Properties

Label 91.2.u
Level $91$
Weight $2$
Character orbit 91.u
Rep. character $\chi_{91}(30,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $14$
Newform subspaces $2$
Sturm bound $18$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.u (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(18\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).

Total New Old
Modular forms 22 22 0
Cusp forms 14 14 0
Eisenstein series 8 8 0

Trace form

\( 14 q - 3 q^{2} + 4 q^{3} + 5 q^{4} - 6 q^{6} - 2 q^{7} - 2 q^{9} - 18 q^{10} - 2 q^{12} - 4 q^{13} + 10 q^{14} - 9 q^{15} - 3 q^{16} + 11 q^{17} + 3 q^{18} - 6 q^{20} - 16 q^{21} - 6 q^{22} + 3 q^{23} - 7 q^{25}+ \cdots - 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
91.2.u.a 91.u 91.u $2$ $0.727$ \(\Q(\sqrt{-3}) \) None 91.2.k.a \(-3\) \(-2\) \(-3\) \(-5\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-2+\zeta_{6})q^{2}-q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
91.2.u.b 91.u 91.u $12$ $0.727$ 12.0.\(\cdots\).1 None 91.2.k.b \(0\) \(6\) \(3\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{10}q^{2}+(1-\beta _{1}+\beta _{3}+\beta _{8})q^{3}+\cdots\)