Properties

Label 91.2.r.a.51.4
Level $91$
Weight $2$
Character 91.51
Analytic conductor $0.727$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 11 x^{14} + 85 x^{12} - 334 x^{10} + 952 x^{8} - 1050 x^{6} + 853 x^{4} - 93 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 51.4
Root \(0.287846 - 0.166188i\) of defining polynomial
Character \(\chi\) \(=\) 91.51
Dual form 91.2.r.a.25.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.287846 - 0.166188i) q^{2} +(-0.729919 - 1.26426i) q^{3} +(-0.944763 - 1.63638i) q^{4} +(-1.25195 - 0.722811i) q^{5} +0.485214i q^{6} +(-2.26391 + 1.36920i) q^{7} +1.29278i q^{8} +(0.434437 - 0.752468i) q^{9} +O(q^{10})\) \(q+(-0.287846 - 0.166188i) q^{2} +(-0.729919 - 1.26426i) q^{3} +(-0.944763 - 1.63638i) q^{4} +(-1.25195 - 0.722811i) q^{5} +0.485214i q^{6} +(-2.26391 + 1.36920i) q^{7} +1.29278i q^{8} +(0.434437 - 0.752468i) q^{9} +(0.240245 + 0.416116i) q^{10} +(5.15732 - 2.97758i) q^{11} +(-1.37920 + 2.38885i) q^{12} +(1.88953 - 3.07078i) q^{13} +(0.879201 - 0.0178849i) q^{14} +2.11037i q^{15} +(-1.67468 + 2.90063i) q^{16} +(2.16436 + 3.74877i) q^{17} +(-0.250102 + 0.144396i) q^{18} +(-1.69527 - 0.978767i) q^{19} +2.73154i q^{20} +(3.38349 + 1.86276i) q^{21} -1.97935 q^{22} +(-0.270081 + 0.467795i) q^{23} +(1.63441 - 0.943626i) q^{24} +(-1.45509 - 2.52029i) q^{25} +(-1.05422 + 0.569894i) q^{26} -5.64793 q^{27} +(4.37939 + 2.41104i) q^{28} +7.15857 q^{29} +(0.350718 - 0.607461i) q^{30} +(-5.28968 + 3.05400i) q^{31} +(3.20327 - 1.84941i) q^{32} +(-7.52885 - 4.34678i) q^{33} -1.43876i q^{34} +(3.82396 - 0.0777879i) q^{35} -1.64176 q^{36} +(6.95316 + 4.01441i) q^{37} +(0.325318 + 0.563467i) q^{38} +(-5.26145 - 0.147426i) q^{39} +(0.934437 - 1.61849i) q^{40} -7.55362i q^{41} +(-0.664356 - 1.09848i) q^{42} -4.24839 q^{43} +(-9.74489 - 5.62622i) q^{44} +(-1.08778 + 0.628032i) q^{45} +(0.155483 - 0.0897684i) q^{46} +(5.42204 + 3.13042i) q^{47} +4.88953 q^{48} +(3.25057 - 6.19950i) q^{49} +0.967272i q^{50} +(3.15961 - 5.47260i) q^{51} +(-6.81011 - 0.190820i) q^{52} +(1.38953 + 2.40673i) q^{53} +(1.62573 + 0.938616i) q^{54} -8.60891 q^{55} +(-1.77008 - 2.92674i) q^{56} +2.85768i q^{57} +(-2.06056 - 1.18967i) q^{58} +(0.737119 - 0.425576i) q^{59} +(3.45337 - 1.99380i) q^{60} +(-3.38953 + 5.87083i) q^{61} +2.03015 q^{62} +(0.0467536 + 2.29835i) q^{63} +5.46933 q^{64} +(-4.58518 + 2.47868i) q^{65} +(1.44476 + 2.50240i) q^{66} +(-0.854859 + 0.493553i) q^{67} +(4.08961 - 7.08341i) q^{68} +0.788550 q^{69} +(-1.11364 - 0.613105i) q^{70} +3.76223i q^{71} +(0.972777 + 0.561633i) q^{72} +(7.91131 - 4.56760i) q^{73} +(-1.33429 - 2.31106i) q^{74} +(-2.12419 + 3.67921i) q^{75} +3.69881i q^{76} +(-7.59879 + 13.8024i) q^{77} +(1.48999 + 0.916825i) q^{78} +(0.0655625 - 0.113558i) q^{79} +(4.19322 - 2.42096i) q^{80} +(2.81922 + 4.88303i) q^{81} +(-1.25532 + 2.17428i) q^{82} +2.66812i q^{83} +(-0.148428 - 7.29653i) q^{84} -6.25768i q^{85} +(1.22288 + 0.706030i) q^{86} +(-5.22517 - 9.05026i) q^{87} +(3.84936 + 6.66729i) q^{88} +(8.41550 + 4.85869i) q^{89} +0.417485 q^{90} +(-0.0731980 + 9.53911i) q^{91} +1.02065 q^{92} +(7.72207 + 4.45834i) q^{93} +(-1.04047 - 1.80215i) q^{94} +(1.41493 + 2.45072i) q^{95} +(-4.67625 - 2.69983i) q^{96} +6.58319i q^{97} +(-1.96594 + 1.24429i) q^{98} -5.17429i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} + O(q^{10}) \) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} - 6q^{10} + 18q^{12} - 12q^{13} - 26q^{14} + 2q^{16} + 8q^{17} - 36q^{22} - 12q^{23} - 6q^{26} + 32q^{27} - 16q^{29} + 38q^{30} - 56q^{36} + 34q^{38} + 18q^{39} - 4q^{40} + 16q^{42} + 16q^{43} + 36q^{48} + 40q^{49} + 16q^{51} - 42q^{52} - 20q^{53} + 24q^{55} - 36q^{56} - 12q^{61} + 44q^{62} + 88q^{64} - 30q^{65} + 2q^{66} - 2q^{68} - 56q^{69} + 42q^{74} + 8q^{75} - 76q^{77} + 20q^{78} + 20q^{79} - 24q^{81} - 16q^{82} - 68q^{87} + 4q^{88} - 216q^{90} + 56q^{91} + 12q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.287846 0.166188i −0.203538 0.117512i 0.394767 0.918781i \(-0.370825\pi\)
−0.598304 + 0.801269i \(0.704159\pi\)
\(3\) −0.729919 1.26426i −0.421419 0.729919i 0.574660 0.818392i \(-0.305134\pi\)
−0.996079 + 0.0884737i \(0.971801\pi\)
\(4\) −0.944763 1.63638i −0.472382 0.818189i
\(5\) −1.25195 0.722811i −0.559887 0.323251i 0.193213 0.981157i \(-0.438109\pi\)
−0.753100 + 0.657906i \(0.771442\pi\)
\(6\) 0.485214i 0.198088i
\(7\) −2.26391 + 1.36920i −0.855677 + 0.517510i
\(8\) 1.29278i 0.457068i
\(9\) 0.434437 0.752468i 0.144812 0.250823i
\(10\) 0.240245 + 0.416116i 0.0759720 + 0.131587i
\(11\) 5.15732 2.97758i 1.55499 0.897774i 0.557267 0.830333i \(-0.311850\pi\)
0.997723 0.0674405i \(-0.0214833\pi\)
\(12\) −1.37920 + 2.38885i −0.398141 + 0.689600i
\(13\) 1.88953 3.07078i 0.524060 0.851681i
\(14\) 0.879201 0.0178849i 0.234976 0.00477994i
\(15\) 2.11037i 0.544896i
\(16\) −1.67468 + 2.90063i −0.418670 + 0.725159i
\(17\) 2.16436 + 3.74877i 0.524933 + 0.909211i 0.999578 + 0.0290341i \(0.00924314\pi\)
−0.474645 + 0.880177i \(0.657424\pi\)
\(18\) −0.250102 + 0.144396i −0.0589496 + 0.0340345i
\(19\) −1.69527 0.978767i −0.388923 0.224545i 0.292771 0.956183i \(-0.405423\pi\)
−0.681693 + 0.731638i \(0.738756\pi\)
\(20\) 2.73154i 0.610791i
\(21\) 3.38349 + 1.86276i 0.738339 + 0.406486i
\(22\) −1.97935 −0.421998
\(23\) −0.270081 + 0.467795i −0.0563158 + 0.0975419i −0.892809 0.450436i \(-0.851269\pi\)
0.836493 + 0.547977i \(0.184602\pi\)
\(24\) 1.63441 0.943626i 0.333622 0.192617i
\(25\) −1.45509 2.52029i −0.291018 0.504058i
\(26\) −1.05422 + 0.569894i −0.206749 + 0.111765i
\(27\) −5.64793 −1.08694
\(28\) 4.37939 + 2.41104i 0.827627 + 0.455644i
\(29\) 7.15857 1.32931 0.664656 0.747149i \(-0.268578\pi\)
0.664656 + 0.747149i \(0.268578\pi\)
\(30\) 0.350718 0.607461i 0.0640320 0.110907i
\(31\) −5.28968 + 3.05400i −0.950055 + 0.548514i −0.893098 0.449862i \(-0.851473\pi\)
−0.0569568 + 0.998377i \(0.518140\pi\)
\(32\) 3.20327 1.84941i 0.566263 0.326932i
\(33\) −7.52885 4.34678i −1.31060 0.756678i
\(34\) 1.43876i 0.246745i
\(35\) 3.82396 0.0777879i 0.646368 0.0131486i
\(36\) −1.64176 −0.273627
\(37\) 6.95316 + 4.01441i 1.14309 + 0.659964i 0.947194 0.320660i \(-0.103905\pi\)
0.195897 + 0.980624i \(0.437238\pi\)
\(38\) 0.325318 + 0.563467i 0.0527736 + 0.0914065i
\(39\) −5.26145 0.147426i −0.842507 0.0236071i
\(40\) 0.934437 1.61849i 0.147748 0.255906i
\(41\) 7.55362i 1.17968i −0.807521 0.589839i \(-0.799191\pi\)
0.807521 0.589839i \(-0.200809\pi\)
\(42\) −0.664356 1.09848i −0.102512 0.169499i
\(43\) −4.24839 −0.647873 −0.323936 0.946079i \(-0.605006\pi\)
−0.323936 + 0.946079i \(0.605006\pi\)
\(44\) −9.74489 5.62622i −1.46910 0.848184i
\(45\) −1.08778 + 0.628032i −0.162157 + 0.0936215i
\(46\) 0.155483 0.0897684i 0.0229248 0.0132356i
\(47\) 5.42204 + 3.13042i 0.790886 + 0.456618i 0.840274 0.542161i \(-0.182394\pi\)
−0.0493882 + 0.998780i \(0.515727\pi\)
\(48\) 4.88953 0.705742
\(49\) 3.25057 6.19950i 0.464367 0.885643i
\(50\) 0.967272i 0.136793i
\(51\) 3.15961 5.47260i 0.442434 0.766317i
\(52\) −6.81011 0.190820i −0.944393 0.0264619i
\(53\) 1.38953 + 2.40673i 0.190866 + 0.330590i 0.945538 0.325513i \(-0.105537\pi\)
−0.754671 + 0.656103i \(0.772204\pi\)
\(54\) 1.62573 + 0.938616i 0.221234 + 0.127729i
\(55\) −8.60891 −1.16082
\(56\) −1.77008 2.92674i −0.236537 0.391103i
\(57\) 2.85768i 0.378509i
\(58\) −2.06056 1.18967i −0.270565 0.156211i
\(59\) 0.737119 0.425576i 0.0959647 0.0554053i −0.451250 0.892398i \(-0.649022\pi\)
0.547214 + 0.836993i \(0.315688\pi\)
\(60\) 3.45337 1.99380i 0.445828 0.257399i
\(61\) −3.38953 + 5.87083i −0.433984 + 0.751683i −0.997212 0.0746187i \(-0.976226\pi\)
0.563228 + 0.826302i \(0.309559\pi\)
\(62\) 2.03015 0.257829
\(63\) 0.0467536 + 2.29835i 0.00589039 + 0.289565i
\(64\) 5.46933 0.683667
\(65\) −4.58518 + 2.47868i −0.568721 + 0.307442i
\(66\) 1.44476 + 2.50240i 0.177838 + 0.308025i
\(67\) −0.854859 + 0.493553i −0.104438 + 0.0602971i −0.551309 0.834301i \(-0.685871\pi\)
0.446871 + 0.894598i \(0.352538\pi\)
\(68\) 4.08961 7.08341i 0.495938 0.858990i
\(69\) 0.788550 0.0949302
\(70\) −1.11364 0.613105i −0.133105 0.0732801i
\(71\) 3.76223i 0.446494i 0.974762 + 0.223247i \(0.0716657\pi\)
−0.974762 + 0.223247i \(0.928334\pi\)
\(72\) 0.972777 + 0.561633i 0.114643 + 0.0661891i
\(73\) 7.91131 4.56760i 0.925949 0.534597i 0.0404208 0.999183i \(-0.487130\pi\)
0.885528 + 0.464586i \(0.153797\pi\)
\(74\) −1.33429 2.31106i −0.155108 0.268655i
\(75\) −2.12419 + 3.67921i −0.245281 + 0.424839i
\(76\) 3.69881i 0.424283i
\(77\) −7.59879 + 13.8024i −0.865963 + 1.57293i
\(78\) 1.48999 + 0.916825i 0.168708 + 0.103810i
\(79\) 0.0655625 0.113558i 0.00737636 0.0127762i −0.862314 0.506375i \(-0.830985\pi\)
0.869690 + 0.493598i \(0.164319\pi\)
\(80\) 4.19322 2.42096i 0.468816 0.270671i
\(81\) 2.81922 + 4.88303i 0.313246 + 0.542558i
\(82\) −1.25532 + 2.17428i −0.138627 + 0.240109i
\(83\) 2.66812i 0.292865i 0.989221 + 0.146432i \(0.0467791\pi\)
−0.989221 + 0.146432i \(0.953221\pi\)
\(84\) −0.148428 7.29653i −0.0161948 0.796117i
\(85\) 6.25768i 0.678741i
\(86\) 1.22288 + 0.706030i 0.131866 + 0.0761331i
\(87\) −5.22517 9.05026i −0.560197 0.970290i
\(88\) 3.84936 + 6.66729i 0.410344 + 0.710736i
\(89\) 8.41550 + 4.85869i 0.892042 + 0.515021i 0.874610 0.484828i \(-0.161118\pi\)
0.0174319 + 0.999848i \(0.494451\pi\)
\(90\) 0.417485 0.0440068
\(91\) −0.0731980 + 9.53911i −0.00767324 + 0.999971i
\(92\) 1.02065 0.106410
\(93\) 7.72207 + 4.45834i 0.800742 + 0.462308i
\(94\) −1.04047 1.80215i −0.107317 0.185878i
\(95\) 1.41493 + 2.45072i 0.145168 + 0.251439i
\(96\) −4.67625 2.69983i −0.477267 0.275550i
\(97\) 6.58319i 0.668422i 0.942498 + 0.334211i \(0.108470\pi\)
−0.942498 + 0.334211i \(0.891530\pi\)
\(98\) −1.96594 + 1.24429i −0.198590 + 0.125693i
\(99\) 5.17429i 0.520036i
\(100\) −2.74943 + 4.76215i −0.274943 + 0.476215i
\(101\) −0.0354144 0.0613396i −0.00352387 0.00610352i 0.864258 0.503049i \(-0.167788\pi\)
−0.867782 + 0.496945i \(0.834455\pi\)
\(102\) −1.81896 + 1.05018i −0.180104 + 0.103983i
\(103\) 3.16910 5.48905i 0.312261 0.540852i −0.666590 0.745424i \(-0.732247\pi\)
0.978852 + 0.204572i \(0.0655803\pi\)
\(104\) 3.96985 + 2.44275i 0.389276 + 0.239531i
\(105\) −2.88953 4.77769i −0.281989 0.466255i
\(106\) 0.923689i 0.0897166i
\(107\) −3.87476 + 6.71129i −0.374588 + 0.648805i −0.990265 0.139193i \(-0.955549\pi\)
0.615678 + 0.787998i \(0.288882\pi\)
\(108\) 5.33596 + 9.24215i 0.513453 + 0.889326i
\(109\) −0.0290658 + 0.0167811i −0.00278400 + 0.00160734i −0.501391 0.865221i \(-0.667178\pi\)
0.498607 + 0.866828i \(0.333845\pi\)
\(110\) 2.47804 + 1.43069i 0.236271 + 0.136411i
\(111\) 11.7208i 1.11249i
\(112\) −0.180227 8.85975i −0.0170298 0.837168i
\(113\) −9.19987 −0.865451 −0.432725 0.901526i \(-0.642448\pi\)
−0.432725 + 0.901526i \(0.642448\pi\)
\(114\) 0.474911 0.822571i 0.0444795 0.0770408i
\(115\) 0.676254 0.390435i 0.0630610 0.0364083i
\(116\) −6.76315 11.7141i −0.627943 1.08763i
\(117\) −1.48978 2.75587i −0.137730 0.254780i
\(118\) −0.282902 −0.0260432
\(119\) −10.0327 5.52344i −0.919699 0.506333i
\(120\) −2.72825 −0.249054
\(121\) 12.2320 21.1864i 1.11200 1.92603i
\(122\) 1.95132 1.12660i 0.176664 0.101997i
\(123\) −9.54971 + 5.51353i −0.861068 + 0.497138i
\(124\) 9.99499 + 5.77061i 0.897577 + 0.518216i
\(125\) 11.4351i 1.02279i
\(126\) 0.368500 0.669340i 0.0328286 0.0596296i
\(127\) −14.3952 −1.27737 −0.638683 0.769470i \(-0.720520\pi\)
−0.638683 + 0.769470i \(0.720520\pi\)
\(128\) −7.98085 4.60775i −0.705414 0.407271i
\(129\) 3.10098 + 5.37105i 0.273026 + 0.472895i
\(130\) 1.73175 + 0.0485237i 0.151884 + 0.00425581i
\(131\) 4.73414 8.19978i 0.413624 0.716418i −0.581659 0.813433i \(-0.697596\pi\)
0.995283 + 0.0970151i \(0.0309295\pi\)
\(132\) 16.4267i 1.42976i
\(133\) 5.17808 0.105334i 0.448996 0.00913357i
\(134\) 0.328090 0.0283426
\(135\) 7.07090 + 4.08238i 0.608566 + 0.351356i
\(136\) −4.84635 + 2.79804i −0.415571 + 0.239930i
\(137\) −14.3814 + 8.30313i −1.22869 + 0.709384i −0.966756 0.255702i \(-0.917693\pi\)
−0.261934 + 0.965086i \(0.584360\pi\)
\(138\) −0.226980 0.131047i −0.0193219 0.0111555i
\(139\) 18.4778 1.56726 0.783632 0.621225i \(-0.213365\pi\)
0.783632 + 0.621225i \(0.213365\pi\)
\(140\) −3.74003 6.18396i −0.316090 0.522640i
\(141\) 9.13980i 0.769710i
\(142\) 0.625236 1.08294i 0.0524687 0.0908784i
\(143\) 0.601400 21.4632i 0.0502916 1.79484i
\(144\) 1.45509 + 2.52029i 0.121257 + 0.210024i
\(145\) −8.96213 5.17429i −0.744264 0.429701i
\(146\) −3.03631 −0.251287
\(147\) −10.2104 + 0.415577i −0.842140 + 0.0342762i
\(148\) 15.1707i 1.24702i
\(149\) 2.66805 + 1.54040i 0.218575 + 0.126195i 0.605290 0.796005i \(-0.293057\pi\)
−0.386715 + 0.922199i \(0.626390\pi\)
\(150\) 1.22288 0.706030i 0.0998477 0.0576471i
\(151\) −2.20737 + 1.27442i −0.179633 + 0.103711i −0.587120 0.809500i \(-0.699738\pi\)
0.407487 + 0.913211i \(0.366405\pi\)
\(152\) 1.26533 2.19162i 0.102632 0.177764i
\(153\) 3.76111 0.304068
\(154\) 4.48106 2.71013i 0.361095 0.218388i
\(155\) 8.82985 0.709231
\(156\) 4.72958 + 8.74901i 0.378670 + 0.700481i
\(157\) 4.70452 + 8.14847i 0.375461 + 0.650318i 0.990396 0.138260i \(-0.0441509\pi\)
−0.614935 + 0.788578i \(0.710818\pi\)
\(158\) −0.0377438 + 0.0217914i −0.00300273 + 0.00173363i
\(159\) 2.02848 3.51344i 0.160869 0.278634i
\(160\) −5.34708 −0.422724
\(161\) −0.0290658 1.42884i −0.00229070 0.112608i
\(162\) 1.87408i 0.147241i
\(163\) 0.602023 + 0.347578i 0.0471541 + 0.0272244i 0.523392 0.852092i \(-0.324666\pi\)
−0.476238 + 0.879317i \(0.658000\pi\)
\(164\) −12.3606 + 7.13638i −0.965199 + 0.557258i
\(165\) 6.28380 + 10.8839i 0.489193 + 0.847308i
\(166\) 0.443409 0.768007i 0.0344152 0.0596089i
\(167\) 13.9840i 1.08211i −0.840986 0.541056i \(-0.818025\pi\)
0.840986 0.541056i \(-0.181975\pi\)
\(168\) −2.40814 + 4.37412i −0.185792 + 0.337471i
\(169\) −5.85938 11.6046i −0.450721 0.892665i
\(170\) −1.03995 + 1.80125i −0.0797605 + 0.138149i
\(171\) −1.47298 + 0.850426i −0.112642 + 0.0650337i
\(172\) 4.01372 + 6.95197i 0.306043 + 0.530083i
\(173\) −2.71824 + 4.70813i −0.206664 + 0.357952i −0.950662 0.310230i \(-0.899594\pi\)
0.743998 + 0.668182i \(0.232927\pi\)
\(174\) 3.47344i 0.263321i
\(175\) 6.74497 + 3.71339i 0.509872 + 0.280706i
\(176\) 19.9460i 1.50349i
\(177\) −1.07607 0.621272i −0.0808827 0.0466976i
\(178\) −1.61491 2.79711i −0.121043 0.209652i
\(179\) 2.67912 + 4.64037i 0.200247 + 0.346838i 0.948608 0.316454i \(-0.102492\pi\)
−0.748361 + 0.663292i \(0.769159\pi\)
\(180\) 2.05540 + 1.18668i 0.153200 + 0.0884502i
\(181\) −7.54016 −0.560456 −0.280228 0.959933i \(-0.590410\pi\)
−0.280228 + 0.959933i \(0.590410\pi\)
\(182\) 1.60635 2.73363i 0.119071 0.202630i
\(183\) 9.89632 0.731557
\(184\) −0.604757 0.349157i −0.0445833 0.0257402i
\(185\) −5.80331 10.0516i −0.426668 0.739011i
\(186\) −1.48184 2.56663i −0.108654 0.188194i
\(187\) 22.3245 + 12.8891i 1.63253 + 0.942543i
\(188\) 11.8300i 0.862793i
\(189\) 12.7864 7.73316i 0.930074 0.562504i
\(190\) 0.940574i 0.0682364i
\(191\) −6.77316 + 11.7315i −0.490089 + 0.848859i −0.999935 0.0114067i \(-0.996369\pi\)
0.509846 + 0.860266i \(0.329702\pi\)
\(192\) −3.99217 6.91464i −0.288110 0.499021i
\(193\) −16.0702 + 9.27812i −1.15676 + 0.667853i −0.950524 0.310650i \(-0.899453\pi\)
−0.206232 + 0.978503i \(0.566120\pi\)
\(194\) 1.09405 1.89494i 0.0785479 0.136049i
\(195\) 6.48049 + 3.98760i 0.464077 + 0.285558i
\(196\) −13.2157 + 0.537898i −0.943982 + 0.0384213i
\(197\) 2.66812i 0.190096i −0.995473 0.0950480i \(-0.969700\pi\)
0.995473 0.0950480i \(-0.0303004\pi\)
\(198\) −0.859903 + 1.48940i −0.0611106 + 0.105847i
\(199\) 10.0999 + 17.4936i 0.715965 + 1.24009i 0.962586 + 0.270976i \(0.0873465\pi\)
−0.246621 + 0.969112i \(0.579320\pi\)
\(200\) 3.25819 1.88111i 0.230389 0.133015i
\(201\) 1.24795 + 0.720507i 0.0880239 + 0.0508206i
\(202\) 0.0235418i 0.00165639i
\(203\) −16.2063 + 9.80152i −1.13746 + 0.687932i
\(204\) −11.9403 −0.835990
\(205\) −5.45984 + 9.45672i −0.381332 + 0.660486i
\(206\) −1.82443 + 1.05333i −0.127114 + 0.0733891i
\(207\) 0.234667 + 0.406455i 0.0163105 + 0.0282506i
\(208\) 5.74285 + 10.6234i 0.398195 + 0.736601i
\(209\) −11.6574 −0.806361
\(210\) 0.0377438 + 1.85544i 0.00260457 + 0.128038i
\(211\) 13.1268 0.903683 0.451842 0.892098i \(-0.350767\pi\)
0.451842 + 0.892098i \(0.350767\pi\)
\(212\) 2.62555 4.54758i 0.180323 0.312329i
\(213\) 4.75642 2.74612i 0.325905 0.188161i
\(214\) 2.23067 1.28788i 0.152485 0.0880374i
\(215\) 5.31875 + 3.07078i 0.362736 + 0.209425i
\(216\) 7.30155i 0.496807i
\(217\) 7.79382 14.1566i 0.529079 0.961014i
\(218\) 0.0111553 0.000755530
\(219\) −11.5492 6.66795i −0.780424 0.450578i
\(220\) 8.13338 + 14.0874i 0.548352 + 0.949774i
\(221\) 15.6013 + 0.437148i 1.04946 + 0.0294058i
\(222\) −1.94785 + 3.37377i −0.130731 + 0.226433i
\(223\) 2.22334i 0.148886i −0.997225 0.0744428i \(-0.976282\pi\)
0.997225 0.0744428i \(-0.0237178\pi\)
\(224\) −4.71969 + 8.57281i −0.315348 + 0.572795i
\(225\) −2.52858 −0.168572
\(226\) 2.64814 + 1.52890i 0.176152 + 0.101701i
\(227\) 23.4732 13.5523i 1.55797 0.899495i 0.560520 0.828141i \(-0.310601\pi\)
0.997451 0.0713539i \(-0.0227320\pi\)
\(228\) 4.67625 2.69983i 0.309692 0.178801i
\(229\) −16.4447 9.49437i −1.08670 0.627406i −0.154003 0.988070i \(-0.549217\pi\)
−0.932696 + 0.360665i \(0.882550\pi\)
\(230\) −0.259542 −0.0171137
\(231\) 22.9962 0.467795i 1.51304 0.0307786i
\(232\) 9.25447i 0.607586i
\(233\) 10.8700 18.8274i 0.712118 1.23343i −0.251942 0.967742i \(-0.581069\pi\)
0.964060 0.265683i \(-0.0855974\pi\)
\(234\) −0.0291646 + 1.04085i −0.00190655 + 0.0680424i
\(235\) −4.52540 7.83822i −0.295205 0.511309i
\(236\) −1.39281 0.804137i −0.0906639 0.0523449i
\(237\) −0.191421 −0.0124342
\(238\) 1.96995 + 3.25722i 0.127693 + 0.211134i
\(239\) 19.9695i 1.29172i 0.763455 + 0.645861i \(0.223501\pi\)
−0.763455 + 0.645861i \(0.776499\pi\)
\(240\) −6.12142 3.53420i −0.395136 0.228132i
\(241\) −2.79768 + 1.61524i −0.180214 + 0.104047i −0.587393 0.809302i \(-0.699846\pi\)
0.407179 + 0.913348i \(0.366513\pi\)
\(242\) −7.04183 + 4.06560i −0.452666 + 0.261347i
\(243\) −4.35630 + 7.54533i −0.279456 + 0.484033i
\(244\) 12.8092 0.820025
\(245\) −8.55060 + 5.41188i −0.546278 + 0.345753i
\(246\) 3.66512 0.233680
\(247\) −6.20884 + 3.35641i −0.395059 + 0.213563i
\(248\) −3.94816 6.83841i −0.250708 0.434239i
\(249\) 3.37319 1.94751i 0.213767 0.123419i
\(250\) 1.90038 3.29155i 0.120190 0.208176i
\(251\) −12.4916 −0.788466 −0.394233 0.919011i \(-0.628990\pi\)
−0.394233 + 0.919011i \(0.628990\pi\)
\(252\) 3.71680 2.24790i 0.234136 0.141605i
\(253\) 3.21675i 0.202236i
\(254\) 4.14359 + 2.39230i 0.259992 + 0.150106i
\(255\) −7.91131 + 4.56760i −0.495425 + 0.286034i
\(256\) −3.93783 6.82052i −0.246114 0.426283i
\(257\) 2.91379 5.04682i 0.181757 0.314812i −0.760722 0.649078i \(-0.775155\pi\)
0.942479 + 0.334266i \(0.108488\pi\)
\(258\) 2.06138i 0.128336i
\(259\) −21.2378 + 0.432025i −1.31966 + 0.0268447i
\(260\) 8.38796 + 5.16132i 0.520199 + 0.320091i
\(261\) 3.10995 5.38659i 0.192501 0.333422i
\(262\) −2.72540 + 1.57351i −0.168376 + 0.0972119i
\(263\) −8.75736 15.1682i −0.540002 0.935311i −0.998903 0.0468234i \(-0.985090\pi\)
0.458901 0.888487i \(-0.348243\pi\)
\(264\) 5.61945 9.73316i 0.345853 0.599035i
\(265\) 4.01746i 0.246791i
\(266\) −1.50799 0.830213i −0.0924609 0.0509036i
\(267\) 14.1858i 0.868157i
\(268\) 1.61528 + 0.932581i 0.0986688 + 0.0569665i
\(269\) −11.1644 19.3372i −0.680703 1.17901i −0.974767 0.223226i \(-0.928341\pi\)
0.294064 0.955786i \(-0.404992\pi\)
\(270\) −1.35688 2.35019i −0.0825773 0.143028i
\(271\) −22.8366 13.1847i −1.38723 0.800916i −0.394225 0.919014i \(-0.628987\pi\)
−0.993002 + 0.118098i \(0.962320\pi\)
\(272\) −14.4984 −0.879097
\(273\) 12.1133 6.87023i 0.733131 0.415805i
\(274\) 5.51951 0.333446
\(275\) −15.0087 8.66529i −0.905060 0.522536i
\(276\) −0.744993 1.29037i −0.0448433 0.0776709i
\(277\) −4.68809 8.12001i −0.281680 0.487884i 0.690119 0.723696i \(-0.257558\pi\)
−0.971799 + 0.235812i \(0.924225\pi\)
\(278\) −5.31875 3.07078i −0.318997 0.184173i
\(279\) 5.30709i 0.317727i
\(280\) 0.100563 + 4.94356i 0.00600978 + 0.295434i
\(281\) 17.7754i 1.06039i 0.847876 + 0.530195i \(0.177881\pi\)
−0.847876 + 0.530195i \(0.822119\pi\)
\(282\) −1.51892 + 2.63085i −0.0904505 + 0.156665i
\(283\) −4.80331 8.31958i −0.285527 0.494548i 0.687210 0.726459i \(-0.258835\pi\)
−0.972737 + 0.231911i \(0.925502\pi\)
\(284\) 6.15643 3.55442i 0.365317 0.210916i
\(285\) 2.06556 3.57766i 0.122353 0.211922i
\(286\) −3.74003 + 6.07814i −0.221153 + 0.359408i
\(287\) 10.3424 + 17.1007i 0.610494 + 1.00942i
\(288\) 3.21380i 0.189375i
\(289\) −0.868875 + 1.50494i −0.0511103 + 0.0885256i
\(290\) 1.71981 + 2.97879i 0.100990 + 0.174921i
\(291\) 8.32284 4.80519i 0.487894 0.281685i
\(292\) −14.9486 8.63060i −0.874803 0.505067i
\(293\) 11.6338i 0.679654i 0.940488 + 0.339827i \(0.110369\pi\)
−0.940488 + 0.339827i \(0.889631\pi\)
\(294\) 3.00808 + 1.57722i 0.175435 + 0.0919855i
\(295\) −1.23044 −0.0716392
\(296\) −5.18976 + 8.98892i −0.301648 + 0.522470i
\(297\) −29.1282 + 16.8172i −1.69019 + 0.975830i
\(298\) −0.511991 0.886795i −0.0296588 0.0513706i
\(299\) 0.926168 + 1.71327i 0.0535617 + 0.0990810i
\(300\) 8.02744 0.463464
\(301\) 9.61796 5.81690i 0.554370 0.335281i
\(302\) 0.847174 0.0487494
\(303\) −0.0516993 + 0.0895459i −0.00297005 + 0.00514427i
\(304\) 5.67809 3.27825i 0.325661 0.188020i
\(305\) 8.48700 4.89997i 0.485964 0.280572i
\(306\) −1.08262 0.625050i −0.0618892 0.0357317i
\(307\) 13.8280i 0.789204i −0.918852 0.394602i \(-0.870882\pi\)
0.918852 0.394602i \(-0.129118\pi\)
\(308\) 29.7650 0.605485i 1.69602 0.0345007i
\(309\) −9.25275 −0.526371
\(310\) −2.54163 1.46741i −0.144355 0.0833435i
\(311\) 15.3572 + 26.5994i 0.870827 + 1.50832i 0.861143 + 0.508363i \(0.169749\pi\)
0.00968369 + 0.999953i \(0.496918\pi\)
\(312\) 0.190590 6.80192i 0.0107900 0.385083i
\(313\) −5.54334 + 9.60135i −0.313328 + 0.542701i −0.979081 0.203472i \(-0.934777\pi\)
0.665752 + 0.746173i \(0.268111\pi\)
\(314\) 3.12733i 0.176486i
\(315\) 1.60274 2.91120i 0.0903042 0.164028i
\(316\) −0.247764 −0.0139378
\(317\) 20.6836 + 11.9417i 1.16171 + 0.670712i 0.951712 0.306991i \(-0.0993222\pi\)
0.209994 + 0.977703i \(0.432656\pi\)
\(318\) −1.16778 + 0.674218i −0.0654858 + 0.0378083i
\(319\) 36.9190 21.3152i 2.06707 1.19342i
\(320\) −6.84731 3.95329i −0.382776 0.220996i
\(321\) 11.3130 0.631433
\(322\) −0.229089 + 0.416116i −0.0127666 + 0.0231892i
\(323\) 8.47360i 0.471484i
\(324\) 5.32698 9.22661i 0.295944 0.512589i
\(325\) −10.4887 0.293893i −0.581807 0.0163023i
\(326\) −0.115526 0.200098i −0.00639842 0.0110824i
\(327\) 0.0424313 + 0.0244977i 0.00234646 + 0.00135473i
\(328\) 9.76519 0.539192
\(329\) −16.5612 + 0.336891i −0.913048 + 0.0185734i
\(330\) 4.17716i 0.229945i
\(331\) 15.8690 + 9.16200i 0.872241 + 0.503589i 0.868092 0.496403i \(-0.165346\pi\)
0.00414903 + 0.999991i \(0.498679\pi\)
\(332\) 4.36606 2.52075i 0.239619 0.138344i
\(333\) 6.04142 3.48802i 0.331068 0.191142i
\(334\) −2.32396 + 4.02522i −0.127162 + 0.220250i
\(335\) 1.42698 0.0779643
\(336\) −11.0694 + 6.69475i −0.603888 + 0.365229i
\(337\) 7.21762 0.393169 0.196584 0.980487i \(-0.437015\pi\)
0.196584 + 0.980487i \(0.437015\pi\)
\(338\) −0.241953 + 4.31410i −0.0131605 + 0.234656i
\(339\) 6.71516 + 11.6310i 0.364717 + 0.631709i
\(340\) −10.2399 + 5.91203i −0.555338 + 0.320625i
\(341\) −18.1870 + 31.5009i −0.984884 + 1.70587i
\(342\) 0.565321 0.0305691
\(343\) 1.12937 + 18.4858i 0.0609804 + 0.998139i
\(344\) 5.49224i 0.296122i
\(345\) −0.987221 0.569972i −0.0531502 0.0306863i
\(346\) 1.56487 0.903476i 0.0841277 0.0485712i
\(347\) 10.5391 + 18.2543i 0.565770 + 0.979942i 0.996978 + 0.0776892i \(0.0247542\pi\)
−0.431208 + 0.902253i \(0.641912\pi\)
\(348\) −9.87310 + 17.1007i −0.529254 + 0.916694i
\(349\) 30.7629i 1.64670i 0.567534 + 0.823350i \(0.307898\pi\)
−0.567534 + 0.823350i \(0.692102\pi\)
\(350\) −1.32439 2.18982i −0.0707917 0.117051i
\(351\) −10.6719 + 17.3435i −0.569624 + 0.925730i
\(352\) 11.0135 19.0760i 0.587022 1.01675i
\(353\) 5.30157 3.06086i 0.282174 0.162913i −0.352233 0.935912i \(-0.614578\pi\)
0.634407 + 0.772999i \(0.281244\pi\)
\(354\) 0.206495 + 0.357660i 0.0109751 + 0.0190094i
\(355\) 2.71938 4.71010i 0.144330 0.249986i
\(356\) 18.3613i 0.973145i
\(357\) 0.340033 + 16.7156i 0.0179964 + 0.884684i
\(358\) 1.78095i 0.0941259i
\(359\) −16.8257 9.71433i −0.888028 0.512703i −0.0147308 0.999891i \(-0.504689\pi\)
−0.873297 + 0.487189i \(0.838022\pi\)
\(360\) −0.811909 1.40627i −0.0427914 0.0741168i
\(361\) −7.58403 13.1359i −0.399160 0.691365i
\(362\) 2.17040 + 1.25308i 0.114074 + 0.0658605i
\(363\) −35.7133 −1.87446
\(364\) 15.6787 8.89242i 0.821790 0.466090i
\(365\) −13.2060 −0.691235
\(366\) −2.84861 1.64465i −0.148899 0.0859670i
\(367\) 2.70234 + 4.68058i 0.141061 + 0.244324i 0.927896 0.372838i \(-0.121615\pi\)
−0.786836 + 0.617163i \(0.788282\pi\)
\(368\) −0.904601 1.56681i −0.0471556 0.0816758i
\(369\) −5.68385 3.28158i −0.295890 0.170832i
\(370\) 3.85776i 0.200555i
\(371\) −6.44106 3.54608i −0.334403 0.184103i
\(372\) 16.8483i 0.873544i
\(373\) −8.12533 + 14.0735i −0.420714 + 0.728698i −0.996009 0.0892478i \(-0.971554\pi\)
0.575296 + 0.817946i \(0.304887\pi\)
\(374\) −4.28401 7.42013i −0.221521 0.383686i
\(375\) 14.4569 8.34671i 0.746553 0.431022i
\(376\) −4.04695 + 7.00952i −0.208706 + 0.361489i
\(377\) 13.5263 21.9824i 0.696640 1.13215i
\(378\) −4.96566 + 0.101013i −0.255406 + 0.00519553i
\(379\) 25.1730i 1.29305i 0.762893 + 0.646525i \(0.223778\pi\)
−0.762893 + 0.646525i \(0.776222\pi\)
\(380\) 2.67354 4.63071i 0.137150 0.237550i
\(381\) 10.5073 + 18.1992i 0.538306 + 0.932373i
\(382\) 3.89925 2.25123i 0.199503 0.115183i
\(383\) −3.30335 1.90719i −0.168793 0.0974529i 0.413223 0.910630i \(-0.364403\pi\)
−0.582017 + 0.813177i \(0.697736\pi\)
\(384\) 13.4531i 0.686527i
\(385\) 19.4898 11.7873i 0.993291 0.600738i
\(386\) 6.16764 0.313924
\(387\) −1.84566 + 3.19677i −0.0938201 + 0.162501i
\(388\) 10.7726 6.21956i 0.546895 0.315750i
\(389\) −1.43548 2.48632i −0.0727817 0.126062i 0.827338 0.561705i \(-0.189854\pi\)
−0.900119 + 0.435643i \(0.856521\pi\)
\(390\) −1.20269 2.22479i −0.0609005 0.112657i
\(391\) −2.33821 −0.118248
\(392\) 8.01461 + 4.20228i 0.404799 + 0.212247i
\(393\) −13.8222 −0.697236
\(394\) −0.443409 + 0.768007i −0.0223386 + 0.0386917i
\(395\) −0.164161 + 0.0947786i −0.00825986 + 0.00476883i
\(396\) −8.46709 + 4.88848i −0.425487 + 0.245655i
\(397\) −16.5570 9.55919i −0.830972 0.479762i 0.0232131 0.999731i \(-0.492610\pi\)
−0.854185 + 0.519968i \(0.825944\pi\)
\(398\) 6.71394i 0.336539i
\(399\) −3.91274 6.46953i −0.195882 0.323882i
\(400\) 9.74725 0.487362
\(401\) 2.59655 + 1.49912i 0.129666 + 0.0748625i 0.563430 0.826164i \(-0.309482\pi\)
−0.433764 + 0.901026i \(0.642815\pi\)
\(402\) −0.239479 0.414789i −0.0119441 0.0206878i
\(403\) −0.616835 + 22.0141i −0.0307267 + 1.09660i
\(404\) −0.0669165 + 0.115903i −0.00332922 + 0.00576638i
\(405\) 8.15104i 0.405028i
\(406\) 6.29382 0.128030i 0.312357 0.00635403i
\(407\) 47.8129 2.37000
\(408\) 7.07489 + 4.08469i 0.350259 + 0.202222i
\(409\) −29.5146 + 17.0403i −1.45940 + 0.842587i −0.998982 0.0451127i \(-0.985635\pi\)
−0.460422 + 0.887700i \(0.652302\pi\)
\(410\) 3.14318 1.81472i 0.155231 0.0896224i
\(411\) 20.9946 + 12.1212i 1.03559 + 0.597896i
\(412\) −11.9762 −0.590026
\(413\) −1.08607 + 1.97273i −0.0534421 + 0.0970717i
\(414\) 0.155995i 0.00766674i
\(415\) 1.92855 3.34034i 0.0946687 0.163971i
\(416\) 0.373536 13.3310i 0.0183141 0.653607i
\(417\) −13.4873 23.3606i −0.660475 1.14398i
\(418\) 3.35554 + 1.93732i 0.164125 + 0.0947574i
\(419\) 34.7759 1.69891 0.849457 0.527657i \(-0.176929\pi\)
0.849457 + 0.527657i \(0.176929\pi\)
\(420\) −5.08819 + 9.24215i −0.248278 + 0.450971i
\(421\) 24.1400i 1.17651i −0.808674 0.588257i \(-0.799814\pi\)
0.808674 0.588257i \(-0.200186\pi\)
\(422\) −3.77848 2.18151i −0.183933 0.106194i
\(423\) 4.71108 2.71994i 0.229060 0.132248i
\(424\) −3.11138 + 1.79636i −0.151102 + 0.0872388i
\(425\) 6.29866 10.9096i 0.305530 0.529193i
\(426\) −1.82549 −0.0884451
\(427\) −0.364776 17.9320i −0.0176528 0.867789i
\(428\) 14.6429 0.707793
\(429\) −27.5740 + 14.9061i −1.33128 + 0.719672i
\(430\) −1.02065 1.76782i −0.0492202 0.0852519i
\(431\) −4.12641 + 2.38238i −0.198762 + 0.114755i −0.596078 0.802927i \(-0.703275\pi\)
0.397316 + 0.917682i \(0.369942\pi\)
\(432\) 9.45848 16.3826i 0.455071 0.788207i
\(433\) −22.0231 −1.05836 −0.529181 0.848509i \(-0.677501\pi\)
−0.529181 + 0.848509i \(0.677501\pi\)
\(434\) −4.59607 + 2.77968i −0.220618 + 0.133429i
\(435\) 15.1072i 0.724337i
\(436\) 0.0549206 + 0.0317084i 0.00263022 + 0.00151856i
\(437\) 0.915724 0.528693i 0.0438050 0.0252908i
\(438\) 2.21626 + 3.83868i 0.105897 + 0.183419i
\(439\) 1.71620 2.97254i 0.0819097 0.141872i −0.822161 0.569256i \(-0.807231\pi\)
0.904070 + 0.427384i \(0.140565\pi\)
\(440\) 11.1294i 0.530576i
\(441\) −3.25275 5.13924i −0.154893 0.244726i
\(442\) −4.41811 2.71857i −0.210148 0.129309i
\(443\) 4.35297 7.53957i 0.206816 0.358216i −0.743894 0.668298i \(-0.767023\pi\)
0.950710 + 0.310082i \(0.100357\pi\)
\(444\) −19.1796 + 11.0733i −0.910223 + 0.525518i
\(445\) −7.02383 12.1656i −0.332962 0.576706i
\(446\) −0.369491 + 0.639977i −0.0174959 + 0.0303038i
\(447\) 4.49747i 0.212723i
\(448\) −12.3821 + 7.48862i −0.584998 + 0.353804i
\(449\) 17.6120i 0.831159i 0.909557 + 0.415580i \(0.136421\pi\)
−0.909557 + 0.415580i \(0.863579\pi\)
\(450\) 0.727841 + 0.420219i 0.0343107 + 0.0198093i
\(451\) −22.4915 38.9564i −1.05908 1.83439i
\(452\) 8.69170 + 15.0545i 0.408823 + 0.708102i
\(453\) 3.22240 + 1.86045i 0.151401 + 0.0874116i
\(454\) −9.00887 −0.422807
\(455\) 6.98661 11.8895i 0.327537 0.557390i
\(456\) −3.69436 −0.173004
\(457\) −7.85717 4.53634i −0.367543 0.212201i 0.304842 0.952403i \(-0.401396\pi\)
−0.672384 + 0.740202i \(0.734730\pi\)
\(458\) 3.15570 + 5.46583i 0.147456 + 0.255401i
\(459\) −12.2241 21.1728i −0.570573 0.988262i
\(460\) −1.27780 0.737738i −0.0595777 0.0343972i
\(461\) 6.58319i 0.306610i −0.988179 0.153305i \(-0.951008\pi\)
0.988179 0.153305i \(-0.0489917\pi\)
\(462\) −6.69711 3.68704i −0.311578 0.171537i
\(463\) 3.47344i 0.161424i 0.996737 + 0.0807121i \(0.0257194\pi\)
−0.996737 + 0.0807121i \(0.974281\pi\)
\(464\) −11.9883 + 20.7644i −0.556544 + 0.963962i
\(465\) −6.44507 11.1632i −0.298883 0.517681i
\(466\) −6.25777 + 3.61293i −0.289886 + 0.167366i
\(467\) 14.8927 25.7949i 0.689152 1.19365i −0.282960 0.959132i \(-0.591316\pi\)
0.972112 0.234515i \(-0.0753502\pi\)
\(468\) −3.10215 + 5.04149i −0.143397 + 0.233043i
\(469\) 1.25955 2.28783i 0.0581606 0.105642i
\(470\) 3.00826i 0.138761i
\(471\) 6.86783 11.8954i 0.316453 0.548113i
\(472\) 0.550177 + 0.952935i 0.0253240 + 0.0438624i
\(473\) −21.9103 + 12.6499i −1.00744 + 0.581643i
\(474\) 0.0550998 + 0.0318119i 0.00253082 + 0.00146117i
\(475\) 5.69677i 0.261386i
\(476\) 0.440118 + 21.6357i 0.0201728 + 0.991671i
\(477\) 2.41465 0.110559
\(478\) 3.31869 5.74814i 0.151793 0.262914i
\(479\) 30.4715 17.5927i 1.39228 0.803833i 0.398712 0.917076i \(-0.369457\pi\)
0.993567 + 0.113243i \(0.0361240\pi\)
\(480\) 3.90294 + 6.76008i 0.178144 + 0.308554i
\(481\) 25.4655 13.7663i 1.16113 0.627688i
\(482\) 1.07373 0.0489072
\(483\) −1.78520 + 1.07968i −0.0812296 + 0.0491273i
\(484\) −46.2252 −2.10115
\(485\) 4.75840 8.24179i 0.216068 0.374241i
\(486\) 2.50788 1.44793i 0.113760 0.0656792i
\(487\) 1.56018 0.900769i 0.0706984 0.0408178i −0.464234 0.885713i \(-0.653670\pi\)
0.534933 + 0.844895i \(0.320337\pi\)
\(488\) −7.58971 4.38192i −0.343570 0.198360i
\(489\) 1.01482i 0.0458916i
\(490\) 3.36064 0.136782i 0.151818 0.00617920i
\(491\) 8.19322 0.369755 0.184877 0.982762i \(-0.440811\pi\)
0.184877 + 0.982762i \(0.440811\pi\)
\(492\) 18.0444 + 10.4180i 0.813506 + 0.469678i
\(493\) 15.4937 + 26.8358i 0.697800 + 1.20863i
\(494\) 2.34498 + 0.0657065i 0.105506 + 0.00295627i
\(495\) −3.74003 + 6.47792i −0.168102 + 0.291161i
\(496\) 20.4579i 0.918587i
\(497\) −5.15125 8.51734i −0.231065 0.382055i
\(498\) −1.29461 −0.0580129
\(499\) −31.6242 18.2582i −1.41569 0.817350i −0.419775 0.907628i \(-0.637891\pi\)
−0.995917 + 0.0902781i \(0.971224\pi\)
\(500\) 18.7122 10.8035i 0.836834 0.483147i
\(501\) −17.6793 + 10.2072i −0.789854 + 0.456022i
\(502\) 3.59566 + 2.07596i 0.160482 + 0.0926545i
\(503\) −3.02972 −0.135089 −0.0675443 0.997716i \(-0.521516\pi\)
−0.0675443 + 0.997716i \(0.521516\pi\)
\(504\) −2.97127 + 0.0604422i −0.132351 + 0.00269231i
\(505\) 0.102392i 0.00455637i
\(506\) 0.534585 0.925928i 0.0237652 0.0411625i
\(507\) −10.3944 + 15.8782i −0.461630 + 0.705176i
\(508\) 13.6000 + 23.5559i 0.603404 + 1.04513i
\(509\) 25.4133 + 14.6724i 1.12642 + 0.650341i 0.943033 0.332699i \(-0.107959\pi\)
0.183391 + 0.983040i \(0.441293\pi\)
\(510\) 3.03631 0.134450
\(511\) −11.6565 + 21.1728i −0.515654 + 0.936630i
\(512\) 21.0487i 0.930229i
\(513\) 9.57479 + 5.52800i 0.422737 + 0.244067i
\(514\) −1.67744 + 0.968471i −0.0739887 + 0.0427174i
\(515\) −7.93509 + 4.58133i −0.349662 + 0.201877i
\(516\) 5.85938 10.1487i 0.257945 0.446773i
\(517\) 37.2843 1.63976
\(518\) 6.18502 + 3.40511i 0.271754 + 0.149612i
\(519\) 7.93637 0.348368
\(520\) −3.20439 5.92764i −0.140522 0.259944i
\(521\) 14.8419 + 25.7069i 0.650236 + 1.12624i 0.983066 + 0.183254i \(0.0586632\pi\)
−0.332830 + 0.942987i \(0.608003\pi\)
\(522\) −1.79037 + 1.03367i −0.0783624 + 0.0452425i
\(523\) −10.2864 + 17.8165i −0.449791 + 0.779062i −0.998372 0.0570361i \(-0.981835\pi\)
0.548581 + 0.836098i \(0.315168\pi\)
\(524\) −17.8906 −0.781553
\(525\) −0.228603 11.2379i −0.00997704 0.490460i
\(526\) 5.82146i 0.253828i
\(527\) −22.8975 13.2199i −0.997431 0.575867i
\(528\) 25.2168 14.5590i 1.09742 0.633597i
\(529\) 11.3541 + 19.6659i 0.493657 + 0.855039i
\(530\) −0.667652 + 1.15641i −0.0290010 + 0.0502311i
\(531\) 0.739544i 0.0320935i
\(532\) −5.06442 8.37377i −0.219571 0.363049i
\(533\) −23.1955 14.2728i −1.00471 0.618222i
\(534\) −2.35751 + 4.08332i −0.102019 + 0.176703i
\(535\) 9.70198 5.60144i 0.419453 0.242171i
\(536\) −0.638057 1.10515i −0.0275599 0.0477351i
\(537\) 3.91108 6.77419i 0.168775 0.292328i
\(538\) 7.42151i 0.319964i
\(539\) −1.69527 41.6516i −0.0730206 1.79406i
\(540\) 15.4275i 0.663896i
\(541\) 29.5027 + 17.0334i 1.26842 + 0.732324i 0.974689 0.223564i \(-0.0717692\pi\)
0.293732 + 0.955888i \(0.405103\pi\)
\(542\) 4.38228 + 7.59034i 0.188235 + 0.326033i
\(543\) 5.50371 + 9.53270i 0.236187 + 0.409087i
\(544\) 13.8660 + 8.00555i 0.594500 + 0.343235i
\(545\) 0.0485183 0.00207830
\(546\) −4.62851 0.0355167i −0.198082 0.00151997i
\(547\) −0.850931 −0.0363832 −0.0181916 0.999835i \(-0.505791\pi\)
−0.0181916 + 0.999835i \(0.505791\pi\)
\(548\) 27.1741 + 15.6890i 1.16082 + 0.670200i
\(549\) 2.94507 + 5.10102i 0.125693 + 0.217706i
\(550\) 2.88013 + 4.98853i 0.122809 + 0.212712i
\(551\) −12.1357 7.00657i −0.516999 0.298490i
\(552\) 1.01942i 0.0433895i
\(553\) 0.00705575 + 0.346853i 0.000300041 + 0.0147497i
\(554\) 3.11641i 0.132404i
\(555\) −8.47189 + 14.6737i −0.359612 + 0.622866i
\(556\) −17.4571 30.2366i −0.740347 1.28232i
\(557\) 15.3530 8.86404i 0.650526 0.375581i −0.138132 0.990414i \(-0.544110\pi\)
0.788658 + 0.614833i \(0.210776\pi\)
\(558\) 0.881972 1.52762i 0.0373369 0.0646694i
\(559\) −8.02744 + 13.0459i −0.339525 + 0.551781i
\(560\) −6.17829 + 11.2222i −0.261080 + 0.474224i
\(561\) 37.6319i 1.58882i
\(562\) 2.95405 5.11656i 0.124609 0.215829i
\(563\) −12.0903 20.9410i −0.509545 0.882558i −0.999939 0.0110571i \(-0.996480\pi\)
0.490394 0.871501i \(-0.336853\pi\)
\(564\) −14.9562 + 8.63495i −0.629768 + 0.363597i
\(565\) 11.5177 + 6.64976i 0.484555 + 0.279758i
\(566\) 3.19301i 0.134212i
\(567\) −13.0683 7.19465i −0.548817 0.302147i
\(568\) −4.86375 −0.204078
\(569\) −21.3874 + 37.0441i −0.896608 + 1.55297i −0.0648066 + 0.997898i \(0.520643\pi\)
−0.831802 + 0.555073i \(0.812690\pi\)
\(570\) −1.18913 + 0.686542i −0.0498070 + 0.0287561i
\(571\) 3.68140 + 6.37637i 0.154062 + 0.266843i 0.932717 0.360609i \(-0.117431\pi\)
−0.778655 + 0.627452i \(0.784098\pi\)
\(572\) −35.6901 + 19.2935i −1.49228 + 0.806703i
\(573\) 19.7754 0.826131
\(574\) −0.135096 6.64115i −0.00563878 0.277196i
\(575\) 1.57197 0.0655557
\(576\) 2.37608 4.11550i 0.0990035 0.171479i
\(577\) −7.09615 + 4.09696i −0.295417 + 0.170559i −0.640382 0.768057i \(-0.721224\pi\)
0.344965 + 0.938615i \(0.387891\pi\)
\(578\) 0.500204 0.288793i 0.0208057 0.0120122i
\(579\) 23.4598 + 13.5445i 0.974957 + 0.562892i
\(580\) 19.5539i 0.811932i
\(581\) −3.65320 6.04039i −0.151560 0.250598i
\(582\) −3.19426 −0.132406
\(583\) 14.3325 + 8.27485i 0.593590 + 0.342709i
\(584\) 5.90491 + 10.2276i 0.244347 + 0.423221i
\(585\) −0.126848 + 4.52703i −0.00524450 + 0.187170i
\(586\) 1.93339 3.34874i 0.0798678 0.138335i
\(587\) 39.1141i 1.61441i 0.590271 + 0.807205i \(0.299021\pi\)
−0.590271 + 0.807205i \(0.700979\pi\)
\(588\) 10.3265 + 16.3155i 0.425856 + 0.672838i
\(589\) 11.9566 0.492664
\(590\) 0.354178 + 0.204485i 0.0145813 + 0.00841849i
\(591\) −3.37319 + 1.94751i −0.138755 + 0.0801100i
\(592\) −23.2886 + 13.4457i −0.957158 + 0.552615i
\(593\) −1.05082 0.606691i −0.0431520 0.0249138i 0.478269 0.878213i \(-0.341264\pi\)
−0.521421 + 0.853300i \(0.674598\pi\)
\(594\) 11.1792 0.458689
\(595\) 8.56803 + 14.1668i 0.351255 + 0.580783i
\(596\) 5.82125i 0.238448i
\(597\) 14.7443 25.5378i 0.603442 1.04519i
\(598\) 0.0181311 0.647075i 0.000741435 0.0264609i
\(599\) −16.3319 28.2877i −0.667303 1.15580i −0.978655 0.205508i \(-0.934115\pi\)
0.311352 0.950295i \(-0.399218\pi\)
\(600\) −4.75642 2.74612i −0.194180 0.112110i
\(601\) 2.50114 0.102024 0.0510118 0.998698i \(-0.483755\pi\)
0.0510118 + 0.998698i \(0.483755\pi\)
\(602\) −3.73519 + 0.0759819i −0.152235 + 0.00309679i
\(603\) 0.857671i 0.0349271i
\(604\) 4.17088 + 2.40806i 0.169711 + 0.0979825i
\(605\) −30.6275 + 17.6828i −1.24518 + 0.718907i
\(606\) 0.0297628 0.0171836i 0.00120903 0.000698035i
\(607\) −6.32282 + 10.9515i −0.256635 + 0.444506i −0.965338 0.261001i \(-0.915947\pi\)
0.708703 + 0.705507i \(0.249281\pi\)
\(608\) −7.24055 −0.293643
\(609\) 24.2209 + 13.3347i 0.981482 + 0.540347i
\(610\) −3.25726 −0.131883
\(611\) 19.8579 10.7349i 0.803365 0.434287i
\(612\) −3.55336 6.15460i −0.143636 0.248785i
\(613\) 17.3448 10.0140i 0.700548 0.404462i −0.107003 0.994259i \(-0.534126\pi\)
0.807552 + 0.589797i \(0.200792\pi\)
\(614\) −2.29804 + 3.98032i −0.0927413 + 0.160633i
\(615\) 15.9409 0.642801
\(616\) −17.8435 9.82359i −0.718934 0.395804i
\(617\) 45.2926i 1.82341i −0.410846 0.911705i \(-0.634767\pi\)
0.410846 0.911705i \(-0.365233\pi\)
\(618\) 2.66336 + 1.53769i 0.107136 + 0.0618551i
\(619\) 3.83922 2.21658i 0.154311 0.0890917i −0.420856 0.907127i \(-0.638270\pi\)
0.575167 + 0.818036i \(0.304937\pi\)
\(620\) −8.34212 14.4490i −0.335028 0.580285i
\(621\) 1.52540 2.64207i 0.0612122 0.106023i
\(622\) 10.2087i 0.409332i
\(623\) −25.7045 + 0.522886i −1.02983 + 0.0209490i
\(624\) 9.23889 15.0147i 0.369852 0.601067i
\(625\) 0.989985 1.71471i 0.0395994 0.0685882i
\(626\) 3.19125 1.84247i 0.127548 0.0736400i
\(627\) 8.50897 + 14.7380i 0.339816 + 0.588578i
\(628\) 8.88931 15.3967i 0.354722 0.614397i
\(629\) 34.7544i 1.38575i
\(630\) −0.945148 + 0.571621i −0.0376556 + 0.0227739i
\(631\) 19.7358i 0.785672i −0.919609 0.392836i \(-0.871494\pi\)
0.919609 0.392836i \(-0.128506\pi\)
\(632\) 0.146805 + 0.0847581i 0.00583961 + 0.00337150i
\(633\) −9.58147 16.5956i −0.380829 0.659615i
\(634\) −3.96912 6.87472i −0.157634 0.273030i
\(635\) 18.0220 + 10.4050i 0.715180 + 0.412909i
\(636\) −7.66574 −0.303967
\(637\) −12.8953 21.6959i −0.510929 0.859623i
\(638\) −14.1693 −0.560968
\(639\) 2.83096 + 1.63445i 0.111991 + 0.0646580i
\(640\) 6.66106 + 11.5373i 0.263302 + 0.456052i
\(641\) 19.8213 + 34.3314i 0.782893 + 1.35601i 0.930250 + 0.366926i \(0.119590\pi\)
−0.147357 + 0.989083i \(0.547077\pi\)
\(642\) −3.25641 1.88009i −0.128520 0.0742012i
\(643\) 20.8300i 0.821453i −0.911759 0.410727i \(-0.865275\pi\)
0.911759 0.410727i \(-0.134725\pi\)
\(644\) −2.31066 + 1.39748i −0.0910529 + 0.0550684i
\(645\) 8.96568i 0.353023i
\(646\) −1.40821 + 2.43909i −0.0554052 + 0.0959646i
\(647\) −7.87206 13.6348i −0.309482 0.536039i 0.668767 0.743472i \(-0.266822\pi\)
−0.978249 + 0.207433i \(0.933489\pi\)
\(648\) −6.31269 + 3.64463i −0.247986 + 0.143175i
\(649\) 2.53437 4.38966i 0.0994828 0.172309i
\(650\) 2.97028 + 1.82769i 0.116504 + 0.0716877i
\(651\) −23.5864 + 0.479800i −0.924426 + 0.0188049i
\(652\) 1.31352i 0.0514413i
\(653\) 13.5132 23.4055i 0.528812 0.915930i −0.470623 0.882334i \(-0.655971\pi\)
0.999436 0.0335954i \(-0.0106958\pi\)
\(654\) −0.00814244 0.0141031i −0.000318395 0.000551476i
\(655\) −11.8538 + 6.84378i −0.463165 + 0.267409i
\(656\) 21.9103 + 12.6499i 0.855453 + 0.493896i
\(657\) 7.93734i 0.309665i
\(658\) 4.82305 + 2.65529i 0.188022 + 0.103514i
\(659\) −6.79491 −0.264692 −0.132346 0.991204i \(-0.542251\pi\)
−0.132346 + 0.991204i \(0.542251\pi\)
\(660\) 11.8734 20.5653i 0.462172 0.800505i
\(661\) 6.23994 3.60263i 0.242705 0.140126i −0.373714 0.927544i \(-0.621916\pi\)
0.616420 + 0.787418i \(0.288583\pi\)
\(662\) −3.04522 5.27448i −0.118356 0.204998i
\(663\) −10.8350 20.0431i −0.420796 0.778409i
\(664\) −3.44930 −0.133859
\(665\) −6.55880 3.61090i −0.254339 0.140025i
\(666\) −2.31866 −0.0898463
\(667\) −1.93339 + 3.34874i −0.0748613 + 0.129664i
\(668\) −22.8831 + 13.2115i −0.885372 + 0.511170i
\(669\) −2.81087 + 1.62285i −0.108674 + 0.0627432i
\(670\) −0.410750 0.237147i −0.0158687 0.00916178i
\(671\) 40.3703i 1.55848i
\(672\) 14.2832 0.290552i 0.550987 0.0112083i
\(673\) −8.32130 −0.320763 −0.160381 0.987055i \(-0.551272\pi\)
−0.160381 + 0.987055i \(0.551272\pi\)
\(674\) −2.07756 1.19948i −0.0800246 0.0462022i
\(675\) 8.21824 + 14.2344i 0.316320 + 0.547883i
\(676\) −13.4539 + 20.5518i −0.517456 + 0.790454i
\(677\) 14.9978 25.9770i 0.576413 0.998376i −0.419474 0.907767i \(-0.637785\pi\)
0.995887 0.0906086i \(-0.0288812\pi\)
\(678\) 4.46391i 0.171435i
\(679\) −9.01372 14.9037i −0.345915 0.571953i
\(680\) 8.08982 0.310231
\(681\) −34.2671 19.7841i −1.31312 0.758128i
\(682\) 10.4701 6.04493i 0.400922 0.231472i
\(683\) −31.2496 + 18.0420i −1.19573 + 0.690356i −0.959601 0.281365i \(-0.909213\pi\)
−0.236132 + 0.971721i \(0.575880\pi\)
\(684\) 2.78324 + 1.60690i 0.106420 + 0.0614415i
\(685\) 24.0064 0.917236
\(686\) 2.74703 5.50874i 0.104882 0.210325i
\(687\) 27.7205i 1.05760i
\(688\) 7.11470 12.3230i 0.271245 0.469811i
\(689\) 10.0161 + 0.280651i 0.381583 + 0.0106920i
\(690\) 0.189445 + 0.328128i 0.00721204 + 0.0124916i
\(691\) −22.3155 12.8838i −0.848920 0.490124i 0.0113665 0.999935i \(-0.496382\pi\)
−0.860286 + 0.509811i \(0.829715\pi\)
\(692\) 10.2724 0.390497
\(693\) 7.08465 + 11.7141i 0.269123 + 0.444983i
\(694\) 7.00589i 0.265940i
\(695\) −23.1332 13.3559i −0.877491 0.506620i
\(696\) 11.7000 6.75501i 0.443488 0.256048i
\(697\) 28.3168 16.3487i 1.07258 0.619252i
\(698\) 5.11242 8.85496i 0.193508 0.335165i
\(699\) −31.7369 −1.20040
\(700\) −0.295890 14.5456i −0.0111836 0.549772i
\(701\) −41.7872 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(702\) 5.95415 3.21872i 0.224725 0.121483i
\(703\) −7.85834 13.6110i −0.296383 0.513350i
\(704\) 28.2071 16.2854i 1.06310 0.613778i
\(705\) −6.60635 + 11.4425i −0.248809 + 0.430951i
\(706\) −2.03471 −0.0765774
\(707\) 0.164161 + 0.0903778i 0.00617393 + 0.00339901i
\(708\) 2.34782i 0.0882364i
\(709\) −0.297781 0.171924i −0.0111834 0.00645673i 0.494398 0.869236i \(-0.335389\pi\)
−0.505581 + 0.862779i \(0.668722\pi\)
\(710\) −1.56552 + 0.903855i −0.0587530 + 0.0339211i
\(711\) −0.0569657 0.0986674i −0.00213638 0.00370032i
\(712\) −6.28124 + 10.8794i −0.235399 + 0.407724i
\(713\) 3.29931i 0.123560i
\(714\) 2.68005 4.86802i 0.100298 0.182181i
\(715\) −16.2668 + 26.4361i −0.608342 + 0.988652i
\(716\) 5.06227 8.76810i 0.189186 0.327679i
\(717\) 25.2466 14.5761i 0.942852 0.544356i
\(718\) 3.22881 + 5.59246i 0.120498 + 0.208709i
\(719\) 4.39005 7.60379i 0.163721 0.283574i −0.772479 0.635040i \(-0.780984\pi\)
0.936200 + 0.351467i \(0.114317\pi\)
\(720\) 4.20702i 0.156786i
\(721\) 0.341055 + 16.7659i 0.0127015 + 0.624393i
\(722\) 5.04149i 0.187625i
\(723\) 4.08416 + 2.35799i 0.151891 + 0.0876946i
\(724\) 7.12367 + 12.3386i 0.264749 + 0.458559i
\(725\) −10.4164 18.0416i −0.386854 0.670050i
\(726\) 10.2799 + 5.93512i 0.381524 + 0.220273i
\(727\) 17.3658 0.644064 0.322032 0.946729i \(-0.395634\pi\)
0.322032 + 0.946729i \(0.395634\pi\)
\(728\) −12.3320 0.0946291i −0.457054 0.00350719i
\(729\) 29.6343 1.09757
\(730\) 3.80130 + 2.19468i 0.140692 + 0.0812288i
\(731\) −9.19502 15.9262i −0.340090 0.589053i
\(732\) −9.34968 16.1941i −0.345574 0.598552i
\(733\) −7.84528 4.52947i −0.289772 0.167300i 0.348067 0.937470i \(-0.386838\pi\)
−0.637839 + 0.770170i \(0.720172\pi\)
\(734\) 1.79638i 0.0663056i
\(735\) 13.0833 + 6.85991i 0.482583 + 0.253032i
\(736\) 1.99796i 0.0736458i
\(737\) −2.93919 + 5.09082i −0.108266 + 0.187523i
\(738\) 1.09071 + 1.88917i 0.0401498 + 0.0695414i
\(739\) −6.13010 + 3.53921i −0.225499 + 0.130192i −0.608494 0.793558i \(-0.708226\pi\)
0.382995 + 0.923751i \(0.374893\pi\)
\(740\) −10.9655 + 18.9928i −0.403100 + 0.698190i
\(741\) 8.77531 + 5.39966i 0.322369 + 0.198362i
\(742\) 1.26472 + 2.09115i 0.0464292 + 0.0767685i
\(743\) 14.6779i 0.538479i 0.963073 + 0.269240i \(0.0867724\pi\)
−0.963073 + 0.269240i \(0.913228\pi\)
\(744\) −5.76367 + 9.98297i −0.211306 + 0.365993i
\(745\) −2.22684 3.85699i −0.0815849 0.141309i
\(746\) 4.67768 2.70066i 0.171262 0.0988782i
\(747\) 2.00768 + 1.15913i 0.0734571 + 0.0424105i
\(748\) 48.7085i 1.78096i
\(749\) −0.416997 20.4991i −0.0152367 0.749020i
\(750\) −5.54848 −0.202602
\(751\) −15.8556 + 27.4628i −0.578580 + 1.00213i 0.417062 + 0.908878i \(0.363060\pi\)
−0.995643 + 0.0932523i \(0.970274\pi\)
\(752\) −18.1604 + 10.4849i −0.662241 + 0.382345i
\(753\) 9.11788 + 15.7926i 0.332274 + 0.575516i
\(754\) −7.54669 + 4.07962i −0.274834 + 0.148571i
\(755\) 3.68467 0.134099
\(756\) −24.7345 13.6174i −0.899585 0.495259i
\(757\) 15.5317 0.564510 0.282255 0.959339i \(-0.408918\pi\)
0.282255 + 0.959339i \(0.408918\pi\)
\(758\) 4.18344 7.24593i 0.151949 0.263184i
\(759\) 4.06680 2.34797i 0.147616 0.0852259i
\(760\) −3.16825 + 1.82919i −0.114925 + 0.0663518i
\(761\) −0.216826 0.125185i −0.00785993 0.00453794i 0.496065 0.868285i \(-0.334778\pi\)
−0.503925 + 0.863748i \(0.668111\pi\)
\(762\) 6.98474i 0.253030i
\(763\) 0.0428255 0.0777879i 0.00155039 0.00281611i
\(764\) 25.5961 0.926036
\(765\) −4.70870 2.71857i −0.170243 0.0982901i
\(766\) 0.633903 + 1.09795i 0.0229039 + 0.0396706i
\(767\) 0.0859562 3.06767i 0.00310370 0.110767i
\(768\) −5.74859 + 9.95686i −0.207435 + 0.359287i
\(769\) 24.0146i 0.865988i 0.901397 + 0.432994i \(0.142543\pi\)
−0.901397 + 0.432994i \(0.857457\pi\)
\(770\) −7.56896 + 0.153969i −0.272766 + 0.00554867i
\(771\) −8.50731 −0.306383
\(772\) 30.3650 + 17.5312i 1.09286 + 0.630963i
\(773\) −26.4192 + 15.2531i −0.950231 + 0.548616i −0.893153 0.449753i \(-0.851512\pi\)
−0.0570784 + 0.998370i \(0.518179\pi\)
\(774\) 1.06253 0.613451i 0.0381918 0.0220501i