Properties

Label 91.2.r.a.51.2
Level $91$
Weight $2$
Character 91.51
Analytic conductor $0.727$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 11 x^{14} + 85 x^{12} - 334 x^{10} + 952 x^{8} - 1050 x^{6} + 853 x^{4} - 93 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 51.2
Root \(1.84073 - 1.06275i\) of defining polynomial
Character \(\chi\) \(=\) 91.51
Dual form 91.2.r.a.25.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.84073 - 1.06275i) q^{2} +(0.0894272 + 0.154892i) q^{3} +(1.25885 + 2.18040i) q^{4} +(3.12291 + 1.80301i) q^{5} -0.380153i q^{6} +(-1.20931 - 2.35320i) q^{7} -1.10038i q^{8} +(1.48401 - 2.57037i) q^{9} +O(q^{10})\) \(q+(-1.84073 - 1.06275i) q^{2} +(0.0894272 + 0.154892i) q^{3} +(1.25885 + 2.18040i) q^{4} +(3.12291 + 1.80301i) q^{5} -0.380153i q^{6} +(-1.20931 - 2.35320i) q^{7} -1.10038i q^{8} +(1.48401 - 2.57037i) q^{9} +(-3.83229 - 6.63772i) q^{10} +(3.45748 - 1.99618i) q^{11} +(-0.225152 + 0.389974i) q^{12} +(-2.51771 + 2.58092i) q^{13} +(-0.274848 + 5.61680i) q^{14} +0.644954i q^{15} +(1.34828 - 2.33529i) q^{16} +(2.39458 + 4.14753i) q^{17} +(-5.46330 + 3.15424i) q^{18} +(-2.72850 - 1.57530i) q^{19} +9.07892i q^{20} +(0.256349 - 0.397753i) q^{21} -8.48572 q^{22} +(-1.08943 + 1.88694i) q^{23} +(0.170441 - 0.0984042i) q^{24} +(4.00171 + 6.93117i) q^{25} +(7.37728 - 2.07509i) q^{26} +1.06740 q^{27} +(3.60858 - 5.59912i) q^{28} -6.57198 q^{29} +(0.685421 - 1.18718i) q^{30} +(-1.28753 + 0.743358i) q^{31} +(-6.86956 + 3.96614i) q^{32} +(0.618386 + 0.357025i) q^{33} -10.1793i q^{34} +(0.466298 - 9.52925i) q^{35} +7.47259 q^{36} +(-4.29984 - 2.48252i) q^{37} +(3.34828 + 5.79939i) q^{38} +(-0.624916 - 0.159170i) q^{39} +(1.98401 - 3.43640i) q^{40} +2.11931i q^{41} +(-0.894578 + 0.459722i) q^{42} -1.43145 q^{43} +(8.70494 + 5.02580i) q^{44} +(9.26883 - 5.35136i) q^{45} +(4.01068 - 2.31557i) q^{46} +(-0.882417 - 0.509464i) q^{47} +0.482292 q^{48} +(-4.07515 + 5.69150i) q^{49} -17.0112i q^{50} +(-0.428281 + 0.741804i) q^{51} +(-8.79686 - 2.24061i) q^{52} +(-3.01771 - 5.22682i) q^{53} +(-1.96480 - 1.13438i) q^{54} +14.3966 q^{55} +(-2.58943 + 1.33070i) q^{56} -0.563498i q^{57} +(12.0972 + 6.98434i) q^{58} +(-4.24631 + 2.45161i) q^{59} +(-1.40626 + 0.811902i) q^{60} +(1.01771 - 1.76272i) q^{61} +3.16000 q^{62} +(-7.84323 - 0.383795i) q^{63} +11.4669 q^{64} +(-12.5160 + 3.52052i) q^{65} +(-0.758854 - 1.31437i) q^{66} +(-3.38694 + 1.95545i) q^{67} +(-6.02885 + 10.4423i) q^{68} -0.389698 q^{69} +(-10.9855 + 17.0452i) q^{70} +8.80684i q^{71} +(-2.82840 - 1.63297i) q^{72} +(2.67497 - 1.54439i) q^{73} +(5.27656 + 9.13927i) q^{74} +(-0.715724 + 1.23967i) q^{75} -7.93228i q^{76} +(-8.87858 - 5.72217i) q^{77} +(0.981145 + 0.957115i) q^{78} +(-0.984006 + 1.70435i) q^{79} +(8.42112 - 4.86194i) q^{80} +(-4.35656 - 7.54579i) q^{81} +(2.25229 - 3.90108i) q^{82} -7.66020i q^{83} +(1.18997 + 0.0582290i) q^{84} +17.2698i q^{85} +(2.63491 + 1.52126i) q^{86} +(-0.587714 - 1.01795i) q^{87} +(-2.19656 - 3.80456i) q^{88} +(11.0844 + 6.39960i) q^{89} -22.7485 q^{90} +(9.11812 + 2.80355i) q^{91} -5.48572 q^{92} +(-0.230281 - 0.132953i) q^{93} +(1.08286 + 1.87557i) q^{94} +(-5.68057 - 9.83903i) q^{95} +(-1.22865 - 0.709362i) q^{96} -1.35900i q^{97} +(13.5499 - 6.14567i) q^{98} -11.8494i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} + O(q^{10}) \) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} - 6q^{10} + 18q^{12} - 12q^{13} - 26q^{14} + 2q^{16} + 8q^{17} - 36q^{22} - 12q^{23} - 6q^{26} + 32q^{27} - 16q^{29} + 38q^{30} - 56q^{36} + 34q^{38} + 18q^{39} - 4q^{40} + 16q^{42} + 16q^{43} + 36q^{48} + 40q^{49} + 16q^{51} - 42q^{52} - 20q^{53} + 24q^{55} - 36q^{56} - 12q^{61} + 44q^{62} + 88q^{64} - 30q^{65} + 2q^{66} - 2q^{68} - 56q^{69} + 42q^{74} + 8q^{75} - 76q^{77} + 20q^{78} + 20q^{79} - 24q^{81} - 16q^{82} - 68q^{87} + 4q^{88} - 216q^{90} + 56q^{91} + 12q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84073 1.06275i −1.30159 0.751474i −0.320915 0.947108i \(-0.603990\pi\)
−0.980677 + 0.195634i \(0.937324\pi\)
\(3\) 0.0894272 + 0.154892i 0.0516308 + 0.0894272i 0.890686 0.454620i \(-0.150225\pi\)
−0.839055 + 0.544047i \(0.816891\pi\)
\(4\) 1.25885 + 2.18040i 0.629427 + 1.09020i
\(5\) 3.12291 + 1.80301i 1.39661 + 0.806332i 0.994036 0.109056i \(-0.0347828\pi\)
0.402572 + 0.915388i \(0.368116\pi\)
\(6\) 0.380153i 0.155197i
\(7\) −1.20931 2.35320i −0.457076 0.889428i
\(8\) 1.10038i 0.389044i
\(9\) 1.48401 2.57037i 0.494669 0.856791i
\(10\) −3.83229 6.63772i −1.21188 2.09903i
\(11\) 3.45748 1.99618i 1.04247 0.601871i 0.121939 0.992538i \(-0.461089\pi\)
0.920532 + 0.390667i \(0.127756\pi\)
\(12\) −0.225152 + 0.389974i −0.0649957 + 0.112576i
\(13\) −2.51771 + 2.58092i −0.698287 + 0.715818i
\(14\) −0.274848 + 5.61680i −0.0734563 + 1.50115i
\(15\) 0.644954i 0.166526i
\(16\) 1.34828 2.33529i 0.337070 0.583823i
\(17\) 2.39458 + 4.14753i 0.580771 + 1.00592i 0.995388 + 0.0959284i \(0.0305820\pi\)
−0.414618 + 0.909996i \(0.636085\pi\)
\(18\) −5.46330 + 3.15424i −1.28771 + 0.743461i
\(19\) −2.72850 1.57530i −0.625960 0.361398i 0.153226 0.988191i \(-0.451034\pi\)
−0.779186 + 0.626793i \(0.784367\pi\)
\(20\) 9.07892i 2.03011i
\(21\) 0.256349 0.397753i 0.0559398 0.0867969i
\(22\) −8.48572 −1.80916
\(23\) −1.08943 + 1.88694i −0.227161 + 0.393455i −0.956966 0.290201i \(-0.906278\pi\)
0.729804 + 0.683656i \(0.239611\pi\)
\(24\) 0.170441 0.0984042i 0.0347911 0.0200867i
\(25\) 4.00171 + 6.93117i 0.800343 + 1.38623i
\(26\) 7.37728 2.07509i 1.44680 0.406959i
\(27\) 1.06740 0.205422
\(28\) 3.60858 5.59912i 0.681958 1.05813i
\(29\) −6.57198 −1.22039 −0.610193 0.792253i \(-0.708908\pi\)
−0.610193 + 0.792253i \(0.708908\pi\)
\(30\) 0.685421 1.18718i 0.125140 0.216749i
\(31\) −1.28753 + 0.743358i −0.231248 + 0.133511i −0.611148 0.791517i \(-0.709292\pi\)
0.379900 + 0.925028i \(0.375958\pi\)
\(32\) −6.86956 + 3.96614i −1.21438 + 0.701121i
\(33\) 0.618386 + 0.357025i 0.107647 + 0.0621502i
\(34\) 10.1793i 1.74574i
\(35\) 0.466298 9.52925i 0.0788187 1.61074i
\(36\) 7.47259 1.24543
\(37\) −4.29984 2.48252i −0.706890 0.408123i 0.103019 0.994679i \(-0.467150\pi\)
−0.809908 + 0.586556i \(0.800483\pi\)
\(38\) 3.34828 + 5.79939i 0.543163 + 0.940786i
\(39\) −0.624916 0.159170i −0.100067 0.0254875i
\(40\) 1.98401 3.43640i 0.313699 0.543342i
\(41\) 2.11931i 0.330981i 0.986211 + 0.165490i \(0.0529207\pi\)
−0.986211 + 0.165490i \(0.947079\pi\)
\(42\) −0.894578 + 0.459722i −0.138036 + 0.0709367i
\(43\) −1.43145 −0.218294 −0.109147 0.994026i \(-0.534812\pi\)
−0.109147 + 0.994026i \(0.534812\pi\)
\(44\) 8.70494 + 5.02580i 1.31232 + 0.757667i
\(45\) 9.26883 5.35136i 1.38172 0.797734i
\(46\) 4.01068 2.31557i 0.591342 0.341412i
\(47\) −0.882417 0.509464i −0.128714 0.0743129i 0.434261 0.900787i \(-0.357010\pi\)
−0.562974 + 0.826474i \(0.690343\pi\)
\(48\) 0.482292 0.0696129
\(49\) −4.07515 + 5.69150i −0.582164 + 0.813072i
\(50\) 17.0112i 2.40575i
\(51\) −0.428281 + 0.741804i −0.0599713 + 0.103873i
\(52\) −8.79686 2.24061i −1.21991 0.310716i
\(53\) −3.01771 5.22682i −0.414514 0.717959i 0.580863 0.814001i \(-0.302715\pi\)
−0.995377 + 0.0960417i \(0.969382\pi\)
\(54\) −1.96480 1.13438i −0.267376 0.154369i
\(55\) 14.3966 1.94123
\(56\) −2.58943 + 1.33070i −0.346027 + 0.177823i
\(57\) 0.563498i 0.0746371i
\(58\) 12.0972 + 6.98434i 1.58844 + 0.917089i
\(59\) −4.24631 + 2.45161i −0.552823 + 0.319172i −0.750260 0.661143i \(-0.770072\pi\)
0.197437 + 0.980316i \(0.436738\pi\)
\(60\) −1.40626 + 0.811902i −0.181547 + 0.104816i
\(61\) 1.01771 1.76272i 0.130304 0.225693i −0.793490 0.608584i \(-0.791738\pi\)
0.923794 + 0.382890i \(0.125071\pi\)
\(62\) 3.16000 0.401320
\(63\) −7.84323 0.383795i −0.988155 0.0483537i
\(64\) 11.4669 1.43336
\(65\) −12.5160 + 3.52052i −1.55242 + 0.436667i
\(66\) −0.758854 1.31437i −0.0934085 0.161788i
\(67\) −3.38694 + 1.95545i −0.413781 + 0.238896i −0.692413 0.721501i \(-0.743452\pi\)
0.278632 + 0.960398i \(0.410119\pi\)
\(68\) −6.02885 + 10.4423i −0.731105 + 1.26631i
\(69\) −0.389698 −0.0469141
\(70\) −10.9855 + 17.0452i −1.31302 + 2.03729i
\(71\) 8.80684i 1.04518i 0.852584 + 0.522590i \(0.175034\pi\)
−0.852584 + 0.522590i \(0.824966\pi\)
\(72\) −2.82840 1.63297i −0.333330 0.192448i
\(73\) 2.67497 1.54439i 0.313081 0.180757i −0.335223 0.942139i \(-0.608812\pi\)
0.648304 + 0.761381i \(0.275478\pi\)
\(74\) 5.27656 + 9.13927i 0.613388 + 1.06242i
\(75\) −0.715724 + 1.23967i −0.0826447 + 0.143145i
\(76\) 7.93228i 0.909895i
\(77\) −8.87858 5.72217i −1.01181 0.652102i
\(78\) 0.981145 + 0.957115i 0.111093 + 0.108372i
\(79\) −0.984006 + 1.70435i −0.110709 + 0.191754i −0.916056 0.401049i \(-0.868646\pi\)
0.805347 + 0.592803i \(0.201979\pi\)
\(80\) 8.42112 4.86194i 0.941510 0.543581i
\(81\) −4.35656 7.54579i −0.484062 0.838421i
\(82\) 2.25229 3.90108i 0.248724 0.430802i
\(83\) 7.66020i 0.840816i −0.907335 0.420408i \(-0.861887\pi\)
0.907335 0.420408i \(-0.138113\pi\)
\(84\) 1.18997 + 0.0582290i 0.129836 + 0.00635330i
\(85\) 17.2698i 1.87318i
\(86\) 2.63491 + 1.52126i 0.284129 + 0.164042i
\(87\) −0.587714 1.01795i −0.0630095 0.109136i
\(88\) −2.19656 3.80456i −0.234154 0.405567i
\(89\) 11.0844 + 6.39960i 1.17495 + 0.678356i 0.954840 0.297120i \(-0.0960261\pi\)
0.220107 + 0.975476i \(0.429359\pi\)
\(90\) −22.7485 −2.39791
\(91\) 9.11812 + 2.80355i 0.955839 + 0.293892i
\(92\) −5.48572 −0.571926
\(93\) −0.230281 0.132953i −0.0238790 0.0137866i
\(94\) 1.08286 + 1.87557i 0.111689 + 0.193450i
\(95\) −5.68057 9.83903i −0.582814 1.00946i
\(96\) −1.22865 0.709362i −0.125399 0.0723989i
\(97\) 1.35900i 0.137986i −0.997617 0.0689930i \(-0.978021\pi\)
0.997617 0.0689930i \(-0.0219786\pi\)
\(98\) 13.5499 6.14567i 1.36874 0.620806i
\(99\) 11.8494i 1.19091i
\(100\) −10.0751 + 17.4507i −1.00751 + 1.74507i
\(101\) 2.14400 + 3.71353i 0.213336 + 0.369510i 0.952757 0.303735i \(-0.0982336\pi\)
−0.739420 + 0.673244i \(0.764900\pi\)
\(102\) 1.57670 0.910307i 0.156116 0.0901338i
\(103\) 7.21744 12.5010i 0.711155 1.23176i −0.253269 0.967396i \(-0.581506\pi\)
0.964424 0.264361i \(-0.0851610\pi\)
\(104\) 2.84000 + 2.77044i 0.278485 + 0.271664i
\(105\) 1.51771 0.779948i 0.148113 0.0761151i
\(106\) 12.8282i 1.24599i
\(107\) 4.85942 8.41677i 0.469778 0.813680i −0.529625 0.848232i \(-0.677667\pi\)
0.999403 + 0.0345525i \(0.0110006\pi\)
\(108\) 1.34371 + 2.32737i 0.129298 + 0.223951i
\(109\) 5.75782 3.32428i 0.551499 0.318408i −0.198227 0.980156i \(-0.563518\pi\)
0.749726 + 0.661748i \(0.230185\pi\)
\(110\) −26.5001 15.2999i −2.52669 1.45878i
\(111\) 0.888018i 0.0842869i
\(112\) −7.12591 0.348694i −0.673335 0.0329485i
\(113\) 17.5434 1.65035 0.825173 0.564880i \(-0.191078\pi\)
0.825173 + 0.564880i \(0.191078\pi\)
\(114\) −0.598855 + 1.03725i −0.0560879 + 0.0971471i
\(115\) −6.80437 + 3.92850i −0.634511 + 0.366335i
\(116\) −8.27316 14.3295i −0.768144 1.33046i
\(117\) 2.89763 + 10.3015i 0.267886 + 0.952378i
\(118\) 10.4217 0.959399
\(119\) 6.86421 10.6506i 0.629241 0.976337i
\(120\) 0.709696 0.0647861
\(121\) 2.46946 4.27724i 0.224497 0.388840i
\(122\) −3.74665 + 2.16313i −0.339206 + 0.195840i
\(123\) −0.328265 + 0.189524i −0.0295987 + 0.0170888i
\(124\) −3.24163 1.87156i −0.291107 0.168071i
\(125\) 10.8304i 0.968704i
\(126\) 14.0294 + 9.04182i 1.24984 + 0.805510i
\(127\) −19.5143 −1.73162 −0.865809 0.500375i \(-0.833195\pi\)
−0.865809 + 0.500375i \(0.833195\pi\)
\(128\) −7.36826 4.25407i −0.651269 0.376010i
\(129\) −0.128010 0.221720i −0.0112707 0.0195214i
\(130\) 26.7800 + 6.82100i 2.34876 + 0.598242i
\(131\) −9.53713 + 16.5188i −0.833263 + 1.44325i 0.0621741 + 0.998065i \(0.480197\pi\)
−0.895437 + 0.445188i \(0.853137\pi\)
\(132\) 1.79777i 0.156476i
\(133\) −0.407406 + 8.32573i −0.0353266 + 0.721933i
\(134\) 8.31259 0.718098
\(135\) 3.33341 + 1.92455i 0.286894 + 0.165638i
\(136\) 4.56387 2.63495i 0.391349 0.225945i
\(137\) −5.56759 + 3.21445i −0.475672 + 0.274629i −0.718611 0.695412i \(-0.755222\pi\)
0.242939 + 0.970042i \(0.421888\pi\)
\(138\) 0.717328 + 0.414149i 0.0610630 + 0.0352547i
\(139\) −2.42854 −0.205986 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(140\) 21.3646 10.9792i 1.80564 0.927913i
\(141\) 0.182240i 0.0153473i
\(142\) 9.35942 16.2110i 0.785425 1.36040i
\(143\) −3.55296 + 13.9493i −0.297113 + 1.16650i
\(144\) −4.00171 6.93117i −0.333476 0.577598i
\(145\) −20.5237 11.8494i −1.70440 0.984036i
\(146\) −6.56518 −0.543338
\(147\) −1.24600 0.122234i −0.102768 0.0100817i
\(148\) 12.5005i 1.02753i
\(149\) −0.0998984 0.0576764i −0.00818400 0.00472503i 0.495902 0.868378i \(-0.334837\pi\)
−0.504086 + 0.863653i \(0.668171\pi\)
\(150\) 2.63491 1.52126i 0.215139 0.124211i
\(151\) 10.2218 5.90155i 0.831838 0.480262i −0.0226438 0.999744i \(-0.507208\pi\)
0.854481 + 0.519482i \(0.173875\pi\)
\(152\) −1.73343 + 3.00239i −0.140600 + 0.243526i
\(153\) 14.2143 1.14916
\(154\) 10.2619 + 19.9686i 0.826924 + 1.60912i
\(155\) −5.36114 −0.430617
\(156\) −0.439626 1.56294i −0.0351982 0.125135i
\(157\) 6.57343 + 11.3855i 0.524617 + 0.908663i 0.999589 + 0.0286625i \(0.00912481\pi\)
−0.474972 + 0.880001i \(0.657542\pi\)
\(158\) 3.62257 2.09149i 0.288197 0.166390i
\(159\) 0.539730 0.934840i 0.0428034 0.0741377i
\(160\) −28.6040 −2.26135
\(161\) 5.75782 + 0.281749i 0.453780 + 0.0222049i
\(162\) 18.5197i 1.45504i
\(163\) −16.1501 9.32424i −1.26497 0.730331i −0.290938 0.956742i \(-0.593967\pi\)
−0.974032 + 0.226411i \(0.927301\pi\)
\(164\) −4.62094 + 2.66790i −0.360835 + 0.208328i
\(165\) 1.28744 + 2.22992i 0.100227 + 0.173599i
\(166\) −8.14084 + 14.1003i −0.631852 + 1.09440i
\(167\) 0.972672i 0.0752676i 0.999292 + 0.0376338i \(0.0119820\pi\)
−0.999292 + 0.0376338i \(0.988018\pi\)
\(168\) −0.437681 0.282082i −0.0337678 0.0217631i
\(169\) −0.322293 12.9960i −0.0247917 0.999693i
\(170\) 18.3534 31.7891i 1.40764 2.43811i
\(171\) −8.09821 + 4.67550i −0.619286 + 0.357545i
\(172\) −1.80198 3.12113i −0.137400 0.237984i
\(173\) 1.22855 2.12791i 0.0934050 0.161782i −0.815537 0.578705i \(-0.803558\pi\)
0.908942 + 0.416923i \(0.136892\pi\)
\(174\) 2.49836i 0.189400i
\(175\) 11.4712 17.7988i 0.867138 1.34546i
\(176\) 10.7656i 0.811491i
\(177\) −0.759471 0.438481i −0.0570854 0.0329583i
\(178\) −13.6023 23.5598i −1.01953 1.76588i
\(179\) 7.23629 + 12.5336i 0.540866 + 0.936807i 0.998855 + 0.0478492i \(0.0152367\pi\)
−0.457989 + 0.888958i \(0.651430\pi\)
\(180\) 23.3362 + 13.4732i 1.73938 + 1.00423i
\(181\) −9.17885 −0.682259 −0.341129 0.940016i \(-0.610809\pi\)
−0.341129 + 0.940016i \(0.610809\pi\)
\(182\) −13.8045 14.8508i −1.02326 1.10082i
\(183\) 0.364043 0.0269108
\(184\) 2.07636 + 1.19879i 0.153071 + 0.0883758i
\(185\) −8.95202 15.5053i −0.658165 1.13998i
\(186\) 0.282590 + 0.489460i 0.0207205 + 0.0358889i
\(187\) 16.5584 + 9.56002i 1.21087 + 0.699098i
\(188\) 2.56536i 0.187098i
\(189\) −1.29082 2.51182i −0.0938935 0.182708i
\(190\) 24.1480i 1.75188i
\(191\) −8.79202 + 15.2282i −0.636168 + 1.10188i 0.350098 + 0.936713i \(0.386148\pi\)
−0.986266 + 0.165162i \(0.947185\pi\)
\(192\) 1.02545 + 1.77613i 0.0740054 + 0.128181i
\(193\) 17.1090 9.87791i 1.23154 0.711028i 0.264186 0.964472i \(-0.414897\pi\)
0.967350 + 0.253444i \(0.0815633\pi\)
\(194\) −1.44428 + 2.50156i −0.103693 + 0.179601i
\(195\) −1.66457 1.62380i −0.119203 0.116283i
\(196\) −17.5398 1.72068i −1.25284 0.122905i
\(197\) 7.66020i 0.545767i 0.962047 + 0.272883i \(0.0879773\pi\)
−0.962047 + 0.272883i \(0.912023\pi\)
\(198\) −12.5929 + 21.8115i −0.894935 + 1.55007i
\(199\) −3.27171 5.66677i −0.231925 0.401706i 0.726449 0.687220i \(-0.241169\pi\)
−0.958375 + 0.285514i \(0.907836\pi\)
\(200\) 7.62694 4.40342i 0.539306 0.311369i
\(201\) −0.605769 0.349741i −0.0427277 0.0246688i
\(202\) 9.11412i 0.641267i
\(203\) 7.94755 + 15.4652i 0.557809 + 1.08545i
\(204\) −2.15657 −0.150990
\(205\) −3.82115 + 6.61842i −0.266880 + 0.462250i
\(206\) −26.5707 + 15.3406i −1.85127 + 1.06883i
\(207\) 3.23343 + 5.60047i 0.224739 + 0.389259i
\(208\) 2.63262 + 9.35939i 0.182539 + 0.648957i
\(209\) −12.5783 −0.870060
\(210\) −3.62257 0.177265i −0.249981 0.0122324i
\(211\) 20.0452 1.37997 0.689983 0.723825i \(-0.257618\pi\)
0.689983 + 0.723825i \(0.257618\pi\)
\(212\) 7.59771 13.1596i 0.521813 0.903806i
\(213\) −1.36411 + 0.787571i −0.0934674 + 0.0539635i
\(214\) −17.8898 + 10.3287i −1.22292 + 0.706052i
\(215\) −4.47028 2.58092i −0.304871 0.176017i
\(216\) 1.17455i 0.0799183i
\(217\) 3.30630 + 2.13088i 0.224446 + 0.144654i
\(218\) −14.1314 −0.957102
\(219\) 0.478429 + 0.276221i 0.0323293 + 0.0186653i
\(220\) 18.1232 + 31.3902i 1.22186 + 2.11633i
\(221\) −16.7333 4.26206i −1.12560 0.286697i
\(222\) −0.943736 + 1.63460i −0.0633394 + 0.109707i
\(223\) 27.7139i 1.85586i 0.372752 + 0.927931i \(0.378414\pi\)
−0.372752 + 0.927931i \(0.621586\pi\)
\(224\) 17.6406 + 11.3692i 1.17866 + 0.759636i
\(225\) 23.7543 1.58362
\(226\) −32.2927 18.6442i −2.14808 1.24019i
\(227\) 9.84766 5.68555i 0.653612 0.377363i −0.136227 0.990678i \(-0.543498\pi\)
0.789839 + 0.613315i \(0.210164\pi\)
\(228\) 1.22865 0.709362i 0.0813694 0.0469786i
\(229\) −7.54406 4.35556i −0.498525 0.287824i 0.229579 0.973290i \(-0.426265\pi\)
−0.728104 + 0.685466i \(0.759598\pi\)
\(230\) 16.7000 1.10116
\(231\) 0.0923344 1.88694i 0.00607516 0.124152i
\(232\) 7.23170i 0.474784i
\(233\) −1.68228 + 2.91380i −0.110210 + 0.190889i −0.915855 0.401510i \(-0.868486\pi\)
0.805645 + 0.592399i \(0.201819\pi\)
\(234\) 5.61416 22.0418i 0.367009 1.44092i
\(235\) −1.83714 3.18202i −0.119842 0.207572i
\(236\) −10.6910 6.17244i −0.695923 0.401791i
\(237\) −0.351987 −0.0228640
\(238\) −23.9540 + 12.3099i −1.55271 + 0.797934i
\(239\) 19.8798i 1.28592i −0.765902 0.642958i \(-0.777707\pi\)
0.765902 0.642958i \(-0.222293\pi\)
\(240\) 1.50615 + 0.869579i 0.0972219 + 0.0561311i
\(241\) 16.3435 9.43595i 1.05278 0.607823i 0.129354 0.991599i \(-0.458710\pi\)
0.923426 + 0.383776i \(0.125376\pi\)
\(242\) −9.09123 + 5.24882i −0.584406 + 0.337407i
\(243\) 2.38030 4.12280i 0.152696 0.264477i
\(244\) 5.12458 0.328068
\(245\) −22.9882 + 10.4265i −1.46866 + 0.666125i
\(246\) 0.805663 0.0513672
\(247\) 10.9353 3.07589i 0.695795 0.195714i
\(248\) 0.817978 + 1.41678i 0.0519417 + 0.0899656i
\(249\) 1.18651 0.685030i 0.0751918 0.0434120i
\(250\) 11.5100 19.9359i 0.727956 1.26086i
\(251\) 9.79601 0.618319 0.309159 0.951010i \(-0.399952\pi\)
0.309159 + 0.951010i \(0.399952\pi\)
\(252\) −9.03666 17.5845i −0.569256 1.10772i
\(253\) 8.69877i 0.546887i
\(254\) 35.9206 + 20.7388i 2.25386 + 1.30127i
\(255\) −2.67497 + 1.54439i −0.167513 + 0.0967136i
\(256\) −2.42488 4.20002i −0.151555 0.262501i
\(257\) 10.4697 18.1341i 0.653083 1.13117i −0.329287 0.944230i \(-0.606808\pi\)
0.982371 0.186944i \(-0.0598583\pi\)
\(258\) 0.544170i 0.0338785i
\(259\) −0.642031 + 13.1205i −0.0398939 + 0.815271i
\(260\) −23.4320 22.8581i −1.45319 1.41760i
\(261\) −9.75285 + 16.8924i −0.603686 + 1.04562i
\(262\) 35.1105 20.2711i 2.16914 1.25235i
\(263\) 3.69340 + 6.39715i 0.227745 + 0.394465i 0.957139 0.289628i \(-0.0935316\pi\)
−0.729395 + 0.684093i \(0.760198\pi\)
\(264\) 0.392865 0.680462i 0.0241792 0.0418795i
\(265\) 21.7639i 1.33694i
\(266\) 9.59806 14.8924i 0.588495 0.913114i
\(267\) 2.28919i 0.140096i
\(268\) −8.52733 4.92326i −0.520890 0.300736i
\(269\) −11.3946 19.7360i −0.694740 1.20332i −0.970268 0.242032i \(-0.922186\pi\)
0.275529 0.961293i \(-0.411147\pi\)
\(270\) −4.09060 7.08513i −0.248946 0.431187i
\(271\) −3.60814 2.08316i −0.219179 0.126543i 0.386391 0.922335i \(-0.373722\pi\)
−0.605570 + 0.795792i \(0.707055\pi\)
\(272\) 12.9143 0.783042
\(273\) 0.381158 + 1.66304i 0.0230687 + 0.100652i
\(274\) 13.6646 0.825507
\(275\) 27.6717 + 15.9763i 1.66867 + 0.963406i
\(276\) −0.490572 0.849696i −0.0295290 0.0511457i
\(277\) 0.388551 + 0.672989i 0.0233457 + 0.0404360i 0.877462 0.479646i \(-0.159235\pi\)
−0.854116 + 0.520082i \(0.825901\pi\)
\(278\) 4.47028 + 2.58092i 0.268110 + 0.154793i
\(279\) 4.41259i 0.264175i
\(280\) −10.4858 0.513106i −0.626648 0.0306639i
\(281\) 11.8988i 0.709824i −0.934900 0.354912i \(-0.884511\pi\)
0.934900 0.354912i \(-0.115489\pi\)
\(282\) −0.193674 + 0.335454i −0.0115331 + 0.0199760i
\(283\) −7.95202 13.7733i −0.472698 0.818738i 0.526813 0.849981i \(-0.323387\pi\)
−0.999512 + 0.0312434i \(0.990053\pi\)
\(284\) −19.2024 + 11.0865i −1.13945 + 0.657864i
\(285\) 1.01599 1.75975i 0.0601823 0.104239i
\(286\) 21.3646 21.9010i 1.26331 1.29503i
\(287\) 4.98717 2.56290i 0.294383 0.151283i
\(288\) 23.5431i 1.38729i
\(289\) −2.96801 + 5.14075i −0.174589 + 0.302397i
\(290\) 25.1857 + 43.6229i 1.47896 + 2.56163i
\(291\) 0.210500 0.121532i 0.0123397 0.00712433i
\(292\) 6.73478 + 3.88833i 0.394123 + 0.227547i
\(293\) 6.73698i 0.393579i −0.980446 0.196789i \(-0.936949\pi\)
0.980446 0.196789i \(-0.0630515\pi\)
\(294\) 2.16364 + 1.54918i 0.126186 + 0.0903500i
\(295\) −17.6811 −1.02944
\(296\) −2.73172 + 4.73148i −0.158778 + 0.275011i
\(297\) 3.69054 2.13073i 0.214147 0.123638i
\(298\) 0.122591 + 0.212333i 0.00710148 + 0.0123001i
\(299\) −2.12719 7.56250i −0.123019 0.437350i
\(300\) −3.60397 −0.208075
\(301\) 1.73106 + 3.36849i 0.0997768 + 0.194157i
\(302\) −25.0874 −1.44362
\(303\) −0.383465 + 0.664180i −0.0220295 + 0.0381562i
\(304\) −7.35756 + 4.24789i −0.421985 + 0.243633i
\(305\) 6.35642 3.66988i 0.363968 0.210137i
\(306\) −26.1646 15.1061i −1.49573 0.863561i
\(307\) 14.7179i 0.839996i 0.907525 + 0.419998i \(0.137969\pi\)
−0.907525 + 0.419998i \(0.862031\pi\)
\(308\) 1.29978 26.5622i 0.0740617 1.51352i
\(309\) 2.58174 0.146870
\(310\) 9.86840 + 5.69752i 0.560487 + 0.323597i
\(311\) 14.3289 + 24.8184i 0.812517 + 1.40732i 0.911097 + 0.412191i \(0.135236\pi\)
−0.0985808 + 0.995129i \(0.531430\pi\)
\(312\) −0.175147 + 0.687648i −0.00991577 + 0.0389304i
\(313\) 16.4125 28.4274i 0.927692 1.60681i 0.140518 0.990078i \(-0.455123\pi\)
0.787174 0.616732i \(-0.211544\pi\)
\(314\) 27.9435i 1.57694i
\(315\) −23.8017 15.3400i −1.34108 0.864312i
\(316\) −4.95488 −0.278734
\(317\) −9.01715 5.20605i −0.506453 0.292401i 0.224921 0.974377i \(-0.427788\pi\)
−0.731375 + 0.681976i \(0.761121\pi\)
\(318\) −1.98699 + 1.14719i −0.111425 + 0.0643313i
\(319\) −22.7225 + 13.1188i −1.27222 + 0.734515i
\(320\) 35.8100 + 20.6749i 2.00184 + 1.15576i
\(321\) 1.73826 0.0970201
\(322\) −10.2992 6.63772i −0.573949 0.369905i
\(323\) 15.0887i 0.839558i
\(324\) 10.9686 18.9981i 0.609364 1.05545i
\(325\) −27.9639 7.12256i −1.55116 0.395089i
\(326\) 19.8186 + 34.3268i 1.09765 + 1.90118i
\(327\) 1.02981 + 0.594562i 0.0569487 + 0.0328793i
\(328\) 2.33205 0.128766
\(329\) −0.131758 + 2.69261i −0.00726406 + 0.148448i
\(330\) 5.47290i 0.301273i
\(331\) 3.86260 + 2.23007i 0.212308 + 0.122576i 0.602383 0.798207i \(-0.294218\pi\)
−0.390076 + 0.920783i \(0.627551\pi\)
\(332\) 16.7023 9.64307i 0.916657 0.529232i
\(333\) −12.7620 + 7.36813i −0.699352 + 0.403771i
\(334\) 1.03370 1.79043i 0.0565617 0.0979677i
\(335\) −14.1028 −0.770519
\(336\) −0.583240 1.13493i −0.0318183 0.0619156i
\(337\) 10.7949 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(338\) −13.2182 + 24.2646i −0.718975 + 1.31982i
\(339\) 1.56886 + 2.71734i 0.0852087 + 0.147586i
\(340\) −37.6551 + 21.7402i −2.04214 + 1.17903i
\(341\) −2.96775 + 5.14030i −0.160713 + 0.278363i
\(342\) 19.8755 1.07474
\(343\) 18.3214 + 2.70687i 0.989261 + 0.146157i
\(344\) 1.57514i 0.0849259i
\(345\) −1.21699 0.702630i −0.0655206 0.0378283i
\(346\) −4.52286 + 2.61127i −0.243150 + 0.140383i
\(347\) 2.03516 + 3.52499i 0.109253 + 0.189232i 0.915468 0.402391i \(-0.131821\pi\)
−0.806215 + 0.591623i \(0.798487\pi\)
\(348\) 1.47969 2.56290i 0.0793198 0.137386i
\(349\) 23.8727i 1.27788i 0.769258 + 0.638938i \(0.220626\pi\)
−0.769258 + 0.638938i \(0.779374\pi\)
\(350\) −40.0309 + 20.5718i −2.13974 + 1.09961i
\(351\) −2.68741 + 2.75489i −0.143444 + 0.147045i
\(352\) −15.8343 + 27.4257i −0.843969 + 1.46180i
\(353\) −22.5894 + 13.0420i −1.20231 + 0.694154i −0.961068 0.276311i \(-0.910888\pi\)
−0.241242 + 0.970465i \(0.577555\pi\)
\(354\) 0.931987 + 1.61425i 0.0495346 + 0.0857964i
\(355\) −15.8788 + 27.5030i −0.842762 + 1.45971i
\(356\) 32.2246i 1.70790i
\(357\) 2.26354 + 0.110763i 0.119799 + 0.00586217i
\(358\) 30.7613i 1.62579i
\(359\) 19.8271 + 11.4472i 1.04644 + 0.604160i 0.921649 0.388024i \(-0.126842\pi\)
0.124786 + 0.992184i \(0.460176\pi\)
\(360\) −5.88855 10.1993i −0.310354 0.537549i
\(361\) −4.53687 7.85809i −0.238783 0.413584i
\(362\) 16.8958 + 9.75478i 0.888022 + 0.512700i
\(363\) 0.883349 0.0463638
\(364\) 5.36551 + 23.4104i 0.281229 + 1.22704i
\(365\) 11.1382 0.583002
\(366\) −0.670104 0.386885i −0.0350269 0.0202228i
\(367\) 9.08003 + 15.7271i 0.473974 + 0.820946i 0.999556 0.0297964i \(-0.00948589\pi\)
−0.525582 + 0.850743i \(0.676153\pi\)
\(368\) 2.93771 + 5.08826i 0.153139 + 0.265244i
\(369\) 5.44742 + 3.14507i 0.283581 + 0.163726i
\(370\) 38.0548i 1.97838i
\(371\) −8.65045 + 13.4221i −0.449109 + 0.696842i
\(372\) 0.669473i 0.0347105i
\(373\) 7.93457 13.7431i 0.410836 0.711590i −0.584145 0.811649i \(-0.698570\pi\)
0.994981 + 0.100060i \(0.0319034\pi\)
\(374\) −20.3197 35.1948i −1.05071 1.81988i
\(375\) −1.67755 + 0.968536i −0.0866285 + 0.0500150i
\(376\) −0.560605 + 0.970997i −0.0289110 + 0.0500754i
\(377\) 16.5463 16.9618i 0.852179 0.873575i
\(378\) −0.293375 + 5.99540i −0.0150896 + 0.308370i
\(379\) 27.7634i 1.42611i −0.701108 0.713055i \(-0.747311\pi\)
0.701108 0.713055i \(-0.252689\pi\)
\(380\) 14.3020 24.7718i 0.733678 1.27077i
\(381\) −1.74511 3.02262i −0.0894048 0.154854i
\(382\) 32.3674 18.6873i 1.65606 0.956128i
\(383\) −22.7304 13.1234i −1.16147 0.670576i −0.209815 0.977741i \(-0.567286\pi\)
−0.951656 + 0.307165i \(0.900620\pi\)
\(384\) 1.52172i 0.0776548i
\(385\) −17.4099 33.8780i −0.887289 1.72658i
\(386\) −41.9908 −2.13728
\(387\) −2.12428 + 3.67936i −0.107983 + 0.187032i
\(388\) 2.96317 1.71079i 0.150432 0.0868521i
\(389\) −12.6277 21.8718i −0.640250 1.10895i −0.985377 0.170389i \(-0.945497\pi\)
0.345127 0.938556i \(-0.387836\pi\)
\(390\) 1.33834 + 4.75800i 0.0677693 + 0.240931i
\(391\) −10.4349 −0.527714
\(392\) 6.26283 + 4.48422i 0.316321 + 0.226487i
\(393\) −3.41151 −0.172088
\(394\) 8.14084 14.1003i 0.410129 0.710365i
\(395\) −6.14592 + 3.54835i −0.309235 + 0.178537i
\(396\) 25.8363 14.9166i 1.29833 0.749588i
\(397\) 12.9701 + 7.48827i 0.650949 + 0.375826i 0.788820 0.614625i \(-0.210692\pi\)
−0.137871 + 0.990450i \(0.544026\pi\)
\(398\) 13.9080i 0.697143i
\(399\) −1.32603 + 0.681443i −0.0663843 + 0.0341148i
\(400\) 21.5817 1.07909
\(401\) 4.62811 + 2.67204i 0.231117 + 0.133435i 0.611087 0.791563i \(-0.290733\pi\)
−0.379970 + 0.924999i \(0.624066\pi\)
\(402\) 0.743371 + 1.28756i 0.0370760 + 0.0642175i
\(403\) 1.32309 5.19458i 0.0659076 0.258760i
\(404\) −5.39798 + 9.34957i −0.268559 + 0.465159i
\(405\) 31.4198i 1.56126i
\(406\) 1.80630 36.9135i 0.0896451 1.83199i
\(407\) −19.8222 −0.982549
\(408\) 0.816269 + 0.471273i 0.0404113 + 0.0233315i
\(409\) 2.91433 1.68259i 0.144104 0.0831985i −0.426214 0.904622i \(-0.640153\pi\)
0.570319 + 0.821424i \(0.306820\pi\)
\(410\) 14.0674 8.12181i 0.694739 0.401107i
\(411\) −0.995789 0.574919i −0.0491186 0.0283587i
\(412\) 36.3428 1.79048
\(413\) 10.9042 + 7.02769i 0.536562 + 0.345810i
\(414\) 13.7453i 0.675542i
\(415\) 13.8114 23.9221i 0.677977 1.17429i
\(416\) 7.05925 27.7154i 0.346108 1.35886i
\(417\) −0.217178 0.376163i −0.0106352 0.0184208i
\(418\) 23.1533 + 13.3675i 1.13246 + 0.653828i
\(419\) −28.8639 −1.41010 −0.705048 0.709160i \(-0.749074\pi\)
−0.705048 + 0.709160i \(0.749074\pi\)
\(420\) 3.61117 + 2.32737i 0.176207 + 0.113564i
\(421\) 16.6125i 0.809644i 0.914395 + 0.404822i \(0.132667\pi\)
−0.914395 + 0.404822i \(0.867333\pi\)
\(422\) −36.8977 21.3029i −1.79615 1.03701i
\(423\) −2.61902 + 1.51209i −0.127341 + 0.0735205i
\(424\) −5.75151 + 3.32064i −0.279318 + 0.161264i
\(425\) −19.1648 + 33.1945i −0.929631 + 1.61017i
\(426\) 3.34795 0.162209
\(427\) −5.37877 0.263201i −0.260297 0.0127372i
\(428\) 24.4692 1.18276
\(429\) −2.47837 + 0.697119i −0.119657 + 0.0336572i
\(430\) 5.48572 + 9.50154i 0.264545 + 0.458205i
\(431\) −17.8015 + 10.2777i −0.857469 + 0.495060i −0.863164 0.504924i \(-0.831521\pi\)
0.00569505 + 0.999984i \(0.498187\pi\)
\(432\) 1.43916 2.49270i 0.0692417 0.119930i
\(433\) −19.4092 −0.932748 −0.466374 0.884588i \(-0.654440\pi\)
−0.466374 + 0.884588i \(0.654440\pi\)
\(434\) −3.82141 7.43613i −0.183434 0.356945i
\(435\) 4.23862i 0.203226i
\(436\) 14.4965 + 8.36956i 0.694257 + 0.400829i
\(437\) 5.94500 3.43235i 0.284388 0.164191i
\(438\) −0.587106 1.01690i −0.0280530 0.0485892i
\(439\) 6.71256 11.6265i 0.320373 0.554902i −0.660192 0.751097i \(-0.729525\pi\)
0.980565 + 0.196195i \(0.0628585\pi\)
\(440\) 15.8417i 0.755225i
\(441\) 8.58174 + 18.9209i 0.408654 + 0.900994i
\(442\) 26.2720 + 25.6285i 1.24963 + 1.21902i
\(443\) 16.7766 29.0579i 0.797080 1.38058i −0.124430 0.992228i \(-0.539710\pi\)
0.921510 0.388354i \(-0.126956\pi\)
\(444\) 1.93623 1.11788i 0.0918895 0.0530524i
\(445\) 23.0771 + 39.9707i 1.09396 + 1.89479i
\(446\) 29.4528 51.0138i 1.39463 2.41557i
\(447\) 0.0206313i 0.000975829i
\(448\) −13.8670 26.9839i −0.655153 1.27487i
\(449\) 34.4284i 1.62478i 0.583117 + 0.812388i \(0.301833\pi\)
−0.583117 + 0.812388i \(0.698167\pi\)
\(450\) −43.7251 25.2447i −2.06122 1.19005i
\(451\) 4.23052 + 7.32748i 0.199208 + 0.345038i
\(452\) 22.0846 + 38.2517i 1.03877 + 1.79921i
\(453\) 1.82821 + 1.05552i 0.0858969 + 0.0495926i
\(454\) −24.1691 −1.13431
\(455\) 23.4202 + 25.1953i 1.09796 + 1.18118i
\(456\) −0.620064 −0.0290371
\(457\) −11.6735 6.73967i −0.546061 0.315269i 0.201471 0.979495i \(-0.435428\pi\)
−0.747532 + 0.664226i \(0.768761\pi\)
\(458\) 9.25771 + 16.0348i 0.432584 + 0.749258i
\(459\) 2.55598 + 4.42710i 0.119303 + 0.206639i
\(460\) −17.1314 9.89082i −0.798756 0.461162i
\(461\) 1.35900i 0.0632951i 0.999499 + 0.0316476i \(0.0100754\pi\)
−0.999499 + 0.0316476i \(0.989925\pi\)
\(462\) −2.17530 + 3.37522i −0.101204 + 0.157030i
\(463\) 2.49836i 0.116109i 0.998313 + 0.0580543i \(0.0184897\pi\)
−0.998313 + 0.0580543i \(0.981510\pi\)
\(464\) −8.86088 + 15.3475i −0.411356 + 0.712489i
\(465\) −0.479431 0.830399i −0.0222331 0.0385088i
\(466\) 6.19325 3.57567i 0.286897 0.165640i
\(467\) −13.1091 + 22.7056i −0.606617 + 1.05069i 0.385176 + 0.922843i \(0.374141\pi\)
−0.991794 + 0.127849i \(0.959193\pi\)
\(468\) −18.8138 + 19.2861i −0.869668 + 0.891502i
\(469\) 8.69744 + 5.60542i 0.401610 + 0.258834i
\(470\) 7.80965i 0.360232i
\(471\) −1.17569 + 2.03635i −0.0541728 + 0.0938301i
\(472\) 2.69771 + 4.67257i 0.124172 + 0.215072i
\(473\) −4.94921 + 2.85743i −0.227565 + 0.131385i
\(474\) 0.647913 + 0.374073i 0.0297596 + 0.0171817i
\(475\) 25.2156i 1.15697i
\(476\) 31.8635 + 1.55919i 1.46046 + 0.0714653i
\(477\) −17.9132 −0.820188
\(478\) −21.1271 + 36.5933i −0.966332 + 1.67374i
\(479\) 20.6513 11.9230i 0.943583 0.544778i 0.0525011 0.998621i \(-0.483281\pi\)
0.891082 + 0.453843i \(0.149947\pi\)
\(480\) −2.55798 4.43055i −0.116755 0.202226i
\(481\) 17.2329 4.84730i 0.785754 0.221018i
\(482\) −40.1120 −1.82705
\(483\) 0.471265 + 0.917038i 0.0214433 + 0.0417267i
\(484\) 12.4348 0.565217
\(485\) 2.45030 4.24405i 0.111263 0.192712i
\(486\) −8.76296 + 5.05930i −0.397496 + 0.229494i
\(487\) −9.17524 + 5.29733i −0.415770 + 0.240045i −0.693266 0.720682i \(-0.743829\pi\)
0.277496 + 0.960727i \(0.410496\pi\)
\(488\) −1.93967 1.11987i −0.0878047 0.0506941i
\(489\) 3.33536i 0.150830i
\(490\) 53.3957 + 5.23820i 2.41217 + 0.236638i
\(491\) 19.7704 0.892224 0.446112 0.894977i \(-0.352808\pi\)
0.446112 + 0.894977i \(0.352808\pi\)
\(492\) −0.826476 0.477166i −0.0372604 0.0215123i
\(493\) −15.7371 27.2575i −0.708764 1.22762i
\(494\) −23.3978 5.95953i −1.05272 0.268132i
\(495\) 21.3646 37.0045i 0.960266 1.66323i
\(496\) 4.00902i 0.180010i
\(497\) 20.7243 10.6502i 0.929612 0.477726i
\(498\) −2.91205 −0.130492
\(499\) −11.4234 6.59530i −0.511381 0.295246i 0.222020 0.975042i \(-0.428735\pi\)
−0.733401 + 0.679796i \(0.762068\pi\)
\(500\) −23.6147 + 13.6339i −1.05608 + 0.609728i
\(501\) −0.150660 + 0.0869833i −0.00673097 + 0.00388613i
\(502\) −18.0318 10.4107i −0.804798 0.464651i
\(503\) 37.9046 1.69008 0.845040 0.534703i \(-0.179576\pi\)
0.845040 + 0.534703i \(0.179576\pi\)
\(504\) −0.422322 + 8.63056i −0.0188117 + 0.384436i
\(505\) 15.4627i 0.688080i
\(506\) 9.24457 16.0121i 0.410971 0.711823i
\(507\) 1.98416 1.21212i 0.0881197 0.0538320i
\(508\) −24.5657 42.5490i −1.08993 1.88781i
\(509\) −23.9565 13.8313i −1.06185 0.613062i −0.135909 0.990721i \(-0.543396\pi\)
−0.925944 + 0.377660i \(0.876729\pi\)
\(510\) 6.56518 0.290711
\(511\) −6.86913 4.42710i −0.303872 0.195843i
\(512\) 27.3244i 1.20758i
\(513\) −2.91241 1.68148i −0.128586 0.0742392i
\(514\) −38.5438 + 22.2533i −1.70010 + 0.981551i
\(515\) 45.0788 26.0263i 1.98641 1.14685i
\(516\) 0.322293 0.558227i 0.0141881 0.0245746i
\(517\) −4.06792 −0.178907
\(518\) 15.1256 23.4690i 0.664580 1.03117i
\(519\) 0.439464 0.0192903
\(520\) 3.87392 + 13.7724i 0.169883 + 0.603960i
\(521\) −7.78339 13.4812i −0.340996 0.590623i 0.643622 0.765344i \(-0.277431\pi\)
−0.984618 + 0.174721i \(0.944098\pi\)
\(522\) 35.9047 20.7296i 1.57151 0.907310i
\(523\) −13.6169 + 23.5852i −0.595425 + 1.03131i 0.398061 + 0.917359i \(0.369683\pi\)
−0.993487 + 0.113948i \(0.963650\pi\)
\(524\) −48.0234 −2.09791
\(525\) 3.78273 + 0.185101i 0.165092 + 0.00807849i
\(526\) 15.7005i 0.684577i
\(527\) −6.16620 3.56006i −0.268604 0.155079i
\(528\) 1.66752 0.962741i 0.0725694 0.0418979i
\(529\) 9.12630 + 15.8072i 0.396796 + 0.687270i
\(530\) −23.1294 + 40.0614i −1.00468 + 1.74015i
\(531\) 14.5528i 0.631538i
\(532\) −18.6663 + 9.59258i −0.809286 + 0.415891i
\(533\) −5.46977 5.33581i −0.236922 0.231119i
\(534\) 2.43283 4.21378i 0.105279 0.182348i
\(535\) 30.3511 17.5232i 1.31219 0.757594i
\(536\) 2.15175 + 3.72693i 0.0929413 + 0.160979i
\(537\) −1.29424 + 2.24169i −0.0558507 + 0.0967362i
\(538\) 48.4381i 2.08832i
\(539\) −2.72850 + 27.8130i −0.117525 + 1.19799i
\(540\) 9.69089i 0.417029i
\(541\) 20.9626 + 12.1027i 0.901251 + 0.520338i 0.877606 0.479383i \(-0.159139\pi\)
0.0236453 + 0.999720i \(0.492473\pi\)
\(542\) 4.42774 + 7.66907i 0.190188 + 0.329415i
\(543\) −0.820839 1.42174i −0.0352256 0.0610125i
\(544\) −32.8994 18.9945i −1.41055 0.814381i
\(545\) 23.9749 1.02697
\(546\) 1.06578 3.46628i 0.0456112 0.148343i
\(547\) −22.2177 −0.949960 −0.474980 0.879997i \(-0.657545\pi\)
−0.474980 + 0.879997i \(0.657545\pi\)
\(548\) −14.0176 8.09305i −0.598801 0.345718i
\(549\) −3.02057 5.23178i −0.128915 0.223287i
\(550\) −33.9574 58.8160i −1.44795 2.50792i
\(551\) 17.9316 + 10.3528i 0.763913 + 0.441045i
\(552\) 0.428817i 0.0182517i
\(553\) 5.20065 + 0.254485i 0.221154 + 0.0108218i
\(554\) 1.65172i 0.0701749i
\(555\) 1.60111 2.77320i 0.0679632 0.117716i
\(556\) −3.05718 5.29519i −0.129653 0.224566i
\(557\) 19.3300 11.1602i 0.819040 0.472873i −0.0310455 0.999518i \(-0.509884\pi\)
0.850085 + 0.526645i \(0.176550\pi\)
\(558\) 4.68946 8.12238i 0.198521 0.343848i
\(559\) 3.60397 3.69445i 0.152432 0.156259i
\(560\) −21.6249 13.9370i −0.913818 0.588948i
\(561\) 3.41970i 0.144380i
\(562\) −12.6454 + 21.9025i −0.533415 + 0.923901i
\(563\) 13.3519 + 23.1262i 0.562717 + 0.974655i 0.997258 + 0.0740027i \(0.0235773\pi\)
−0.434541 + 0.900652i \(0.643089\pi\)
\(564\) 0.397355 0.229413i 0.0167317 0.00966004i
\(565\) 54.7865 + 31.6310i 2.30489 + 1.33073i
\(566\) 33.8039i 1.42088i
\(567\) −12.4884 + 19.3771i −0.524462 + 0.813760i
\(568\) 9.69090 0.406621
\(569\) 3.30510 5.72461i 0.138557 0.239988i −0.788393 0.615171i \(-0.789087\pi\)
0.926951 + 0.375183i \(0.122420\pi\)
\(570\) −3.74034 + 2.15949i −0.156666 + 0.0904509i
\(571\) −21.0643 36.4844i −0.881513 1.52683i −0.849659 0.527333i \(-0.823192\pi\)
−0.0318546 0.999493i \(-0.510141\pi\)
\(572\) −34.8877 + 9.81325i −1.45873 + 0.410313i
\(573\) −3.14498 −0.131383
\(574\) −11.9037 0.582489i −0.496853 0.0243126i
\(575\) −17.4383 −0.727227
\(576\) 17.0169 29.4741i 0.709037 1.22809i
\(577\) 13.7559 7.94195i 0.572664 0.330628i −0.185549 0.982635i \(-0.559406\pi\)
0.758213 + 0.652007i \(0.226073\pi\)
\(578\) 10.9266 6.30848i 0.454487 0.262398i
\(579\) 3.06003 + 1.76671i 0.127170 + 0.0734219i
\(580\) 59.6665i 2.47752i
\(581\) −18.0260 + 9.26354i −0.747845 + 0.384316i
\(582\) −0.516630 −0.0214150
\(583\) −20.8674 12.0478i −0.864238 0.498968i
\(584\) −1.69942 2.94349i −0.0703226 0.121802i
\(585\) −9.52478 + 37.3953i −0.393801 + 1.54610i
\(586\) −7.15969 + 12.4010i −0.295764 + 0.512279i
\(587\) 18.5676i 0.766366i 0.923672 + 0.383183i \(0.125172\pi\)
−0.923672 + 0.383183i \(0.874828\pi\)
\(588\) −1.30201 2.87065i −0.0536940 0.118384i
\(589\) 4.68404 0.193003
\(590\) 32.5462 + 18.7905i 1.33990 + 0.773594i
\(591\) −1.18651 + 0.685030i −0.0488064 + 0.0281784i
\(592\) −11.5948 + 6.69426i −0.476543 + 0.275132i
\(593\) −17.8487 10.3050i −0.732960 0.423175i 0.0865442 0.996248i \(-0.472418\pi\)
−0.819504 + 0.573073i \(0.805751\pi\)
\(594\) −9.05770 −0.371642
\(595\) 40.6394 20.8845i 1.66605 0.856183i
\(596\) 0.290425i 0.0118963i
\(597\) 0.585159 1.01353i 0.0239490 0.0414809i
\(598\) −4.12143 + 16.1812i −0.168538 + 0.661697i
\(599\) 6.80224 + 11.7818i 0.277932 + 0.481393i 0.970871 0.239604i \(-0.0770176\pi\)
−0.692939 + 0.720997i \(0.743684\pi\)
\(600\) 1.36411 + 0.787571i 0.0556897 + 0.0321524i
\(601\) −12.1503 −0.495621 −0.247810 0.968809i \(-0.579711\pi\)
−0.247810 + 0.968809i \(0.579711\pi\)
\(602\) 0.393431 8.04015i 0.0160351 0.327692i
\(603\) 11.6076i 0.472698i
\(604\) 25.7355 + 14.8584i 1.04716 + 0.604579i
\(605\) 15.4238 8.90496i 0.627068 0.362038i
\(606\) 1.41171 0.815050i 0.0573467 0.0331092i
\(607\) −17.6166 + 30.5128i −0.715035 + 1.23848i 0.247911 + 0.968783i \(0.420256\pi\)
−0.962946 + 0.269695i \(0.913077\pi\)
\(608\) 24.9914 1.01354
\(609\) −1.68472 + 2.61403i −0.0682682 + 0.105926i
\(610\) −15.6006 −0.631650
\(611\) 3.53655 0.994767i 0.143074 0.0402440i
\(612\) 17.8937 + 30.9928i 0.723310 + 1.25281i
\(613\) 26.0345 15.0310i 1.05152 0.607097i 0.128448 0.991716i \(-0.459000\pi\)
0.923075 + 0.384619i \(0.125667\pi\)
\(614\) 15.6414 27.0917i 0.631236 1.09333i
\(615\) −1.36686 −0.0551170
\(616\) −6.29658 + 9.76984i −0.253697 + 0.393638i
\(617\) 7.01712i 0.282499i −0.989974 0.141249i \(-0.954888\pi\)
0.989974 0.141249i \(-0.0451119\pi\)
\(618\) −4.75228 2.74373i −0.191165 0.110369i
\(619\) −37.9736 + 21.9241i −1.52629 + 0.881203i −0.526776 + 0.850004i \(0.676599\pi\)
−0.999513 + 0.0311993i \(0.990067\pi\)
\(620\) −6.74889 11.6894i −0.271042 0.469458i
\(621\) −1.16286 + 2.01413i −0.0466640 + 0.0808244i
\(622\) 60.9118i 2.44234i
\(623\) 1.65507 33.8230i 0.0663091 1.35509i
\(624\) −1.21427 + 1.24476i −0.0486097 + 0.0498302i
\(625\) 0.481145 0.833367i 0.0192458 0.0333347i
\(626\) −60.4221 + 34.8847i −2.41495 + 1.39427i
\(627\) −1.12484 1.94829i −0.0449219 0.0778070i
\(628\) −16.5500 + 28.6654i −0.660416 + 1.14387i
\(629\) 23.7783i 0.948103i
\(630\) 27.5100 + 53.5320i 1.09602 + 2.13276i
\(631\) 23.4936i 0.935267i −0.883922 0.467634i \(-0.845107\pi\)
0.883922 0.467634i \(-0.154893\pi\)
\(632\) 1.87544 + 1.08278i 0.0746008 + 0.0430708i
\(633\) 1.79258 + 3.10485i 0.0712488 + 0.123407i
\(634\) 11.0654 + 19.1659i 0.439464 + 0.761173i
\(635\) −60.9415 35.1846i −2.41839 1.39626i
\(636\) 2.71777 0.107766
\(637\) −4.42928 24.8472i −0.175494 0.984480i
\(638\) 55.7680 2.20788
\(639\) 22.6369 + 13.0694i 0.895500 + 0.517017i
\(640\) −15.3403 26.5702i −0.606378 1.05028i
\(641\) 3.70233 + 6.41262i 0.146233 + 0.253283i 0.929832 0.367983i \(-0.119952\pi\)
−0.783599 + 0.621267i \(0.786618\pi\)
\(642\) −3.19966 1.84732i −0.126281 0.0729081i
\(643\) 39.9607i 1.57590i −0.615742 0.787948i \(-0.711144\pi\)
0.615742 0.787948i \(-0.288856\pi\)
\(644\) 6.63393 + 12.9090i 0.261413 + 0.508687i
\(645\) 0.923218i 0.0363517i
\(646\) −16.0354 + 27.7742i −0.630906 + 1.09276i
\(647\) 13.6234 + 23.5964i 0.535591 + 0.927670i 0.999134 + 0.0415963i \(0.0132443\pi\)
−0.463544 + 0.886074i \(0.653422\pi\)
\(648\) −8.30326 + 4.79389i −0.326183 + 0.188322i
\(649\) −9.78770 + 16.9528i −0.384201 + 0.665456i
\(650\) 43.9046 + 42.8292i 1.72208 + 1.67990i
\(651\) −0.0343844 + 0.702679i −0.00134763 + 0.0275402i
\(652\) 46.9514i 1.83876i
\(653\) −9.57255 + 16.5801i −0.374603 + 0.648831i −0.990267 0.139177i \(-0.955554\pi\)
0.615665 + 0.788008i \(0.288888\pi\)
\(654\) −1.26373 2.18885i −0.0494159 0.0855909i
\(655\) −59.5672 + 34.3911i −2.32748 + 1.34377i
\(656\) 4.94921 + 2.85743i 0.193234 + 0.111564i
\(657\) 9.16755i 0.357660i
\(658\) 3.10409 4.81633i 0.121010 0.187760i
\(659\) 41.5725 1.61943 0.809717 0.586820i \(-0.199620\pi\)
0.809717 + 0.586820i \(0.199620\pi\)
\(660\) −3.24141 + 5.61428i −0.126172 + 0.218536i
\(661\) 29.6221 17.1023i 1.15217 0.665203i 0.202752 0.979230i \(-0.435012\pi\)
0.949414 + 0.314027i \(0.101678\pi\)
\(662\) −4.74000 8.20992i −0.184225 0.319088i
\(663\) −0.836251 2.97300i −0.0324773 0.115462i
\(664\) −8.42915 −0.327115
\(665\) −16.2837 + 25.2660i −0.631455 + 0.979772i
\(666\) 31.3218 1.21369
\(667\) 7.15969 12.4010i 0.277224 0.480167i
\(668\) −2.12081 + 1.22445i −0.0820567 + 0.0473755i
\(669\) −4.29268 + 2.47838i −0.165965 + 0.0958197i
\(670\) 25.9595 + 14.9877i 1.00290 + 0.579025i
\(671\) 8.12611i 0.313705i
\(672\) −0.183456 + 3.74910i −0.00707697 + 0.144625i
\(673\) −21.4308 −0.826098 −0.413049 0.910709i \(-0.635536\pi\)
−0.413049 + 0.910709i \(0.635536\pi\)
\(674\) −19.8704 11.4722i −0.765381 0.441893i
\(675\) 4.27145 + 7.39837i 0.164408 + 0.284763i
\(676\) 27.9308 17.0628i 1.07426 0.656261i
\(677\) −4.89083 + 8.47117i −0.187970 + 0.325573i −0.944573 0.328301i \(-0.893524\pi\)
0.756603 + 0.653874i \(0.226857\pi\)
\(678\) 6.66919i 0.256129i
\(679\) −3.19802 + 1.64346i −0.122729 + 0.0630700i
\(680\) 19.0034 0.728748
\(681\) 1.76130 + 1.01688i 0.0674930 + 0.0389671i
\(682\) 10.9256 6.30793i 0.418365 0.241543i
\(683\) 13.2297 7.63818i 0.506221 0.292267i −0.225058 0.974345i \(-0.572257\pi\)
0.731279 + 0.682079i \(0.238924\pi\)
\(684\) −20.3889 11.7716i −0.779590 0.450097i
\(685\) −23.1828 −0.885769
\(686\) −30.8480 24.4536i −1.17778 0.933642i
\(687\) 1.55802i 0.0594423i
\(688\) −1.92999 + 3.34285i −0.0735803 + 0.127445i
\(689\) 21.0877 + 5.37115i 0.803378 + 0.204625i
\(690\) 1.49343 + 2.58670i 0.0568540 + 0.0984741i
\(691\) 36.7690 + 21.2286i 1.39876 + 0.807573i 0.994263 0.106967i \(-0.0341138\pi\)
0.404496 + 0.914540i \(0.367447\pi\)
\(692\) 6.18627 0.235167
\(693\) −27.8840 + 14.3295i −1.05922 + 0.544334i
\(694\) 8.65141i 0.328403i
\(695\) −7.58412 4.37869i −0.287682 0.166093i
\(696\) −1.12013 + 0.646710i −0.0424586 + 0.0245135i
\(697\) −8.78991 + 5.07486i −0.332942 + 0.192224i
\(698\) 25.3706 43.9432i 0.960291 1.66327i
\(699\) −0.601767 −0.0227609
\(700\) 53.2489 + 2.60565i 2.01262 + 0.0984842i
\(701\) 2.79985 0.105749 0.0528744 0.998601i \(-0.483162\pi\)
0.0528744 + 0.998601i \(0.483162\pi\)
\(702\) 7.87454 2.21496i 0.297205 0.0835983i
\(703\) 7.82141 + 13.5471i 0.294990 + 0.510937i
\(704\) 39.6465 22.8899i 1.49423 0.862696i
\(705\) 0.328581 0.569118i 0.0123751 0.0214342i
\(706\) 55.4412 2.08656
\(707\) 6.14592 9.53608i 0.231141 0.358641i
\(708\) 2.20793i 0.0829793i
\(709\) 12.6149 + 7.28319i 0.473761 + 0.273526i 0.717813 0.696236i \(-0.245143\pi\)
−0.244052 + 0.969762i \(0.578477\pi\)
\(710\) 58.4573 33.7503i 2.19386 1.26663i
\(711\) 2.92054 + 5.05852i 0.109529 + 0.189709i
\(712\) 7.04201 12.1971i 0.263910 0.457106i
\(713\) 3.23934i 0.121314i
\(714\) −4.04885 2.60945i −0.151524 0.0976562i
\(715\) −36.2463 + 37.1563i −1.35554 + 1.38957i
\(716\) −18.2189 + 31.5560i −0.680871 + 1.17930i
\(717\) 3.07923 1.77779i 0.114996 0.0663928i
\(718\) −24.3309 42.1423i −0.908021 1.57274i
\(719\) 17.2529 29.8828i 0.643423 1.11444i −0.341240 0.939976i \(-0.610847\pi\)
0.984663 0.174465i \(-0.0558196\pi\)
\(720\) 28.8606i 1.07557i
\(721\) −38.1454 1.86658i −1.42061 0.0695152i
\(722\) 19.2861i 0.717756i
\(723\) 2.92311 + 1.68766i 0.108712 + 0.0627648i
\(724\) −11.5548 20.0136i −0.429432 0.743798i
\(725\) −26.2992 45.5515i −0.976727 1.69174i
\(726\) −1.62601 0.938775i −0.0603467 0.0348412i
\(727\) −35.7571 −1.32616 −0.663078 0.748550i \(-0.730750\pi\)
−0.663078 + 0.748550i \(0.730750\pi\)
\(728\) 3.08498 10.0334i 0.114337 0.371863i
\(729\) −25.2879 −0.936590
\(730\) −20.5025 11.8371i −0.758830 0.438111i
\(731\) −3.42771 5.93698i −0.126779 0.219587i
\(732\) 0.458277 + 0.793759i 0.0169384 + 0.0293382i
\(733\) −35.5504 20.5250i −1.31308 0.758108i −0.330477 0.943814i \(-0.607210\pi\)
−0.982605 + 0.185706i \(0.940543\pi\)
\(734\) 38.5990i 1.42472i
\(735\) −3.67075 2.62828i −0.135398 0.0969456i
\(736\) 17.2833i 0.637071i
\(737\) −7.80686 + 13.5219i −0.287570 + 0.498085i
\(738\) −6.68481 11.5784i −0.246071 0.426208i
\(739\) −0.629089 + 0.363205i −0.0231414 + 0.0133607i −0.511526 0.859268i \(-0.670920\pi\)
0.488385 + 0.872628i \(0.337586\pi\)
\(740\) 22.5386 39.0379i 0.828534 1.43506i
\(741\) 1.45434 + 1.41872i 0.0534266 + 0.0521181i
\(742\) 30.1874 15.5133i 1.10822 0.569510i
\(743\) 16.4547i 0.603664i −0.953361 0.301832i \(-0.902402\pi\)
0.953361 0.301832i \(-0.0975981\pi\)
\(744\) −0.146299 + 0.253397i −0.00536358 + 0.00929000i
\(745\) −0.207983 0.360236i −0.00761989 0.0131980i
\(746\) −29.2108 + 16.8648i −1.06948 + 0.617466i
\(747\) −19.6896 11.3678i −0.720404 0.415925i
\(748\) 48.1387i 1.76012i
\(749\) −25.6829 1.25675i −0.938433 0.0459206i
\(750\) 4.11723 0.150340
\(751\) 12.5854 21.7985i 0.459247 0.795439i −0.539675 0.841874i \(-0.681453\pi\)
0.998921 + 0.0464350i \(0.0147860\pi\)
\(752\) −2.37949 + 1.37380i −0.0867712 + 0.0500974i
\(753\) 0.876030 + 1.51733i 0.0319243 + 0.0552945i
\(754\) −48.4833 + 13.6375i −1.76566 + 0.496647i
\(755\) 42.5623 1.54900
\(756\) 3.85182 5.97652i 0.140089 0.217364i
\(757\) 44.0743 1.60191 0.800953 0.598727i \(-0.204327\pi\)
0.800953 + 0.598727i \(0.204327\pi\)
\(758\) −29.5054 + 51.1049i −1.07168 + 1.85621i
\(759\) −1.34737 + 0.777906i −0.0489066 + 0.0282362i
\(760\) −10.8267 + 6.25080i −0.392726 + 0.226740i
\(761\) 33.5171 + 19.3511i 1.21499 + 0.701477i 0.963843 0.266471i \(-0.0858577\pi\)
0.251151 + 0.967948i \(0.419191\pi\)
\(762\) 7.41844i 0.268742i
\(763\) −14.7857 9.52925i −0.535278 0.344982i
\(764\) −44.2715 −1.60169
\(765\) 44.3899 + 25.6285i 1.60492 + 0.926601i
\(766\) 27.8937 + 48.3133i 1.00784 + 1.74563i
\(767\) 4.36357 17.1318i 0.157559 0.618594i
\(768\) 0.433701 0.751191i 0.0156498 0.0271063i
\(769\) 36.1506i 1.30362i 0.758381 + 0.651811i \(0.225991\pi\)
−0.758381 + 0.651811i \(0.774009\pi\)
\(770\) −3.95687 + 80.8625i −0.142596 + 2.91408i
\(771\) 3.74511 0.134877
\(772\) 43.0756 + 24.8697i 1.55032 + 0.895080i
\(773\) −26.0441 + 15.0366i −0.936740 + 0.540827i −0.888937 0.458030i \(-0.848555\pi\)
−0.0478033 + 0.998857i \(0.515222\pi\)
\(774\) 7.82043 4.51513i 0.281100 0.162293i
\(775\) −10.3047