526 + 60.8860i −1.48282 + 2.56832i
\(563\) −19.4453 33.6803i −0.819523 1.41946i −0.906034 0.423205i \(-0.860905\pi\)
0.0865108 0.996251i \(-0.472428\pi\)
\(564\) −2.22697 1.28574i −0.0937725 0.0541396i
\(565\) 13.8494i 0.582647i
\(566\) −36.2078 20.9046i −1.52193 0.878685i
\(567\) 17.4943 1.94548i 0.734693 0.0817026i
\(568\) 4.72309 8.18063i 0.198177 0.343252i
\(569\) 23.0789 39.9739i 0.967520 1.67579i 0.264832 0.964294i \(-0.414683\pi\)
0.702687 0.711499i \(-0.251983\pi\)
\(570\) 7.96508i 0.333620i
\(571\) 10.5684 18.3050i 0.442274 0.766041i −0.555584 0.831461i \(-0.687505\pi\)
0.997858 + 0.0654194i \(0.0208385\pi\)
\(572\) 8.79673 44.9949i 0.367810 1.88133i
\(573\) 2.53848 0.106047
\(574\) 52.4229 5.82976i 2.18809 0.243329i
\(575\) 2.38452 + 4.13011i 0.0994413 + 0.172237i
\(576\) 12.7931 0.533045
\(577\) −21.9368 12.6652i −0.913239 0.527259i −0.0317671 0.999495i \(-0.510113\pi\)
−0.881472 + 0.472237i \(0.843447\pi\)
\(578\) −16.1955 + 9.35045i −0.673642 + 0.388927i
\(579\) 1.56530i 0.0650517i
\(580\) 40.7146i 1.69058i
\(581\) −0.788579 7.09113i −0.0327158 0.294190i
\(582\) 10.3892 + 17.9947i 0.430647 + 0.745903i
\(583\) 17.0203 + 9.82667i 0.704908 + 0.406979i
\(584\) 31.8227 55.1186i 1.31683 2.28082i
\(585\) −3.04590 + 15.5797i −0.125933 + 0.644140i
\(586\) 18.9553 + 32.8315i 0.783036 + 1.35626i
\(587\) 3.08554 1.78144i 0.127354 0.0735278i −0.434970 0.900445i \(-0.643241\pi\)
0.562324 + 0.826917i \(0.309908\pi\)
\(588\) 11.5679 + 12.5399i 0.477052 + 0.517136i
\(589\) 19.2875 33.4069i 0.794727 1.37651i
\(590\) 41.2853 23.8361i 1.69969 0.981316i
\(591\) 2.08783 1.20541i 0.0858819 0.0495839i
\(592\) −44.8369 + 25.8866i −1.84278 + 1.06393i
\(593\) −21.9568 + 12.6768i −0.901659 + 0.520573i −0.877738 0.479141i \(-0.840948\pi\)
−0.0239212 + 0.999714i \(0.507615\pi\)
\(594\) 10.4030 18.0186i 0.426842 0.739312i
\(595\) 12.2149 + 5.35037i 0.500761 + 0.219344i
\(596\) −80.5990 + 46.5338i −3.30146 + 1.90610i
\(597\) 0.106472 + 0.184415i 0.00435762 + 0.00754762i
\(598\) −3.55661 + 18.1919i −0.145441 + 0.743924i
\(599\) −5.46078 + 9.45835i −0.223122 + 0.386458i −0.955754 0.294166i \(-0.904958\pi\)
0.732633 + 0.680624i \(0.238291\pi\)
\(600\) 7.53807 + 4.35211i 0.307740 + 0.177674i
\(601\) −12.1282 21.0067i −0.494720 0.856880i 0.505262 0.862966i \(-0.331396\pi\)
−0.999981 + 0.00608649i \(0.998063\pi\)
\(602\) 18.5131 13.6219i 0.754536 0.555187i
\(603\) 37.0946i 1.51061i
\(604\) 35.4206i 1.44124i
\(605\) 5.14205 2.96876i 0.209054 0.120697i
\(606\) −1.48692 0.858476i −0.0604022 0.0348732i
\(607\) −9.85447 −0.399981 −0.199990 0.979798i \(-0.564091\pi\)
−0.199990 + 0.979798i \(0.564091\pi\)
\(608\) 15.6987 + 27.1910i 0.636667 + 1.10274i
\(609\) 4.36781 + 5.93615i 0.176993 + 0.240545i
\(610\) 12.2062 0.494215
\(611\) −0.729914 + 3.73348i −0.0295291 + 0.151040i
\(612\) 20.0712 34.7643i 0.811328 1.40526i
\(613\) 3.67688i 0.148508i 0.997239 + 0.0742540i \(0.0236575\pi\)
−0.997239 + 0.0742540i \(0.976342\pi\)
\(614\) 11.6208 20.1278i 0.468977 0.812293i
\(615\) −3.21844 + 5.57450i −0.129780 + 0.224785i
\(616\) −49.7286 + 5.53015i −2.00362 + 0.222816i
\(617\) 16.2352 + 9.37341i 0.653605 + 0.377359i 0.789836 0.613318i \(-0.210166\pi\)
−0.136231 + 0.990677i \(0.543499\pi\)
\(618\) 15.3903i 0.619090i
\(619\) −13.7650 7.94725i −0.553264 0.319427i 0.197174 0.980369i \(-0.436824\pi\)
−0.750437 + 0.660942i \(0.770157\pi\)
\(620\) −39.7014 68.7649i −1.59445 2.76167i
\(621\) −2.95068 + 5.11073i −0.118407 + 0.205087i
\(622\) −27.3086 + 15.7667i −1.09498 + 0.632185i
\(623\) 4.26499 + 1.86815i 0.170873 + 0.0748460i
\(624\) 5.27594 + 15.3765i 0.211207 + 0.615555i
\(625\) 3.61371 + 6.25913i 0.144549 + 0.250365i
\(626\) 33.9727i 1.35782i
\(627\) 5.16304 0.206192
\(628\) −65.8330 −2.62702
\(629\) 18.6141i 0.742194i
\(630\) 29.9693 3.33278i 1.19401 0.132781i
\(631\) −17.0998 9.87255i −0.680731 0.393020i 0.119400 0.992846i \(-0.461903\pi\)
−0.800130 + 0.599826i \(0.795236\pi\)
\(632\) 37.5745 21.6936i 1.49463 0.862927i
\(633\) 1.94839 + 3.37472i 0.0774417 + 0.134133i
\(634\) 43.2698 1.71846
\(635\) −4.36151 2.51812i −0.173081 0.0999286i
\(636\) −17.7081 −0.702173
\(637\) 11.9929 22.2074i 0.475177 0.879890i
\(638\) −37.6200 −1.48939
\(639\) −3.19575 1.84507i −0.126422 0.0729898i
\(640\) −7.95016 −0.314258
\(641\) −14.8893 25.7890i −0.588092 1.01860i −0.994482 0.104905i \(-0.966546\pi\)
0.406390 0.913699i \(-0.366787\pi\)
\(642\) −5.96867 + 3.44601i −0.235565 + 0.136003i
\(643\) 10.0220 + 5.78623i 0.395231 + 0.228187i 0.684424 0.729084i \(-0.260054\pi\)
−0.289193 + 0.957271i \(0.593387\pi\)
\(644\) 24.5496 2.73007i 0.967389 0.107580i
\(645\) 2.80493i 0.110444i
\(646\) 29.7964 1.17232
\(647\) −25.5065 −1.00276 −0.501382 0.865226i \(-0.667175\pi\)
−0.501382 + 0.865226i \(0.667175\pi\)
\(648\) 46.5140i 1.82724i
\(649\) 15.4508 + 26.7616i 0.606497 + 1.05048i
\(650\) 4.30024 21.9956i 0.168669 0.862737i
\(651\) −13.1655 5.76675i −0.515995 0.226017i
\(652\) −29.1893 + 16.8524i −1.14314 + 0.659993i
\(653\) 22.4146 38.8233i 0.877152 1.51927i 0.0227004 0.999742i \(-0.492774\pi\)
0.854452 0.519530i \(-0.173893\pi\)
\(654\) 1.15946 + 2.00825i 0.0453386 + 0.0785287i
\(655\) −14.2529 8.22889i −0.556905 0.321529i
\(656\) 66.9747i 2.61492i
\(657\) −21.5320 12.4315i −0.840043 0.484999i
\(658\) 7.18179 0.798661i 0.279975 0.0311350i
\(659\) −20.5867 + 35.6572i −0.801944 + 1.38901i 0.116390 + 0.993204i \(0.462868\pi\)
−0.918335 + 0.395805i \(0.870466\pi\)
\(660\) 5.31382 9.20380i 0.206840 0.358258i
\(661\) 21.8938i 0.851569i 0.904825 + 0.425785i \(0.140002\pi\)
−0.904825 + 0.425785i \(0.859998\pi\)
\(662\) −5.13404 + 8.89241i −0.199540 + 0.345613i
\(663\) 5.73614 + 1.12144i 0.222773 + 0.0435533i
\(664\) −18.8539 −0.731673
\(665\) 9.30583 + 12.6473i 0.360865 + 0.490439i
\(666\) 21.0454 + 36.4517i 0.815492 + 1.41247i
\(667\) 10.6704 0.413160
\(668\) 73.1999 + 42.2620i 2.83219 + 1.63516i
\(669\) −10.1383 + 5.85334i −0.391968 + 0.226303i
\(670\) 56.6764i 2.18960i
\(671\) 7.91219i 0.305447i
\(672\) 9.42281 6.93329i 0.363493 0.267458i
\(673\) 17.8344 + 30.8901i 0.687466 + 1.19073i 0.972655 + 0.232254i \(0.0746102\pi\)
−0.285189 + 0.958471i \(0.592056\pi\)
\(674\) 30.7197 + 17.7361i 1.18328 + 0.683167i
\(675\) 3.56762 6.17930i 0.137318 0.237841i
\(676\) 48.2376 37.5193i 1.85529 1.44305i
\(677\) −1.27766 2.21297i −0.0491044 0.0850514i 0.840428 0.541923i \(-0.182303\pi\)
−0.889533 + 0.456871i \(0.848970\pi\)
\(678\) −9.98541 + 5.76508i −0.383488 + 0.221407i
\(679\) −37.5201 16.4346i −1.43989 0.630701i
\(680\) 17.6193 30.5175i 0.675670 1.17029i
\(681\) 6.13867 3.54416i 0.235234 0.135813i
\(682\) 63.5384 36.6839i 2.43301 1.40470i
\(683\) −30.9517 + 17.8700i −1.18433 + 0.683775i −0.957013 0.290045i \(-0.906330\pi\)
−0.227320 + 0.973820i \(0.572996\pi\)
\(684\) 40.9341 23.6333i 1.56515 0.903642i
\(685\) 8.05431 13.9505i 0.307739 0.533020i
\(686\) −47.0666 9.11748i −1.79701 0.348107i
\(687\) −3.56099 + 2.05594i −0.135860 + 0.0784390i
\(688\) −14.5924 25.2748i −0.556330 0.963592i
\(689\) 8.50199 + 24.7788i 0.323900 + 0.943995i
\(690\) −2.14843 + 3.72120i −0.0817895 + 0.141664i
\(691\) 22.5419 + 13.0146i 0.857536 + 0.495099i 0.863186 0.504885i \(-0.168465\pi\)
−0.00565028 + 0.999984i \(0.501799\pi\)
\(692\) 30.1127 + 52.1567i 1.14471 + 1.98270i
\(693\) 2.16034 + 19.4264i 0.0820647 + 0.737949i
\(694\) 68.3335i 2.59391i
\(695\) 2.68278i 0.101764i
\(696\) 16.8659 9.73755i 0.639301 0.369101i
\(697\) −20.8535 12.0398i −0.789884 0.456040i
\(698\) 12.6589 0.479146
\(699\) −1.70360 2.95073i −0.0644362 0.111607i
\(700\) −29.6825 + 3.30088i −1.12189 + 0.124762i
\(701\) −1.12731 −0.0425779 −0.0212890 0.999773i \(-0.506777\pi\)
−0.0212890 + 0.999773i \(0.506777\pi\)
\(702\) 26.2321 9.00067i 0.990068 0.339709i
\(703\) −10.9588 + 18.9813i −0.413321 + 0.715892i
\(704\) 12.6702i 0.477525i
\(705\) −0.440917 + 0.763691i −0.0166059 + 0.0287623i
\(706\) 17.5478 30.3936i 0.660419 1.14388i
\(707\) 3.36398 0.374096i 0.126515 0.0140693i
\(708\) −24.1128 13.9215i −0.906215 0.523203i
\(709\) 6.05031i 0.227224i −0.993525 0.113612i \(-0.963758\pi\)
0.993525 0.113612i \(-0.0362421\pi\)
\(710\) −4.88276 2.81906i −0.183247 0.105798i
\(711\) −8.47459 14.6784i −0.317822 0.550484i
\(712\) 6.15202 10.6556i 0.230557 0.399336i
\(713\) −18.0218 + 10.4049i −0.674922 + 0.389666i
\(714\) −1.22707 11.0341i −0.0459219 0.412942i
\(715\) −15.4300 3.01664i −0.577050 0.112816i
\(716\) −4.32530 7.49164i −0.161644 0.279976i
\(717\) 4.86986i 0.181868i
\(718\) 22.2249 0.829425
\(719\) −47.1177 −1.75719 −0.878597 0.477563i \(-0.841520\pi\)
−0.878597 + 0.477563i \(0.841520\pi\)
\(720\) 38.2884i 1.42692i
\(721\) −17.9810 24.4374i −0.669647 0.910095i
\(722\) −12.2100 7.04944i −0.454409 0.262353i
\(723\) 4.52859 2.61458i 0.168420 0.0972374i
\(724\) −7.75473 13.4316i −0.288202 0.499181i
\(725\) −12.9014 −0.479146
\(726\) −4.28097 2.47162i −0.158882 0.0917303i
\(727\) 17.9215 0.664671 0.332335 0.943161i \(-0.392163\pi\)
0.332335 + 0.943161i \(0.392163\pi\)
\(728\) −54.8211 37.9833i −2.03181 1.40775i
\(729\) −13.5489 −0.501810
\(730\) −32.8985 18.9940i −1.21763 0.702999i
\(731\) −10.4929 −0.388093
\(732\) −3.56454 6.17396i −0.131749 0.228196i
\(733\) 39.2037 22.6343i 1.44802 0.836016i 0.449658 0.893201i \(-0.351546\pi\)
0.998364 + 0.0571848i \(0.0182124\pi\)
\(734\) 3.72861 + 2.15271i 0.137625 + 0.0794581i
\(735\) 4.30028 3.96695i 0.158618 0.146323i
\(736\) 16.9378i 0.624335i
\(737\) −36.7382 −1.35327
\(738\) −54.4494 −2.00431
\(739\) 19.2613i 0.708539i −0.935143 0.354270i \(-0.884730\pi\)
0.935143 0.354270i \(-0.115270\pi\)
\(740\) 22.5577 + 39.0712i 0.829239 + 1.43628i
\(741\) 5.18905 + 4.52065i 0.190624 + 0.166070i
\(742\) 40.0804 29.4911i 1.47140 1.08265i
\(743\) 30.2115 17.4426i 1.10835 0.639908i 0.169951 0.985453i \(-0.445639\pi\)
0.938402 + 0.345545i \(0.112306\pi\)
\(744\) −18.9905 + 32.8925i −0.696225 + 1.20590i
\(745\) 15.9577 + 27.6396i 0.584647 + 1.01264i
\(746\) −31.3032 18.0729i −1.14609 0.661697i
\(747\) 7.36525i 0.269480i
\(748\) 34.4303 + 19.8784i 1.25890 + 0.726825i
\(749\) 5.45120 12.4451i 0.199183 0.454733i
\(750\) 8.00648 13.8676i 0.292355 0.506374i
\(751\) −12.4834 + 21.6219i −0.455526 + 0.788993i −0.998718 0.0506146i \(-0.983882\pi\)
0.543193 + 0.839608i \(0.317215\pi\)
\(752\) 9.17535i 0.334591i
\(753\) −2.68268 + 4.64654i −0.0977623 + 0.169329i
\(754\) −37.8095 32.9393i −1.37694 1.19958i
\(755\) 12.1467 0.442064
\(756\) −21.9024 29.7669i −0.796584 1.08261i
\(757\) 5.30243 + 9.18408i 0.192720 + 0.333801i 0.946151 0.323726i \(-0.104936\pi\)
−0.753431 + 0.657527i \(0.771602\pi\)
\(758\) 81.7370 2.96882
\(759\) −2.41212 1.39264i −0.0875543 0.0505495i
\(760\) 35.9337 20.7463i 1.30345 0.752548i
\(761\) 32.6388i 1.18316i 0.806248 + 0.591578i \(0.201495\pi\)
−0.806248 + 0.591578i \(0.798505\pi\)
\(762\) 4.19288i 0.151892i
\(763\) −4.18733 1.83414i −0.151592 0.0664002i
\(764\) 11.5080 + 19.9325i 0.416345 + 0.721131i
\(765\) −11.9216 6.88296i −0.431028 0.248854i
\(766\) −41.2988 + 71.5316i −1.49219 + 2.58454i
\(767\) −7.90323 + 40.4247i −0.285369 + 1.45965i
\(768\) 5.73794 + 9.93841i 0.207050 + 0.358621i
\(769\) −45.1851 + 26.0876i −1.62942 + 0.940744i −0.645148 + 0.764057i \(0.723204\pi\)
−0.984267 + 0.176686i \(0.943462\pi\)
\(770\) 3.30077 + 29.6814i 0.118951 + 1.06964i
\(771\) 2.07039 3.58601i 0.0745631 0.129147i
\(772\) 12.2909 7.09618i 0.442360 0.255397i
\(773\) −30.9221 + 17.8529i −1.11219 + 0.642123i −0.939396 0.342835i \(-0.888613\pi\)
−0.172794 + 0.984958i \(0.555279\pi\)
\(774\) −20.5480 + 11.8634i −0.738583 + 0.426421i
\(775\) 21.7898 12.5804i 0.782714