Properties

Label 91.2.r.a.51.8
Level $91$
Weight $2$
Character 91.51
Analytic conductor $0.727$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 11 x^{14} + 85 x^{12} - 334 x^{10} + 952 x^{8} - 1050 x^{6} + 853 x^{4} - 93 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 51.8
Root \(-1.97871 + 1.14241i\) of defining polynomial
Character \(\chi\) \(=\) 91.51
Dual form 91.2.r.a.25.8

$q$-expansion

\(f(q)\) \(=\) \(q+(1.97871 + 1.14241i) q^{2} +(-1.57521 - 2.72835i) q^{3} +(1.61019 + 2.78892i) q^{4} +(1.84030 + 1.06250i) q^{5} -7.19813i q^{6} +(-2.62488 + 0.331665i) q^{7} +2.78832i q^{8} +(-3.46258 + 5.99736i) q^{9} +O(q^{10})\) \(q+(1.97871 + 1.14241i) q^{2} +(-1.57521 - 2.72835i) q^{3} +(1.61019 + 2.78892i) q^{4} +(1.84030 + 1.06250i) q^{5} -7.19813i q^{6} +(-2.62488 + 0.331665i) q^{7} +2.78832i q^{8} +(-3.46258 + 5.99736i) q^{9} +(2.42760 + 4.20473i) q^{10} +(0.267139 - 0.154233i) q^{11} +(5.07276 - 8.78629i) q^{12} +(-3.22037 + 1.62148i) q^{13} +(-5.57276 - 2.34241i) q^{14} -6.69462i q^{15} +(0.0349749 - 0.0605784i) q^{16} +(-0.887368 - 1.53697i) q^{17} +(-13.7029 + 7.91135i) q^{18} +(1.54266 + 0.890653i) q^{19} +6.84326i q^{20} +(5.03964 + 6.63914i) q^{21} +0.704786 q^{22} +(0.575211 - 0.996294i) q^{23} +(7.60750 - 4.39219i) q^{24} +(-0.242207 - 0.419515i) q^{25} +(-8.22456 - 0.470536i) q^{26} +12.3659 q^{27} +(-5.15153 - 6.78655i) q^{28} +2.01052 q^{29} +(7.64798 - 13.2467i) q^{30} +(3.98791 - 2.30242i) q^{31} +(4.96792 - 2.86823i) q^{32} +(-0.841600 - 0.485898i) q^{33} -4.05494i q^{34} +(-5.18295 - 2.17856i) q^{35} -22.3016 q^{36} +(4.79901 + 2.77071i) q^{37} +(2.03497 + 3.52468i) q^{38} +(9.49673 + 6.23211i) q^{39} +(-2.96258 + 5.13134i) q^{40} +6.72984i q^{41} +(2.38737 + 18.8942i) q^{42} -1.52611 q^{43} +(0.860286 + 0.496686i) q^{44} +(-12.7443 + 7.35795i) q^{45} +(2.27635 - 1.31425i) q^{46} +(-8.24297 - 4.75908i) q^{47} -0.220372 q^{48} +(6.78000 - 1.74116i) q^{49} -1.10680i q^{50} +(-2.79558 + 4.84209i) q^{51} +(-9.70759 - 6.37048i) q^{52} +(-3.72037 - 6.44387i) q^{53} +(24.4685 + 14.1269i) q^{54} +0.655486 q^{55} +(-0.924789 - 7.31901i) q^{56} -5.61186i q^{57} +(3.97823 + 2.29683i) q^{58} +(-7.03304 + 4.06053i) q^{59} +(18.6708 - 10.7796i) q^{60} +(1.72037 - 2.97977i) q^{61} +10.5212 q^{62} +(7.09974 - 16.8908i) q^{63} +12.9669 q^{64} +(-7.64926 - 0.437622i) q^{65} +(-1.11019 - 1.92290i) q^{66} +(-10.9249 + 6.30747i) q^{67} +(2.85765 - 4.94960i) q^{68} -3.62431 q^{69} +(-7.76673 - 10.2318i) q^{70} +1.35070i q^{71} +(-16.7226 - 9.65478i) q^{72} +(10.2894 - 5.94059i) q^{73} +(6.33056 + 10.9648i) q^{74} +(-0.763054 + 1.32165i) q^{75} +5.73646i q^{76} +(-0.650054 + 0.493443i) q^{77} +(11.6716 + 23.1806i) q^{78} +(3.96258 - 6.86339i) q^{79} +(0.128728 - 0.0743214i) q^{80} +(-9.09116 - 15.7464i) q^{81} +(-7.68821 + 13.3164i) q^{82} +11.2290i q^{83} +(-10.4013 + 24.7454i) q^{84} -3.77130i q^{85} +(-3.01972 - 1.74344i) q^{86} +(-3.16700 - 5.48540i) q^{87} +(0.430050 + 0.744869i) q^{88} +(1.43688 + 0.829583i) q^{89} -33.6231 q^{90} +(7.91530 - 5.32428i) q^{91} +3.70479 q^{92} +(-12.5636 - 7.25360i) q^{93} +(-10.8736 - 18.8336i) q^{94} +(1.89263 + 3.27813i) q^{95} +(-15.6511 - 9.03614i) q^{96} +7.66641i q^{97} +(15.4047 + 4.30026i) q^{98} +2.13617i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} + O(q^{10}) \) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} - 6q^{10} + 18q^{12} - 12q^{13} - 26q^{14} + 2q^{16} + 8q^{17} - 36q^{22} - 12q^{23} - 6q^{26} + 32q^{27} - 16q^{29} + 38q^{30} - 56q^{36} + 34q^{38} + 18q^{39} - 4q^{40} + 16q^{42} + 16q^{43} + 36q^{48} + 40q^{49} + 16q^{51} - 42q^{52} - 20q^{53} + 24q^{55} - 36q^{56} - 12q^{61} + 44q^{62} + 88q^{64} - 30q^{65} + 2q^{66} - 2q^{68} - 56q^{69} + 42q^{74} + 8q^{75} - 76q^{77} + 20q^{78} + 20q^{79} - 24q^{81} - 16q^{82} - 68q^{87} + 4q^{88} - 216q^{90} + 56q^{91} + 12q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97871 + 1.14241i 1.39916 + 0.807803i 0.994304 0.106579i \(-0.0339896\pi\)
0.404852 + 0.914382i \(0.367323\pi\)
\(3\) −1.57521 2.72835i −0.909448 1.57521i −0.814832 0.579697i \(-0.803171\pi\)
−0.0946163 0.995514i \(-0.530162\pi\)
\(4\) 1.61019 + 2.78892i 0.805093 + 1.39446i
\(5\) 1.84030 + 1.06250i 0.823005 + 0.475162i 0.851452 0.524433i \(-0.175723\pi\)
−0.0284464 + 0.999595i \(0.509056\pi\)
\(6\) 7.19813i 2.93862i
\(7\) −2.62488 + 0.331665i −0.992112 + 0.125358i
\(8\) 2.78832i 0.985820i
\(9\) −3.46258 + 5.99736i −1.15419 + 1.99912i
\(10\) 2.42760 + 4.20473i 0.767676 + 1.32965i
\(11\) 0.267139 0.154233i 0.0805454 0.0465029i −0.459186 0.888340i \(-0.651859\pi\)
0.539732 + 0.841837i \(0.318526\pi\)
\(12\) 5.07276 8.78629i 1.46438 2.53638i
\(13\) −3.22037 + 1.62148i −0.893170 + 0.449718i
\(14\) −5.57276 2.34241i −1.48938 0.626036i
\(15\) 6.69462i 1.72854i
\(16\) 0.0349749 0.0605784i 0.00874373 0.0151446i
\(17\) −0.887368 1.53697i −0.215218 0.372769i 0.738122 0.674667i \(-0.235713\pi\)
−0.953340 + 0.301898i \(0.902380\pi\)
\(18\) −13.7029 + 7.91135i −3.22979 + 1.86472i
\(19\) 1.54266 + 0.890653i 0.353909 + 0.204330i 0.666406 0.745589i \(-0.267832\pi\)
−0.312496 + 0.949919i \(0.601165\pi\)
\(20\) 6.84326i 1.53020i
\(21\) 5.03964 + 6.63914i 1.09974 + 1.44878i
\(22\) 0.704786 0.150261
\(23\) 0.575211 0.996294i 0.119940 0.207742i −0.799804 0.600261i \(-0.795063\pi\)
0.919744 + 0.392520i \(0.128397\pi\)
\(24\) 7.60750 4.39219i 1.55288 0.896553i
\(25\) −0.242207 0.419515i −0.0484414 0.0839029i
\(26\) −8.22456 0.470536i −1.61297 0.0922796i
\(27\) 12.3659 2.37982
\(28\) −5.15153 6.78655i −0.973548 1.28254i
\(29\) 2.01052 0.373345 0.186672 0.982422i \(-0.440230\pi\)
0.186672 + 0.982422i \(0.440230\pi\)
\(30\) 7.64798 13.2467i 1.39632 2.41850i
\(31\) 3.98791 2.30242i 0.716251 0.413527i −0.0971205 0.995273i \(-0.530963\pi\)
0.813371 + 0.581745i \(0.197630\pi\)
\(32\) 4.96792 2.86823i 0.878213 0.507037i
\(33\) −0.841600 0.485898i −0.146504 0.0845840i
\(34\) 4.05494i 0.695416i
\(35\) −5.18295 2.17856i −0.876078 0.368244i
\(36\) −22.3016 −3.71693
\(37\) 4.79901 + 2.77071i 0.788953 + 0.455502i 0.839594 0.543215i \(-0.182793\pi\)
−0.0506410 + 0.998717i \(0.516126\pi\)
\(38\) 2.03497 + 3.52468i 0.330117 + 0.571779i
\(39\) 9.49673 + 6.23211i 1.52069 + 0.997936i
\(40\) −2.96258 + 5.13134i −0.468425 + 0.811336i
\(41\) 6.72984i 1.05102i 0.850786 + 0.525512i \(0.176126\pi\)
−0.850786 + 0.525512i \(0.823874\pi\)
\(42\) 2.38737 + 18.8942i 0.368379 + 2.91544i
\(43\) −1.52611 −0.232729 −0.116365 0.993207i \(-0.537124\pi\)
−0.116365 + 0.993207i \(0.537124\pi\)
\(44\) 0.860286 + 0.496686i 0.129693 + 0.0748783i
\(45\) −12.7443 + 7.35795i −1.89981 + 1.09686i
\(46\) 2.27635 1.31425i 0.335629 0.193776i
\(47\) −8.24297 4.75908i −1.20236 0.694183i −0.241281 0.970455i \(-0.577568\pi\)
−0.961079 + 0.276272i \(0.910901\pi\)
\(48\) −0.220372 −0.0318079
\(49\) 6.78000 1.74116i 0.968571 0.248738i
\(50\) 1.10680i 0.156524i
\(51\) −2.79558 + 4.84209i −0.391460 + 0.678028i
\(52\) −9.70759 6.37048i −1.34620 0.883427i
\(53\) −3.72037 6.44387i −0.511032 0.885134i −0.999918 0.0127862i \(-0.995930\pi\)
0.488886 0.872348i \(-0.337403\pi\)
\(54\) 24.4685 + 14.1269i 3.32974 + 1.92243i
\(55\) 0.655486 0.0883857
\(56\) −0.924789 7.31901i −0.123580 0.978044i
\(57\) 5.61186i 0.743309i
\(58\) 3.97823 + 2.29683i 0.522368 + 0.301589i
\(59\) −7.03304 + 4.06053i −0.915624 + 0.528636i −0.882236 0.470807i \(-0.843963\pi\)
−0.0333877 + 0.999442i \(0.510630\pi\)
\(60\) 18.6708 10.7796i 2.41039 1.39164i
\(61\) 1.72037 2.97977i 0.220271 0.381521i −0.734619 0.678480i \(-0.762639\pi\)
0.954890 + 0.296959i \(0.0959725\pi\)
\(62\) 10.5212 1.33620
\(63\) 7.09974 16.8908i 0.894483 2.12804i
\(64\) 12.9669 1.62086
\(65\) −7.64926 0.437622i −0.948773 0.0542803i
\(66\) −1.11019 1.92290i −0.136654 0.236692i
\(67\) −10.9249 + 6.30747i −1.33468 + 0.770580i −0.986014 0.166665i \(-0.946700\pi\)
−0.348671 + 0.937245i \(0.613367\pi\)
\(68\) 2.85765 4.94960i 0.346541 0.600227i
\(69\) −3.62431 −0.436316
\(70\) −7.76673 10.2318i −0.928302 1.22293i
\(71\) 1.35070i 0.160299i 0.996783 + 0.0801494i \(0.0255397\pi\)
−0.996783 + 0.0801494i \(0.974460\pi\)
\(72\) −16.7226 9.65478i −1.97077 1.13783i
\(73\) 10.2894 5.94059i 1.20428 0.695293i 0.242778 0.970082i \(-0.421941\pi\)
0.961505 + 0.274789i \(0.0886079\pi\)
\(74\) 6.33056 + 10.9648i 0.735912 + 1.27464i
\(75\) −0.763054 + 1.32165i −0.0881099 + 0.152611i
\(76\) 5.73646i 0.658018i
\(77\) −0.650054 + 0.493443i −0.0740805 + 0.0562330i
\(78\) 11.6716 + 23.1806i 1.32155 + 2.62469i
\(79\) 3.96258 6.86339i 0.445825 0.772191i −0.552284 0.833656i \(-0.686244\pi\)
0.998109 + 0.0614644i \(0.0195771\pi\)
\(80\) 0.128728 0.0743214i 0.0143923 0.00830939i
\(81\) −9.09116 15.7464i −1.01013 1.74960i
\(82\) −7.68821 + 13.3164i −0.849021 + 1.47055i
\(83\) 11.2290i 1.23255i 0.787533 + 0.616273i \(0.211358\pi\)
−0.787533 + 0.616273i \(0.788642\pi\)
\(84\) −10.4013 + 24.7454i −1.13487 + 2.69995i
\(85\) 3.77130i 0.409055i
\(86\) −3.01972 1.74344i −0.325625 0.188000i
\(87\) −3.16700 5.48540i −0.339538 0.588096i
\(88\) 0.430050 + 0.744869i 0.0458435 + 0.0794033i
\(89\) 1.43688 + 0.829583i 0.152309 + 0.0879357i 0.574218 0.818703i \(-0.305306\pi\)
−0.421909 + 0.906638i \(0.638640\pi\)
\(90\) −33.6231 −3.54418
\(91\) 7.91530 5.32428i 0.829749 0.558137i
\(92\) 3.70479 0.386251
\(93\) −12.5636 7.25360i −1.30279 0.752164i
\(94\) −10.8736 18.8336i −1.12153 1.94254i
\(95\) 1.89263 + 3.27813i 0.194180 + 0.336329i
\(96\) −15.6511 9.03614i −1.59738 0.922247i
\(97\) 7.66641i 0.778406i 0.921152 + 0.389203i \(0.127250\pi\)
−0.921152 + 0.389203i \(0.872750\pi\)
\(98\) 15.4047 + 4.30026i 1.55611 + 0.434392i
\(99\) 2.13617i 0.214693i
\(100\) 0.779996 1.35099i 0.0779996 0.135099i
\(101\) 4.55864 + 7.89579i 0.453601 + 0.785660i 0.998607 0.0527721i \(-0.0168057\pi\)
−0.545005 + 0.838433i \(0.683472\pi\)
\(102\) −11.0633 + 6.38738i −1.09543 + 0.632445i
\(103\) 3.02085 5.23226i 0.297653 0.515550i −0.677946 0.735112i \(-0.737130\pi\)
0.975599 + 0.219562i \(0.0704629\pi\)
\(104\) −4.52122 8.97943i −0.443342 0.880506i
\(105\) 2.22037 + 17.5726i 0.216686 + 1.71491i
\(106\) 17.0007i 1.65125i
\(107\) −6.04305 + 10.4669i −0.584204 + 1.01187i 0.410770 + 0.911739i \(0.365260\pi\)
−0.994974 + 0.100132i \(0.968074\pi\)
\(108\) 19.9114 + 34.4876i 1.91598 + 3.31857i
\(109\) −1.17942 + 0.680941i −0.112968 + 0.0652223i −0.555420 0.831570i \(-0.687442\pi\)
0.442451 + 0.896793i \(0.354109\pi\)
\(110\) 1.29701 + 0.748831i 0.123665 + 0.0713983i
\(111\) 17.4578i 1.65702i
\(112\) −0.0717133 + 0.170611i −0.00677627 + 0.0161212i
\(113\) −9.42009 −0.886168 −0.443084 0.896480i \(-0.646116\pi\)
−0.443084 + 0.896480i \(0.646116\pi\)
\(114\) 6.41103 11.1042i 0.600448 1.04001i
\(115\) 2.11712 1.22232i 0.197422 0.113982i
\(116\) 3.23731 + 5.60719i 0.300577 + 0.520615i
\(117\) 1.42617 24.9282i 0.131849 2.30462i
\(118\) −18.5551 −1.70814
\(119\) 2.83899 + 3.74004i 0.260250 + 0.342849i
\(120\) 18.6667 1.70403
\(121\) −5.45242 + 9.44388i −0.495675 + 0.858534i
\(122\) 6.80822 3.93073i 0.616387 0.355871i
\(123\) 18.3613 10.6009i 1.65558 0.955852i
\(124\) 12.8426 + 7.41466i 1.15330 + 0.665856i
\(125\) 11.6543i 1.04239i
\(126\) 33.3444 25.3111i 2.97056 2.25489i
\(127\) 13.3998 1.18904 0.594519 0.804081i \(-0.297342\pi\)
0.594519 + 0.804081i \(0.297342\pi\)
\(128\) 15.7217 + 9.07695i 1.38962 + 0.802297i
\(129\) 2.40394 + 4.16375i 0.211655 + 0.366598i
\(130\) −14.6357 9.60448i −1.28363 0.842369i
\(131\) −6.69854 + 11.6022i −0.585254 + 1.01369i 0.409590 + 0.912270i \(0.365672\pi\)
−0.994844 + 0.101420i \(0.967662\pi\)
\(132\) 3.12954i 0.272392i
\(133\) −4.34469 1.82621i −0.376732 0.158353i
\(134\) −28.8228 −2.48991
\(135\) 22.7569 + 13.1387i 1.95860 + 1.13080i
\(136\) 4.28555 2.47427i 0.367483 0.212167i
\(137\) 0.433917 0.250522i 0.0370720 0.0214036i −0.481349 0.876529i \(-0.659853\pi\)
0.518421 + 0.855125i \(0.326520\pi\)
\(138\) −7.17145 4.14044i −0.610475 0.352458i
\(139\) 1.41936 0.120388 0.0601941 0.998187i \(-0.480828\pi\)
0.0601941 + 0.998187i \(0.480828\pi\)
\(140\) −2.26967 17.9627i −0.191822 1.51813i
\(141\) 29.9862i 2.52529i
\(142\) −1.54305 + 2.67264i −0.129490 + 0.224283i
\(143\) −0.610200 + 0.929847i −0.0510275 + 0.0777577i
\(144\) 0.242207 + 0.419515i 0.0201839 + 0.0349596i
\(145\) 3.69996 + 2.13617i 0.307265 + 0.177399i
\(146\) 27.1463 2.24664
\(147\) −15.4304 15.7555i −1.27268 1.29949i
\(148\) 17.8454i 1.46689i
\(149\) −18.2652 10.5454i −1.49635 0.863916i −0.496355 0.868120i \(-0.665328\pi\)
−0.999991 + 0.00420426i \(0.998662\pi\)
\(150\) −3.01972 + 1.74344i −0.246559 + 0.142351i
\(151\) −15.1591 + 8.75211i −1.23363 + 0.712236i −0.967785 0.251779i \(-0.918984\pi\)
−0.265845 + 0.964016i \(0.585651\pi\)
\(152\) −2.48343 + 4.30142i −0.201432 + 0.348891i
\(153\) 12.2903 0.993614
\(154\) −1.84998 + 0.233753i −0.149075 + 0.0188363i
\(155\) 9.78526 0.785971
\(156\) −2.08937 + 36.5205i −0.167284 + 2.92398i
\(157\) −0.0377894 0.0654532i −0.00301593 0.00522374i 0.864514 0.502610i \(-0.167627\pi\)
−0.867529 + 0.497386i \(0.834293\pi\)
\(158\) 15.6816 9.05375i 1.24756 0.720278i
\(159\) −11.7207 + 20.3009i −0.929515 + 1.60997i
\(160\) 12.1899 0.963699
\(161\) −1.17942 + 2.80593i −0.0929516 + 0.221138i
\(162\) 41.5432i 3.26394i
\(163\) 8.73102 + 5.04086i 0.683866 + 0.394830i 0.801310 0.598249i \(-0.204137\pi\)
−0.117444 + 0.993080i \(0.537470\pi\)
\(164\) −18.7690 + 10.8363i −1.46561 + 0.846172i
\(165\) −1.03253 1.78839i −0.0803822 0.139226i
\(166\) −12.8281 + 22.2189i −0.995655 + 1.72452i
\(167\) 5.84989i 0.452678i −0.974049 0.226339i \(-0.927324\pi\)
0.974049 0.226339i \(-0.0726757\pi\)
\(168\) −18.5120 + 14.0521i −1.42824 + 1.08415i
\(169\) 7.74159 10.4436i 0.595507 0.803350i
\(170\) 4.30835 7.46229i 0.330436 0.572331i
\(171\) −10.6831 + 6.16791i −0.816960 + 0.471672i
\(172\) −2.45732 4.25620i −0.187369 0.324532i
\(173\) 8.49511 14.7140i 0.645871 1.11868i −0.338229 0.941064i \(-0.609828\pi\)
0.984100 0.177617i \(-0.0568390\pi\)
\(174\) 14.4720i 1.09712i
\(175\) 0.774903 + 1.02084i 0.0585771 + 0.0771686i
\(176\) 0.0215771i 0.00162644i
\(177\) 22.1570 + 12.7924i 1.66543 + 0.961534i
\(178\) 1.89544 + 3.28300i 0.142069 + 0.246072i
\(179\) −7.65079 13.2516i −0.571847 0.990468i −0.996376 0.0850537i \(-0.972894\pi\)
0.424529 0.905414i \(-0.360440\pi\)
\(180\) −41.0415 23.6953i −3.05905 1.76615i
\(181\) −5.84958 −0.434796 −0.217398 0.976083i \(-0.569757\pi\)
−0.217398 + 0.976083i \(0.569757\pi\)
\(182\) 21.7446 1.49270i 1.61181 0.110646i
\(183\) −10.8398 −0.801301
\(184\) 2.77799 + 1.60387i 0.204796 + 0.118239i
\(185\) 5.88774 + 10.1979i 0.432875 + 0.749761i
\(186\) −16.5731 28.7055i −1.21520 2.10479i
\(187\) −0.474101 0.273722i −0.0346697 0.0200165i
\(188\) 30.6520i 2.23553i
\(189\) −32.4590 + 4.10134i −2.36105 + 0.298329i
\(190\) 8.64861i 0.627436i
\(191\) 13.4090 23.2250i 0.970238 1.68050i 0.275407 0.961328i \(-0.411188\pi\)
0.694831 0.719173i \(-0.255479\pi\)
\(192\) −20.4255 35.3780i −1.47409 2.55319i
\(193\) −0.185315 + 0.106992i −0.0133393 + 0.00770145i −0.506655 0.862149i \(-0.669118\pi\)
0.493316 + 0.869850i \(0.335785\pi\)
\(194\) −8.75816 + 15.1696i −0.628799 + 1.08911i
\(195\) 10.8552 + 21.5592i 0.777358 + 1.54388i
\(196\) 15.7730 + 16.1053i 1.12664 + 1.15038i
\(197\) 11.2290i 0.800035i −0.916508 0.400017i \(-0.869004\pi\)
0.916508 0.400017i \(-0.130996\pi\)
\(198\) −2.44038 + 4.22685i −0.173430 + 0.300389i
\(199\) 10.2100 + 17.6843i 0.723771 + 1.25361i 0.959478 + 0.281784i \(0.0909261\pi\)
−0.235707 + 0.971824i \(0.575741\pi\)
\(200\) 1.16974 0.675351i 0.0827132 0.0477545i
\(201\) 34.4179 + 19.8712i 2.42765 + 1.40161i
\(202\) 20.8313i 1.46568i
\(203\) −5.27738 + 0.666820i −0.370399 + 0.0468016i
\(204\) −18.0056 −1.26065
\(205\) −7.15042 + 12.3849i −0.499407 + 0.864999i
\(206\) 11.9547 6.90207i 0.832926 0.480890i
\(207\) 3.98343 + 6.89950i 0.276867 + 0.479548i
\(208\) −0.0144055 + 0.251796i −0.000998842 + 0.0174589i
\(209\) 0.549471 0.0380077
\(210\) −15.6816 + 37.3075i −1.08213 + 2.57446i
\(211\) 8.41738 0.579476 0.289738 0.957106i \(-0.406432\pi\)
0.289738 + 0.957106i \(0.406432\pi\)
\(212\) 11.9810 20.7517i 0.822857 1.42523i
\(213\) 3.68518 2.12764i 0.252504 0.145783i
\(214\) −23.9148 + 13.8072i −1.63479 + 0.943844i
\(215\) −2.80849 1.62148i −0.191537 0.110584i
\(216\) 34.4801i 2.34607i
\(217\) −9.70417 + 7.36624i −0.658762 + 0.500053i
\(218\) −3.11164 −0.210747
\(219\) −32.4159 18.7154i −2.19047 1.26467i
\(220\) 1.05545 + 1.82810i 0.0711587 + 0.123250i
\(221\) 5.34982 + 3.51075i 0.359868 + 0.236159i
\(222\) 19.9439 34.5439i 1.33855 2.31843i
\(223\) 13.6091i 0.911333i −0.890151 0.455666i \(-0.849401\pi\)
0.890151 0.455666i \(-0.150599\pi\)
\(224\) −12.0889 + 9.17646i −0.807725 + 0.613128i
\(225\) 3.35464 0.223643
\(226\) −18.6396 10.7616i −1.23989 0.715849i
\(227\) 3.12008 1.80138i 0.207087 0.119562i −0.392870 0.919594i \(-0.628518\pi\)
0.599957 + 0.800032i \(0.295184\pi\)
\(228\) 15.6511 9.03614i 1.03652 0.598433i
\(229\) 15.9212 + 9.19208i 1.05210 + 0.607430i 0.923236 0.384232i \(-0.125534\pi\)
0.128863 + 0.991662i \(0.458867\pi\)
\(230\) 5.58554 0.368299
\(231\) 2.37025 + 0.996294i 0.155951 + 0.0655514i
\(232\) 5.60598i 0.368051i
\(233\) 10.1348 17.5541i 0.663955 1.15000i −0.315612 0.948888i \(-0.602210\pi\)
0.979567 0.201116i \(-0.0644568\pi\)
\(234\) 31.3002 47.6964i 2.04616 3.11801i
\(235\) −10.1130 17.5162i −0.659699 1.14263i
\(236\) −22.6490 13.0764i −1.47432 0.851202i
\(237\) −24.9676 −1.62182
\(238\) 1.34488 + 10.6437i 0.0871758 + 0.689931i
\(239\) 20.8097i 1.34607i 0.739612 + 0.673033i \(0.235009\pi\)
−0.739612 + 0.673033i \(0.764991\pi\)
\(240\) −0.405549 0.234144i −0.0261781 0.0151139i
\(241\) 11.0113 6.35736i 0.709299 0.409514i −0.101503 0.994835i \(-0.532365\pi\)
0.810801 + 0.585322i \(0.199032\pi\)
\(242\) −21.5775 + 12.4578i −1.38705 + 0.800816i
\(243\) −10.0922 + 17.4801i −0.647412 + 1.12135i
\(244\) 11.0805 0.709355
\(245\) 14.3272 + 3.99946i 0.915330 + 0.255516i
\(246\) 48.4422 3.08856
\(247\) −6.41210 0.366843i −0.407992 0.0233417i
\(248\) 6.41990 + 11.1196i 0.407664 + 0.706094i
\(249\) 30.6367 17.6881i 1.94152 1.12094i
\(250\) 13.3140 23.0605i 0.842050 1.45847i
\(251\) −13.7436 −0.867486 −0.433743 0.901037i \(-0.642807\pi\)
−0.433743 + 0.901037i \(0.642807\pi\)
\(252\) 58.5390 7.39666i 3.68761 0.465946i
\(253\) 0.354865i 0.0223102i
\(254\) 26.5142 + 15.3080i 1.66365 + 0.960510i
\(255\) −10.2894 + 5.94059i −0.644347 + 0.372014i
\(256\) 7.77229 + 13.4620i 0.485768 + 0.841375i
\(257\) −3.66736 + 6.35206i −0.228764 + 0.396231i −0.957442 0.288626i \(-0.906802\pi\)
0.728678 + 0.684856i \(0.240135\pi\)
\(258\) 10.9851i 0.683904i
\(259\) −13.5158 5.68112i −0.839830 0.353008i
\(260\) −11.0962 22.0378i −0.688159 1.36673i
\(261\) −6.96159 + 12.0578i −0.430912 + 0.746361i
\(262\) −26.5089 + 15.3049i −1.63772 + 0.945540i
\(263\) 3.33942 + 5.78405i 0.205918 + 0.356660i 0.950425 0.310955i \(-0.100649\pi\)
−0.744507 + 0.667615i \(0.767315\pi\)
\(264\) 1.35484 2.34665i 0.0833846 0.144426i
\(265\) 15.8115i 0.971293i
\(266\) −6.51058 8.57693i −0.399189 0.525886i
\(267\) 5.22708i 0.319892i
\(268\) −35.1821 20.3124i −2.14909 1.24078i
\(269\) −8.11263 14.0515i −0.494636 0.856735i 0.505345 0.862917i \(-0.331365\pi\)
−0.999981 + 0.00618287i \(0.998032\pi\)
\(270\) 30.0195 + 51.9953i 1.82693 + 3.16433i
\(271\) −16.2277 9.36904i −0.985760 0.569129i −0.0817555 0.996652i \(-0.526053\pi\)
−0.904004 + 0.427524i \(0.859386\pi\)
\(272\) −0.124143 −0.00752725
\(273\) −26.9948 13.2088i −1.63380 0.799433i
\(274\) 1.14479 0.0691595
\(275\) −0.129406 0.0747124i −0.00780346 0.00450533i
\(276\) −5.83582 10.1079i −0.351275 0.608426i
\(277\) 15.0163 + 26.0090i 0.902243 + 1.56273i 0.824575 + 0.565752i \(0.191414\pi\)
0.0776679 + 0.996979i \(0.475253\pi\)
\(278\) 2.80849 + 1.62148i 0.168442 + 0.0972501i
\(279\) 31.8893i 1.90916i
\(280\) 6.07453 14.4517i 0.363023 0.863656i
\(281\) 2.23065i 0.133070i −0.997784 0.0665348i \(-0.978806\pi\)
0.997784 0.0665348i \(-0.0211943\pi\)
\(282\) −34.2565 + 59.3339i −2.03994 + 3.53328i
\(283\) 6.88774 + 11.9299i 0.409433 + 0.709159i 0.994826 0.101590i \(-0.0323931\pi\)
−0.585393 + 0.810750i \(0.699060\pi\)
\(284\) −3.76700 + 2.17488i −0.223531 + 0.129055i
\(285\) 5.96258 10.3275i 0.353193 0.611748i
\(286\) −2.26967 + 1.14280i −0.134208 + 0.0675750i
\(287\) −2.23205 17.6650i −0.131754 1.04273i
\(288\) 39.7259i 2.34087i
\(289\) 6.92516 11.9947i 0.407362 0.705572i
\(290\) 4.88075 + 8.45371i 0.286608 + 0.496419i
\(291\) 20.9166 12.0762i 1.22615 0.707920i
\(292\) 33.1357 + 19.1309i 1.93912 + 1.11955i
\(293\) 1.01231i 0.0591400i 0.999563 + 0.0295700i \(0.00941380\pi\)
−0.999563 + 0.0295700i \(0.990586\pi\)
\(294\) −12.5331 48.8033i −0.730946 2.84626i
\(295\) −17.2572 −1.00475
\(296\) −7.72563 + 13.3812i −0.449043 + 0.777766i
\(297\) 3.30341 1.90723i 0.191683 0.110668i
\(298\) −24.0943 41.7326i −1.39575 2.41751i
\(299\) −0.236918 + 4.14113i −0.0137013 + 0.239488i
\(300\) −4.91464 −0.283747
\(301\) 4.00585 0.506157i 0.230893 0.0291744i
\(302\) −39.9939 −2.30139
\(303\) 14.3616 24.8751i 0.825054 1.42904i
\(304\) 0.107909 0.0623010i 0.00618898 0.00357321i
\(305\) 6.33199 3.65577i 0.362568 0.209329i
\(306\) 24.3189 + 14.0405i 1.39022 + 0.802645i
\(307\) 24.0527i 1.37276i −0.727244 0.686379i \(-0.759199\pi\)
0.727244 0.686379i \(-0.240801\pi\)
\(308\) −2.42288 1.01842i −0.138057 0.0580296i
\(309\) −19.0339 −1.08280
\(310\) 19.3622 + 11.1787i 1.09970 + 0.634910i
\(311\) −4.49548 7.78639i −0.254915 0.441526i 0.709957 0.704245i \(-0.248714\pi\)
−0.964872 + 0.262719i \(0.915381\pi\)
\(312\) −17.3771 + 26.4799i −0.983786 + 1.49913i
\(313\) 7.61806 13.1949i 0.430598 0.745818i −0.566326 0.824181i \(-0.691636\pi\)
0.996925 + 0.0783626i \(0.0249692\pi\)
\(314\) 0.172684i 0.00974510i
\(315\) 31.0120 23.5406i 1.74733 1.32636i
\(316\) 25.5220 1.43572
\(317\) −5.91972 3.41775i −0.332484 0.191960i 0.324459 0.945900i \(-0.394818\pi\)
−0.656944 + 0.753940i \(0.728151\pi\)
\(318\) −46.3838 + 26.7797i −2.60107 + 1.50173i
\(319\) 0.537088 0.310088i 0.0300712 0.0173616i
\(320\) 23.8628 + 13.7772i 1.33397 + 0.770170i
\(321\) 38.0763 2.12521
\(322\) −5.53925 + 4.20473i −0.308690 + 0.234321i
\(323\) 3.16135i 0.175902i
\(324\) 29.2769 50.7091i 1.62650 2.81717i
\(325\) 1.46023 + 0.958259i 0.0809991 + 0.0531546i
\(326\) 11.5174 + 19.9487i 0.637890 + 1.10486i
\(327\) 3.71568 + 2.14525i 0.205478 + 0.118633i
\(328\) −18.7649 −1.03612
\(329\) 23.2152 + 9.75811i 1.27990 + 0.537982i
\(330\) 4.71827i 0.259732i
\(331\) −11.9637 6.90727i −0.657587 0.379658i 0.133770 0.991012i \(-0.457292\pi\)
−0.791357 + 0.611354i \(0.790625\pi\)
\(332\) −31.3169 + 18.0808i −1.71874 + 0.992314i
\(333\) −33.2339 + 19.1876i −1.82121 + 1.05147i
\(334\) 6.68295 11.5752i 0.365675 0.633367i
\(335\) −26.8066 −1.46460
\(336\) 0.578449 0.0730896i 0.0315570 0.00398736i
\(337\) −27.0432 −1.47314 −0.736568 0.676364i \(-0.763555\pi\)
−0.736568 + 0.676364i \(0.763555\pi\)
\(338\) 27.2491 11.8207i 1.48216 0.642961i
\(339\) 14.8386 + 25.7013i 0.805924 + 1.39590i
\(340\) 10.5179 6.07249i 0.570411 0.329327i
\(341\) 0.710218 1.23013i 0.0384604 0.0666154i
\(342\) −28.1850 −1.52407
\(343\) −17.2192 + 6.81903i −0.929749 + 0.368193i
\(344\) 4.25528i 0.229429i
\(345\) −6.66981 3.85082i −0.359091 0.207321i
\(346\) 33.6186 19.4097i 1.80735 1.04347i
\(347\) 9.65568 + 16.7241i 0.518344 + 0.897799i 0.999773 + 0.0213132i \(0.00678472\pi\)
−0.481429 + 0.876485i \(0.659882\pi\)
\(348\) 10.1989 17.6650i 0.546719 0.946944i
\(349\) 14.1573i 0.757821i 0.925433 + 0.378911i \(0.123701\pi\)
−0.925433 + 0.378911i \(0.876299\pi\)
\(350\) 0.367085 + 2.90521i 0.0196215 + 0.155290i
\(351\) −39.8228 + 20.0511i −2.12558 + 1.07025i
\(352\) 0.884750 1.53243i 0.0471573 0.0816789i
\(353\) −14.6919 + 8.48235i −0.781969 + 0.451470i −0.837128 0.547008i \(-0.815767\pi\)
0.0551585 + 0.998478i \(0.482434\pi\)
\(354\) 29.2282 + 50.6247i 1.55346 + 2.69067i
\(355\) −1.43511 + 2.48569i −0.0761680 + 0.131927i
\(356\) 5.34313i 0.283186i
\(357\) 5.73212 13.6371i 0.303376 0.721752i
\(358\) 34.9613i 1.84776i
\(359\) 19.7136 + 11.3816i 1.04044 + 0.600700i 0.919959 0.392016i \(-0.128222\pi\)
0.120484 + 0.992715i \(0.461555\pi\)
\(360\) −20.5163 35.5353i −1.08131 1.87288i
\(361\) −7.91348 13.7065i −0.416499 0.721397i
\(362\) −11.5746 6.68260i −0.608347 0.351229i
\(363\) 34.3549 1.80316
\(364\) 27.5941 + 13.5021i 1.44633 + 0.707702i
\(365\) 25.2474 1.32151
\(366\) −21.4488 12.3835i −1.12114 0.647293i
\(367\) −8.29168 14.3616i −0.432822 0.749670i 0.564293 0.825575i \(-0.309149\pi\)
−0.997115 + 0.0759048i \(0.975815\pi\)
\(368\) −0.0402359 0.0696907i −0.00209744 0.00363288i
\(369\) −40.3613 23.3026i −2.10112 1.21308i
\(370\) 26.9048i 1.39871i
\(371\) 11.9027 + 15.6805i 0.617959 + 0.814090i
\(372\) 46.7186i 2.42225i
\(373\) −13.8230 + 23.9422i −0.715730 + 1.23968i 0.246947 + 0.969029i \(0.420573\pi\)
−0.962677 + 0.270652i \(0.912761\pi\)
\(374\) −0.625404 1.08323i −0.0323389 0.0560126i
\(375\) −31.7970 + 18.3580i −1.64199 + 0.948004i
\(376\) 13.2698 22.9840i 0.684340 1.18531i
\(377\) −6.47463 + 3.26003i −0.333460 + 0.167900i
\(378\) −68.9122 28.9660i −3.54446 1.48985i
\(379\) 9.24228i 0.474744i 0.971419 + 0.237372i \(0.0762860\pi\)
−0.971419 + 0.237372i \(0.923714\pi\)
\(380\) −6.09497 + 10.5568i −0.312665 + 0.541552i
\(381\) −21.1075 36.5592i −1.08137 1.87299i
\(382\) 53.0648 30.6369i 2.71503 1.56752i
\(383\) 6.62358 + 3.82413i 0.338449 + 0.195404i 0.659586 0.751629i \(-0.270732\pi\)
−0.321137 + 0.947033i \(0.604065\pi\)
\(384\) 57.1925i 2.91859i
\(385\) −1.72057 + 0.217402i −0.0876885 + 0.0110798i
\(386\) −0.488913 −0.0248850
\(387\) 5.28427 9.15262i 0.268614 0.465254i
\(388\) −21.3810 + 12.3443i −1.08546 + 0.626689i
\(389\) 3.26868 + 5.66153i 0.165729 + 0.287051i 0.936914 0.349560i \(-0.113669\pi\)
−0.771185 + 0.636611i \(0.780336\pi\)
\(390\) −3.15006 + 55.0603i −0.159509 + 2.78809i
\(391\) −2.04169 −0.103253
\(392\) 4.85492 + 18.9048i 0.245211 + 0.954837i
\(393\) 42.2064 2.12903
\(394\) 12.8281 22.2189i 0.646271 1.11937i
\(395\) 14.5846 8.42044i 0.733833 0.423678i
\(396\) −5.95762 + 3.43963i −0.299381 + 0.172848i
\(397\) −25.0548 14.4654i −1.25746 0.725996i −0.284882 0.958563i \(-0.591954\pi\)
−0.972581 + 0.232566i \(0.925288\pi\)
\(398\) 46.6561i 2.33866i
\(399\) 1.86126 + 14.7305i 0.0931795 + 0.737446i
\(400\) −0.0338847 −0.00169423
\(401\) −23.1603 13.3716i −1.15657 0.667747i −0.206092 0.978533i \(-0.566075\pi\)
−0.950480 + 0.310786i \(0.899408\pi\)
\(402\) 45.4020 + 78.6385i 2.26444 + 3.92213i
\(403\) −9.10923 + 13.8810i −0.453763 + 0.691462i
\(404\) −14.6805 + 25.4274i −0.730382 + 1.26506i
\(405\) 38.6373i 1.91990i
\(406\) −11.2042 4.70947i −0.556053 0.233727i
\(407\) 1.70934 0.0847287
\(408\) −13.5013 7.79498i −0.668414 0.385909i
\(409\) 30.1138 17.3862i 1.48903 0.859694i 0.489112 0.872221i \(-0.337321\pi\)
0.999922 + 0.0125273i \(0.00398768\pi\)
\(410\) −28.2972 + 16.3374i −1.39750 + 0.806846i
\(411\) −1.36702 0.789250i −0.0674302 0.0389309i
\(412\) 19.4565 0.958553
\(413\) 17.1142 12.9910i 0.842133 0.639246i
\(414\) 18.2028i 0.894617i
\(415\) −11.9308 + 20.6647i −0.585659 + 1.01439i
\(416\) −11.3478 + 17.2922i −0.556370 + 0.847819i
\(417\) −2.23579 3.87250i −0.109487 0.189637i
\(418\) 1.08724 + 0.627719i 0.0531787 + 0.0307027i
\(419\) −4.19246 −0.204815 −0.102407 0.994743i \(-0.532655\pi\)
−0.102407 + 0.994743i \(0.532655\pi\)
\(420\) −45.4333 + 34.4876i −2.21692 + 1.68282i
\(421\) 20.9526i 1.02117i 0.859828 + 0.510584i \(0.170571\pi\)
−0.859828 + 0.510584i \(0.829429\pi\)
\(422\) 16.6555 + 9.61607i 0.810778 + 0.468103i
\(423\) 57.0838 32.9574i 2.77551 1.60244i
\(424\) 17.9676 10.3736i 0.872583 0.503786i
\(425\) −0.429853 + 0.744528i −0.0208509 + 0.0361149i
\(426\) 9.72252 0.471058
\(427\) −3.52748 + 8.39213i −0.170707 + 0.406124i
\(428\) −38.9217 −1.88135
\(429\) 3.49814 + 0.200132i 0.168892 + 0.00966247i
\(430\) −3.70479 6.41688i −0.178661 0.309449i
\(431\) −14.6309 + 8.44713i −0.704744 + 0.406884i −0.809112 0.587655i \(-0.800051\pi\)
0.104368 + 0.994539i \(0.466718\pi\)
\(432\) 0.432497 0.749106i 0.0208085 0.0360414i
\(433\) 3.42241 0.164471 0.0822353 0.996613i \(-0.473794\pi\)
0.0822353 + 0.996613i \(0.473794\pi\)
\(434\) −27.6169 + 3.48952i −1.32566 + 0.167502i
\(435\) 13.4597i 0.645342i
\(436\) −3.79818 2.19288i −0.181900 0.105020i
\(437\) 1.77470 1.02463i 0.0848956 0.0490145i
\(438\) −42.7611 74.0644i −2.04320 3.53893i
\(439\) 9.03253 15.6448i 0.431099 0.746685i −0.565869 0.824495i \(-0.691459\pi\)
0.996968 + 0.0778096i \(0.0247926\pi\)
\(440\) 1.82771i 0.0871324i
\(441\) −13.0339 + 46.6910i −0.620661 + 2.22338i
\(442\) 6.57501 + 13.0584i 0.312742 + 0.621125i
\(443\) −3.22173 + 5.58020i −0.153069 + 0.265123i −0.932354 0.361546i \(-0.882249\pi\)
0.779285 + 0.626669i \(0.215582\pi\)
\(444\) 48.6885 28.1103i 2.31065 1.33406i
\(445\) 1.76286 + 3.05336i 0.0835674 + 0.144743i
\(446\) 15.5471 26.9284i 0.736178 1.27510i
\(447\) 66.4451i 3.14275i
\(448\) −34.0364 + 4.30065i −1.60807 + 0.203187i
\(449\) 1.75306i 0.0827322i 0.999144 + 0.0413661i \(0.0131710\pi\)
−0.999144 + 0.0413661i \(0.986829\pi\)
\(450\) 6.63785 + 3.83237i 0.312911 + 0.180659i
\(451\) 1.03796 + 1.79780i 0.0488757 + 0.0846551i
\(452\) −15.1681 26.2719i −0.713447 1.23573i
\(453\) 47.7575 + 27.5728i 2.24385 + 1.29548i
\(454\) 8.23163 0.386330
\(455\) 20.2235 1.38829i 0.948094 0.0650839i
\(456\) 15.6477 0.732770
\(457\) 28.3277 + 16.3550i 1.32511 + 0.765054i 0.984539 0.175164i \(-0.0560455\pi\)
0.340573 + 0.940218i \(0.389379\pi\)
\(458\) 21.0022 + 36.3769i 0.981368 + 1.69978i
\(459\) −10.9731 19.0060i −0.512180 0.887123i
\(460\) 6.81790 + 3.93632i 0.317886 + 0.183532i
\(461\) 7.66641i 0.357060i −0.983934 0.178530i \(-0.942866\pi\)
0.983934 0.178530i \(-0.0571342\pi\)
\(462\) 3.55186 + 4.67917i 0.165248 + 0.217695i
\(463\) 14.4720i 0.672570i −0.941760 0.336285i \(-0.890829\pi\)
0.941760 0.336285i \(-0.109171\pi\)
\(464\) 0.0703179 0.121794i 0.00326443 0.00565415i
\(465\) −15.4138 26.6976i −0.714800 1.23807i
\(466\) 40.1077 23.1562i 1.85795 1.07269i
\(467\) −1.68801 + 2.92373i −0.0781120 + 0.135294i −0.902435 0.430825i \(-0.858223\pi\)
0.824323 + 0.566119i \(0.191556\pi\)
\(468\) 71.8194 36.1616i 3.31985 1.67157i
\(469\) 26.5845 20.1798i 1.22756 0.931815i
\(470\) 46.2126i 2.13163i
\(471\) −0.119053 + 0.206205i −0.00548566 + 0.00950144i
\(472\) −11.3221 19.6104i −0.521140 0.902641i
\(473\) −0.407683 + 0.235376i −0.0187453 + 0.0108226i
\(474\) −49.4035 28.5231i −2.26918 1.31011i
\(475\) 0.862889i 0.0395921i
\(476\) −5.85939 + 13.9399i −0.268565 + 0.638934i
\(477\) 51.5283 2.35932
\(478\) −23.7731 + 41.1763i −1.08736 + 1.88336i
\(479\) 0.125768 0.0726124i 0.00574651 0.00331775i −0.497124 0.867680i \(-0.665611\pi\)
0.502871 + 0.864362i \(0.332277\pi\)
\(480\) −19.2017 33.2584i −0.876435 1.51803i
\(481\) −19.9473 1.14120i −0.909517 0.0520344i
\(482\) 29.0508 1.32323
\(483\) 9.51339 1.20206i 0.432874 0.0546956i
\(484\) −35.1177 −1.59626
\(485\) −8.14553 + 14.1085i −0.369869 + 0.640633i
\(486\) −39.9388 + 23.0587i −1.81166 + 1.04596i
\(487\) 14.2214 8.21073i 0.644433 0.372064i −0.141887 0.989883i \(-0.545317\pi\)
0.786320 + 0.617819i \(0.211984\pi\)
\(488\) 8.30856 + 4.79695i 0.376111 + 0.217148i
\(489\) 31.7616i 1.43631i
\(490\) 23.7803 + 24.2812i 1.07428 + 1.09691i
\(491\) −18.2077 −0.821701 −0.410850 0.911703i \(-0.634768\pi\)
−0.410850 + 0.911703i \(0.634768\pi\)
\(492\) 59.1303 + 34.1389i 2.66580 + 1.53910i
\(493\) −1.78407 3.09010i −0.0803506 0.139171i
\(494\) −12.2686 8.05110i −0.551990 0.362236i
\(495\) −2.26967 + 3.93119i −0.102014 + 0.176694i
\(496\) 0.322108i 0.0144631i
\(497\) −0.447981 3.54543i −0.0200947 0.159034i
\(498\) 80.8279 3.62199
\(499\) 32.5383 + 18.7860i 1.45661 + 0.840976i 0.998843 0.0480945i \(-0.0153148\pi\)
0.457770 + 0.889070i \(0.348648\pi\)
\(500\) 32.5030 18.7656i 1.45358 0.839225i
\(501\) −15.9605 + 9.21481i −0.713063 + 0.411687i
\(502\) −27.1945 15.7007i −1.21375 0.700758i
\(503\) −4.20535 −0.187507 −0.0937537 0.995595i \(-0.529887\pi\)
−0.0937537 + 0.995595i \(0.529887\pi\)
\(504\) 47.0969 + 19.7964i 2.09786 + 0.881800i
\(505\) 19.3741i 0.862137i
\(506\) 0.405400 0.702174i 0.0180222 0.0312154i
\(507\) −40.6883 4.67092i −1.80703 0.207443i
\(508\) 21.5761 + 37.3710i 0.957287 + 1.65807i
\(509\) −7.30705 4.21873i −0.323879 0.186992i 0.329241 0.944246i \(-0.393207\pi\)
−0.653120 + 0.757254i \(0.726540\pi\)
\(510\) −27.1463 −1.20206
\(511\) −25.0382 + 19.0060i −1.10762 + 0.840775i
\(512\) 0.791350i 0.0349731i
\(513\) 19.0763 + 11.0137i 0.842240 + 0.486268i
\(514\) −14.5133 + 8.37924i −0.640153 + 0.369593i
\(515\) 11.1185 6.41927i 0.489940 0.282867i
\(516\) −7.74159 + 13.4088i −0.340804 + 0.590290i
\(517\) −2.93602 −0.129126
\(518\) −20.2536 26.6818i −0.889893 1.17233i
\(519\) −53.5263 −2.34955
\(520\) 1.22023 21.3286i 0.0535106 0.935320i
\(521\) −12.9140 22.3677i −0.565773 0.979948i −0.996977 0.0776936i \(-0.975244\pi\)
0.431204 0.902254i \(-0.358089\pi\)
\(522\) −27.5499 + 15.9059i −1.20583 + 0.696184i
\(523\) 0.378202 0.655065i 0.0165376 0.0286440i −0.857638 0.514254i \(-0.828069\pi\)
0.874176 + 0.485610i \(0.161402\pi\)
\(524\) −43.1436 −1.88473
\(525\) 1.56458 3.72225i 0.0682839 0.162452i
\(526\) 15.2599i 0.665364i
\(527\) −7.07749 4.08619i −0.308300 0.177997i
\(528\) −0.0588698 + 0.0339885i −0.00256198 + 0.00147916i
\(529\) 10.8383 + 18.7724i 0.471229 + 0.816192i
\(530\) 18.0632 31.2863i 0.784614 1.35899i
\(531\) 56.2396i 2.44059i
\(532\) −1.90259 15.0575i −0.0824876 0.652827i
\(533\) −10.9123 21.6726i −0.472665 0.938744i
\(534\) 5.97145 10.3428i 0.258410 0.447579i
\(535\) −22.2420 + 12.8414i −0.961606 + 0.555183i
\(536\) −17.5873 30.4620i −0.759654 1.31576i
\(537\) −24.1032 + 41.7480i −1.04013 + 1.80156i
\(538\) 37.0717i 1.59827i
\(539\) 1.54266 1.51083i 0.0664469 0.0650760i
\(540\) 84.6231i 3.64160i
\(541\) −19.4099 11.2063i −0.834496 0.481797i 0.0208936 0.999782i \(-0.493349\pi\)
−0.855390 + 0.517985i \(0.826682\pi\)
\(542\) −21.4065 37.0772i −0.919488 1.59260i
\(543\) 9.21432 + 15.9597i 0.395424 + 0.684895i
\(544\) −8.81675 5.09035i −0.378015 0.218247i
\(545\) −2.89398 −0.123965
\(546\) −38.3249 56.9753i −1.64015 2.43832i
\(547\) −11.8059 −0.504784 −0.252392 0.967625i \(-0.581217\pi\)
−0.252392 + 0.967625i \(0.581217\pi\)
\(548\) 1.39737 + 0.806774i 0.0596929 + 0.0344637i
\(549\) 11.9138 + 20.6354i 0.508470 + 0.880697i
\(550\) −0.170704 0.295668i −0.00727884 0.0126073i
\(551\) 3.10154 + 1.79068i 0.132130 + 0.0762854i
\(552\) 10.1058i 0.430129i
\(553\) −8.12495 + 19.3298i −0.345508 + 0.821988i
\(554\) 68.6190i 2.91534i
\(555\) 18.5489 32.1276i 0.787355 1.36374i
\(556\) 2.28543 + 3.95848i 0.0969238 + 0.167877i
\(557\) 7.59273 4.38366i 0.321714 0.185742i −0.330442 0.943826i \(-0.607198\pi\)
0.652156 + 0.758084i \(0.273865\pi\)
\(558\) −36.4305 + 63.0995i −1.54223 + 2.67122i
\(559\) 4.91464 2.47456i 0.207867 0.104663i
\(560\) −0.313247 + 0.237780i −0.0132371 + 0.0100480i
\(561\) 1.72468i 0.0728161i
\(562\) 2.54831 4.41380i 0.107494 0.186185i
\(563\) 18.3879 + 31.8488i 0.774958 + 1.34227i 0.934818 + 0.355127i \(0.115562\pi\)
−0.159860 + 0.987140i \(0.551104\pi\)
\(564\) −83.6293 + 48.2834i −3.52143 + 2.03310i
\(565\) −17.3358 10.0088i −0.729321 0.421074i
\(566\) 31.4744i 1.32297i
\(567\) 29.0857 + 38.3171i 1.22149 + 1.60917i
\(568\) −3.76619 −0.158026
\(569\) −17.8918 + 30.9896i −0.750065 + 1.29915i 0.197726 + 0.980257i \(0.436644\pi\)
−0.947791 + 0.318893i \(0.896689\pi\)
\(570\) 23.5964 13.6234i 0.988344 0.570621i
\(571\) 7.46920 + 12.9370i 0.312576 + 0.541398i 0.978919 0.204248i \(-0.0654747\pi\)
−0.666343 + 0.745645i \(0.732141\pi\)
\(572\) −3.57581 0.204576i −0.149512 0.00855374i
\(573\) −84.4877 −3.52952
\(574\) 15.7641 37.5038i 0.657979 1.56538i
\(575\) −0.557280 −0.0232402
\(576\) −44.8987 + 77.7669i −1.87078 + 3.24029i
\(577\) −14.5892 + 8.42309i −0.607357 + 0.350658i −0.771930 0.635707i \(-0.780709\pi\)
0.164573 + 0.986365i \(0.447375\pi\)
\(578\) 27.4057 15.8227i 1.13993 0.658137i
\(579\) 0.583822 + 0.337070i 0.0242628 + 0.0140081i
\(580\) 13.7585i 0.571292i
\(581\) −3.72428 29.4748i −0.154509 1.22282i
\(582\) 55.1838 2.28744
\(583\) −1.98771 1.14761i −0.0823226 0.0475290i
\(584\) 16.5643 + 28.6901i 0.685434 + 1.18721i
\(585\) 29.1107 44.3601i 1.20358 1.83406i
\(586\) −1.15647 + 2.00307i −0.0477735 + 0.0827461i
\(587\) 36.8833i 1.52234i 0.648555 + 0.761168i \(0.275374\pi\)
−0.648555 + 0.761168i \(0.724626\pi\)
\(588\) 19.0950 68.4035i 0.787463 2.82091i
\(589\) 8.20264 0.337984
\(590\) −34.1469 19.7147i −1.40580 0.811642i
\(591\) −30.6367 + 17.6881i −1.26022 + 0.727590i
\(592\) 0.335690 0.193811i 0.0137968 0.00796558i
\(593\) 13.9894 + 8.07676i 0.574474 + 0.331673i 0.758934 0.651167i \(-0.225720\pi\)
−0.184460 + 0.982840i \(0.559054\pi\)
\(594\) 8.71531 0.357593
\(595\) 1.25081 + 9.89920i 0.0512781 + 0.405828i
\(596\) 67.9204i 2.78213i
\(597\) 32.1660 55.7131i 1.31646 2.28018i
\(598\) −5.19965 + 7.92343i −0.212629 + 0.324013i
\(599\) 1.24238 + 2.15186i 0.0507622 + 0.0879227i 0.890290 0.455394i \(-0.150502\pi\)
−0.839528 + 0.543317i \(0.817168\pi\)
\(600\) −3.68518 2.12764i −0.150447 0.0868605i
\(601\) 9.55999 0.389960 0.194980 0.980807i \(-0.437536\pi\)
0.194980 + 0.980807i \(0.437536\pi\)
\(602\) 8.50464 + 3.57478i 0.346623 + 0.145697i
\(603\) 87.3605i 3.55759i
\(604\) −48.8179 28.1850i −1.98637 1.14683i
\(605\) −20.0682 + 11.5864i −0.815886 + 0.471052i
\(606\) 56.8349 32.8136i 2.30876 1.33296i
\(607\) 9.74294 16.8753i 0.395454 0.684946i −0.597705 0.801716i \(-0.703921\pi\)
0.993159 + 0.116770i \(0.0372540\pi\)
\(608\) 10.2184 0.414411
\(609\) 10.1323 + 13.3481i 0.410582 + 0.540894i
\(610\) 16.7055 0.676387
\(611\) 34.2622 + 1.96017i 1.38610 + 0.0793002i
\(612\) 19.7897 + 34.2768i 0.799951 + 1.38556i
\(613\) −12.7896 + 7.38409i −0.516568 + 0.298241i −0.735529 0.677493i \(-0.763066\pi\)
0.218962 + 0.975733i \(0.429733\pi\)
\(614\) 27.4779 47.5931i 1.10892 1.92070i
\(615\) 45.0537 1.81674
\(616\) −1.37588 1.81256i −0.0554357 0.0730301i
\(617\) 30.9478i 1.24591i 0.782257 + 0.622955i \(0.214068\pi\)
−0.782257 + 0.622955i \(0.785932\pi\)
\(618\) −37.6625 21.7444i −1.51501 0.874689i
\(619\) −11.3297 + 6.54123i −0.455380 + 0.262914i −0.710100 0.704101i \(-0.751350\pi\)
0.254719 + 0.967015i \(0.418017\pi\)
\(620\) 15.7561 + 27.2903i 0.632780 + 1.09601i
\(621\) 7.11300 12.3201i 0.285435 0.494388i
\(622\) 20.5426i 0.823685i
\(623\) −4.04678 1.70099i −0.162131 0.0681489i
\(624\) 0.709679 0.357329i 0.0284099 0.0143046i
\(625\) 11.1716 19.3498i 0.446865 0.773994i
\(626\) 30.1478 17.4059i 1.20495 0.695678i
\(627\) −0.865532 1.49915i −0.0345660 0.0598701i
\(628\) 0.121696 0.210784i 0.00485620 0.00841119i
\(629\) 9.83456i 0.392130i
\(630\) 88.2566 11.1516i 3.51623 0.444291i
\(631\) 35.3591i 1.40762i −0.710387 0.703812i \(-0.751480\pi\)
0.710387 0.703812i \(-0.248520\pi\)
\(632\) 19.1373 + 11.0489i 0.761242 + 0.439503i
\(633\) −13.2591 22.9655i −0.527004 0.912797i
\(634\) −7.80892 13.5254i −0.310132 0.537164i
\(635\) 24.6596 + 14.2372i 0.978585 + 0.564986i
\(636\) −75.4903 −2.99338
\(637\) −19.0108 + 16.6008i −0.753237 + 0.657749i
\(638\) 1.41699 0.0560990
\(639\) −8.10065 4.67691i −0.320457 0.185016i
\(640\) 19.2884 + 33.4086i 0.762443 + 1.32059i
\(641\) −10.6188 18.3923i −0.419417 0.726452i 0.576464 0.817123i \(-0.304432\pi\)
−0.995881 + 0.0906706i \(0.971099\pi\)
\(642\) 75.3418 + 43.4986i 2.97351 + 1.71675i
\(643\) 25.4808i 1.00486i −0.864617 0.502432i \(-0.832439\pi\)
0.864617 0.502432i \(-0.167561\pi\)
\(644\) −9.72462 + 1.22875i −0.383204 + 0.0484195i
\(645\) 10.2167i 0.402283i
\(646\) 3.61154 6.25537i 0.142094 0.246114i
\(647\) 11.3928 + 19.7329i 0.447897 + 0.775781i 0.998249 0.0591522i \(-0.0188397\pi\)
−0.550352 + 0.834933i \(0.685506\pi\)
\(648\) 43.9059 25.3491i 1.72479 0.995806i
\(649\) −1.25253 + 2.16945i −0.0491662 + 0.0851583i
\(650\) 1.79465 + 3.56429i 0.0703919 + 0.139803i
\(651\) 35.3837 + 14.8729i 1.38680 + 0.582916i
\(652\) 32.4669i 1.27150i
\(653\) −8.13928 + 14.0976i −0.318515 + 0.551684i −0.980178 0.198117i \(-0.936517\pi\)
0.661664 + 0.749801i \(0.269851\pi\)
\(654\) 4.90150 + 8.48964i 0.191664 + 0.331971i
\(655\) −24.6546 + 14.2343i −0.963334 + 0.556181i
\(656\) 0.407683 + 0.235376i 0.0159173 + 0.00918988i
\(657\) 82.2790i 3.21001i
\(658\) 34.7884 + 45.8297i 1.35619 + 1.78663i
\(659\) 20.5596 0.800888 0.400444 0.916321i \(-0.368856\pi\)
0.400444 + 0.916321i \(0.368856\pi\)
\(660\) 3.32513 5.75929i 0.129430 0.224180i
\(661\) −24.0518 + 13.8863i −0.935507 + 0.540115i −0.888549 0.458782i \(-0.848286\pi\)
−0.0469576 + 0.998897i \(0.514953\pi\)
\(662\) −15.7818 27.3349i −0.613378 1.06240i
\(663\) 1.15145 20.1263i 0.0447185 0.781642i
\(664\) −31.3101 −1.21507
\(665\) −6.05517 7.97698i −0.234809 0.309334i
\(666\) −87.6802 −3.39754
\(667\) 1.15647 2.00307i 0.0447789 0.0775593i
\(668\) 16.3149 9.41941i 0.631242 0.364448i
\(669\) −37.1303 + 21.4372i −1.43554 + 0.828810i
\(670\) −53.0425 30.6241i −2.04921 1.18311i
\(671\) 1.06135i 0.0409730i
\(672\) 44.0791 + 18.5279i 1.70039 + 0.714729i
\(673\) 5.20337 0.200575 0.100288 0.994958i \(-0.468024\pi\)
0.100288 + 0.994958i \(0.468024\pi\)
\(674\) −53.5105 30.8943i −2.06115 1.19000i
\(675\) −2.99511 5.18768i −0.115282 0.199674i
\(676\) 41.5917 + 4.77463i 1.59968 + 0.183640i
\(677\) −22.4239 + 38.8394i −0.861821 + 1.49272i 0.00834820 + 0.999965i \(0.497343\pi\)
−0.870169 + 0.492753i \(0.835991\pi\)
\(678\) 67.8070i 2.60411i
\(679\) −2.54268 20.1234i −0.0975792 0.772266i
\(680\) 10.5156 0.403254
\(681\) −9.82957 5.67510i −0.376670 0.217470i
\(682\) 2.81062 1.62271i 0.107624 0.0621370i
\(683\) 16.4318 9.48691i 0.628745 0.363006i −0.151521 0.988454i \(-0.548417\pi\)
0.780266 + 0.625448i \(0.215084\pi\)
\(684\) −34.4037 19.8630i −1.31546 0.759479i
\(685\) 1.06471 0.0406807
\(686\) −41.8618 6.17846i −1.59829 0.235895i
\(687\) 57.9179i 2.20970i
\(688\) −0.0533755 + 0.0924491i −0.00203492 + 0.00352459i
\(689\) 22.4296 + 14.7191i 0.854500 + 0.560755i
\(690\) −8.79840 15.2393i −0.334949 0.580149i
\(691\) 32.4085 + 18.7111i 1.23288 + 0.711803i 0.967629 0.252376i \(-0.0812121\pi\)
0.265250 + 0.964180i \(0.414545\pi\)
\(692\) 54.7148 2.07994
\(693\) −0.708493 5.60719i −0.0269134 0.213000i
\(694\) 44.1229i 1.67488i
\(695\) 2.61204 + 1.50806i 0.0990802 + 0.0572040i
\(696\) 15.2951 8.83060i 0.579757 0.334723i
\(697\) 10.3435 5.97184i 0.391789 0.226200i
\(698\) −16.1734 + 28.0131i −0.612171 + 1.06031i
\(699\) −63.8580 −2.41533
\(700\) −1.59932 + 3.80489i −0.0604486 + 0.143811i
\(701\) 42.5513 1.60714 0.803570 0.595210i \(-0.202931\pi\)
0.803570 + 0.595210i \(0.202931\pi\)
\(702\) −101.704 5.81860i −3.83857 0.219609i
\(703\) 4.93548 + 8.54851i 0.186145 + 0.322413i
\(704\) 3.46395 1.99991i 0.130552 0.0753745i
\(705\) −31.8602 + 55.1835i −1.19993 + 2.07833i
\(706\) −38.7612 −1.45880
\(707\) −14.5846 19.2136i −0.548512 0.722600i
\(708\) 82.3924i 3.09650i
\(709\) 43.5889 + 25.1661i 1.63702 + 0.945131i 0.981853 + 0.189644i \(0.0607333\pi\)
0.655163 + 0.755488i \(0.272600\pi\)
\(710\) −5.67934 + 3.27897i −0.213142 + 0.123057i
\(711\) 27.4415 + 47.5300i 1.02914 + 1.78252i
\(712\) −2.31315 + 4.00648i −0.0866888 + 0.150149i
\(713\) 5.29752i 0.198394i
\(714\) 26.9213 20.4354i 1.00750 0.764776i
\(715\) −2.11091 + 1.06286i −0.0789435 + 0.0397487i
\(716\) 24.6384 42.6749i 0.920780 1.59484i
\(717\) 56.7760 32.7796i 2.12034 1.22418i
\(718\) 26.0049 + 45.0418i 0.970495 + 1.68095i
\(719\) 14.4616 25.0482i 0.539326 0.934141i −0.459614 0.888119i \(-0.652012\pi\)
0.998940 0.0460219i \(-0.0146544\pi\)
\(720\) 1.02938i 0.0383625i
\(721\) −6.19400 + 14.7360i −0.230677 + 0.548796i
\(722\) 36.1616i 1.34580i
\(723\) −34.6902 20.0284i −1.29014 0.744863i
\(724\) −9.41891 16.3140i −0.350051 0.606306i
\(725\) −0.486962 0.843444i −0.0180853 0.0313247i
\(726\) 67.9782 + 39.2472i 2.52291 + 1.45660i
\(727\) 19.8593 0.736539 0.368269 0.929719i \(-0.379950\pi\)
0.368269 + 0.929719i \(0.379950\pi\)
\(728\) 14.8458 + 22.0704i 0.550222 + 0.817984i
\(729\) 9.04209 0.334892
\(730\) 49.9572 + 28.8428i 1.84900 + 1.06752i
\(731\) 1.35422 + 2.34558i 0.0500876 + 0.0867543i
\(732\) −17.4541 30.2314i −0.645121 1.11738i
\(733\) 17.6237 + 10.1751i 0.650947 + 0.375824i 0.788819 0.614626i \(-0.210693\pi\)
−0.137872 + 0.990450i \(0.544026\pi\)
\(734\) 37.8899i 1.39854i
\(735\) −11.6564 45.3895i −0.429954 1.67422i
\(736\) 6.59935i 0.243255i
\(737\) −1.94564 + 3.36994i −0.0716684 + 0.124133i
\(738\) −53.2421 92.2180i −1.95987 3.39459i
\(739\) 16.4554 9.50055i 0.605323 0.349483i −0.165810 0.986158i \(-0.553024\pi\)
0.771133 + 0.636674i \(0.219690\pi\)
\(740\) −18.9607 + 32.8409i −0.697009 + 1.20726i
\(741\) 9.09954 + 18.0723i 0.334280 + 0.663902i
\(742\) 5.63854 + 44.6248i 0.206997 + 1.63823i
\(743\) 8.15098i 0.299030i −0.988759 0.149515i \(-0.952229\pi\)
0.988759 0.149515i \(-0.0477713\pi\)
\(744\) 20.2254 35.0314i 0.741498 1.28431i
\(745\) −22.4090 38.8134i −0.821000 1.42201i
\(746\) −54.7035 + 31.5831i −2.00284 + 1.15634i
\(747\) −67.3445 38.8814i −2.46401 1.42260i
\(748\) 1.76297i 0.0644607i
\(749\) 12.3908 29.4786i 0.452750 1.07712i
\(750\) −83.8893 −3.06320
\(751\) 18.3713 31.8201i 0.670379 1.16113i −0.307417 0.951575i \(-0.599465\pi\)
0.977797 0.209556i \(-0.0672020\pi\)
\(752\) −0.576595 + 0.332897i −0.0210262 + 0.0121395i
\(753\) 21.6490 + 37.4972i 0.788934 + 1.36647i
\(754\) −16.5357 0.946022i −0.602193 0.0344521i
\(755\) −37.1963 −1.35371
\(756\) −63.7034 83.9218i −2.31687 3.05221i
\(757\) 38.3971 1.39557 0.697783 0.716310i \(-0.254170\pi\)
0.697783 + 0.716310i \(0.254170\pi\)
\(758\) −10.5584 + 18.2878i −0.383500 + 0.664241i
\(759\) −0.968195 + 0.558987i −0.0351432 + 0.0202900i
\(760\) −9.14048 + 5.27726i −0.331560 + 0.191426i
\(761\) −10.7922 6.23089i −0.391218 0.225870i 0.291470 0.956580i \(-0.405856\pi\)
−0.682688 + 0.730710i \(0.739189\pi\)
\(762\) 96.4533i 3.49414i
\(763\) 2.87000 2.17856i 0.103901 0.0788692i
\(764\) 86.3636 3.12453
\(765\) 22.6178 + 13.0584i 0.817749 + 0.472128i
\(766\) 8.73742 + 15.1336i 0.315696 + 0.546801i
\(767\) 16.0649 24.4804i 0.580071 0.883935i
\(768\) 24.4860 42.4110i 0.883562 1.53037i
\(769\) 4.81390i 0.173594i −0.996226 0.0867969i \(-0.972337\pi\)
0.996226 0.0867969i \(-0.0276631\pi\)
\(770\) −3.65287 1.53542i −0.131640 0.0553326i
\(771\) 23.1075 0.832196
\(772\) −0.596785 0.344554i −0.0214787 0.0124008i
\(773\) −24.4863 + 14.1372i −0.880713 + 0.508480i −0.870893 0.491472i \(-0.836459\pi\)
−0.00981931 + 0.999952i \(0.503126\pi\)
\(774\) 20.9120 12.0736i 0.751668 0.433975i
\(775\) −1.93180 1.11533i −0.0693923