Properties

Label 91.2.r.a.25.8
Level $91$
Weight $2$
Character 91.25
Analytic conductor $0.727$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 11 x^{14} + 85 x^{12} - 334 x^{10} + 952 x^{8} - 1050 x^{6} + 853 x^{4} - 93 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.8
Root \(-1.97871 - 1.14241i\) of defining polynomial
Character \(\chi\) \(=\) 91.25
Dual form 91.2.r.a.51.8

$q$-expansion

\(f(q)\) \(=\) \(q+(1.97871 - 1.14241i) q^{2} +(-1.57521 + 2.72835i) q^{3} +(1.61019 - 2.78892i) q^{4} +(1.84030 - 1.06250i) q^{5} +7.19813i q^{6} +(-2.62488 - 0.331665i) q^{7} -2.78832i q^{8} +(-3.46258 - 5.99736i) q^{9} +O(q^{10})\) \(q+(1.97871 - 1.14241i) q^{2} +(-1.57521 + 2.72835i) q^{3} +(1.61019 - 2.78892i) q^{4} +(1.84030 - 1.06250i) q^{5} +7.19813i q^{6} +(-2.62488 - 0.331665i) q^{7} -2.78832i q^{8} +(-3.46258 - 5.99736i) q^{9} +(2.42760 - 4.20473i) q^{10} +(0.267139 + 0.154233i) q^{11} +(5.07276 + 8.78629i) q^{12} +(-3.22037 - 1.62148i) q^{13} +(-5.57276 + 2.34241i) q^{14} +6.69462i q^{15} +(0.0349749 + 0.0605784i) q^{16} +(-0.887368 + 1.53697i) q^{17} +(-13.7029 - 7.91135i) q^{18} +(1.54266 - 0.890653i) q^{19} -6.84326i q^{20} +(5.03964 - 6.63914i) q^{21} +0.704786 q^{22} +(0.575211 + 0.996294i) q^{23} +(7.60750 + 4.39219i) q^{24} +(-0.242207 + 0.419515i) q^{25} +(-8.22456 + 0.470536i) q^{26} +12.3659 q^{27} +(-5.15153 + 6.78655i) q^{28} +2.01052 q^{29} +(7.64798 + 13.2467i) q^{30} +(3.98791 + 2.30242i) q^{31} +(4.96792 + 2.86823i) q^{32} +(-0.841600 + 0.485898i) q^{33} +4.05494i q^{34} +(-5.18295 + 2.17856i) q^{35} -22.3016 q^{36} +(4.79901 - 2.77071i) q^{37} +(2.03497 - 3.52468i) q^{38} +(9.49673 - 6.23211i) q^{39} +(-2.96258 - 5.13134i) q^{40} -6.72984i q^{41} +(2.38737 - 18.8942i) q^{42} -1.52611 q^{43} +(0.860286 - 0.496686i) q^{44} +(-12.7443 - 7.35795i) q^{45} +(2.27635 + 1.31425i) q^{46} +(-8.24297 + 4.75908i) q^{47} -0.220372 q^{48} +(6.78000 + 1.74116i) q^{49} +1.10680i q^{50} +(-2.79558 - 4.84209i) q^{51} +(-9.70759 + 6.37048i) q^{52} +(-3.72037 + 6.44387i) q^{53} +(24.4685 - 14.1269i) q^{54} +0.655486 q^{55} +(-0.924789 + 7.31901i) q^{56} +5.61186i q^{57} +(3.97823 - 2.29683i) q^{58} +(-7.03304 - 4.06053i) q^{59} +(18.6708 + 10.7796i) q^{60} +(1.72037 + 2.97977i) q^{61} +10.5212 q^{62} +(7.09974 + 16.8908i) q^{63} +12.9669 q^{64} +(-7.64926 + 0.437622i) q^{65} +(-1.11019 + 1.92290i) q^{66} +(-10.9249 - 6.30747i) q^{67} +(2.85765 + 4.94960i) q^{68} -3.62431 q^{69} +(-7.76673 + 10.2318i) q^{70} -1.35070i q^{71} +(-16.7226 + 9.65478i) q^{72} +(10.2894 + 5.94059i) q^{73} +(6.33056 - 10.9648i) q^{74} +(-0.763054 - 1.32165i) q^{75} -5.73646i q^{76} +(-0.650054 - 0.493443i) q^{77} +(11.6716 - 23.1806i) q^{78} +(3.96258 + 6.86339i) q^{79} +(0.128728 + 0.0743214i) q^{80} +(-9.09116 + 15.7464i) q^{81} +(-7.68821 - 13.3164i) q^{82} -11.2290i q^{83} +(-10.4013 - 24.7454i) q^{84} +3.77130i q^{85} +(-3.01972 + 1.74344i) q^{86} +(-3.16700 + 5.48540i) q^{87} +(0.430050 - 0.744869i) q^{88} +(1.43688 - 0.829583i) q^{89} -33.6231 q^{90} +(7.91530 + 5.32428i) q^{91} +3.70479 q^{92} +(-12.5636 + 7.25360i) q^{93} +(-10.8736 + 18.8336i) q^{94} +(1.89263 - 3.27813i) q^{95} +(-15.6511 + 9.03614i) q^{96} -7.66641i q^{97} +(15.4047 - 4.30026i) q^{98} -2.13617i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} + O(q^{10}) \) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} - 6q^{10} + 18q^{12} - 12q^{13} - 26q^{14} + 2q^{16} + 8q^{17} - 36q^{22} - 12q^{23} - 6q^{26} + 32q^{27} - 16q^{29} + 38q^{30} - 56q^{36} + 34q^{38} + 18q^{39} - 4q^{40} + 16q^{42} + 16q^{43} + 36q^{48} + 40q^{49} + 16q^{51} - 42q^{52} - 20q^{53} + 24q^{55} - 36q^{56} - 12q^{61} + 44q^{62} + 88q^{64} - 30q^{65} + 2q^{66} - 2q^{68} - 56q^{69} + 42q^{74} + 8q^{75} - 76q^{77} + 20q^{78} + 20q^{79} - 24q^{81} - 16q^{82} - 68q^{87} + 4q^{88} - 216q^{90} + 56q^{91} + 12q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97871 1.14241i 1.39916 0.807803i 0.404852 0.914382i \(-0.367323\pi\)
0.994304 + 0.106579i \(0.0339896\pi\)
\(3\) −1.57521 + 2.72835i −0.909448 + 1.57521i −0.0946163 + 0.995514i \(0.530162\pi\)
−0.814832 + 0.579697i \(0.803171\pi\)
\(4\) 1.61019 2.78892i 0.805093 1.39446i
\(5\) 1.84030 1.06250i 0.823005 0.475162i −0.0284464 0.999595i \(-0.509056\pi\)
0.851452 + 0.524433i \(0.175723\pi\)
\(6\) 7.19813i 2.93862i
\(7\) −2.62488 0.331665i −0.992112 0.125358i
\(8\) 2.78832i 0.985820i
\(9\) −3.46258 5.99736i −1.15419 1.99912i
\(10\) 2.42760 4.20473i 0.767676 1.32965i
\(11\) 0.267139 + 0.154233i 0.0805454 + 0.0465029i 0.539732 0.841837i \(-0.318526\pi\)
−0.459186 + 0.888340i \(0.651859\pi\)
\(12\) 5.07276 + 8.78629i 1.46438 + 2.53638i
\(13\) −3.22037 1.62148i −0.893170 0.449718i
\(14\) −5.57276 + 2.34241i −1.48938 + 0.626036i
\(15\) 6.69462i 1.72854i
\(16\) 0.0349749 + 0.0605784i 0.00874373 + 0.0151446i
\(17\) −0.887368 + 1.53697i −0.215218 + 0.372769i −0.953340 0.301898i \(-0.902380\pi\)
0.738122 + 0.674667i \(0.235713\pi\)
\(18\) −13.7029 7.91135i −3.22979 1.86472i
\(19\) 1.54266 0.890653i 0.353909 0.204330i −0.312496 0.949919i \(-0.601165\pi\)
0.666406 + 0.745589i \(0.267832\pi\)
\(20\) 6.84326i 1.53020i
\(21\) 5.03964 6.63914i 1.09974 1.44878i
\(22\) 0.704786 0.150261
\(23\) 0.575211 + 0.996294i 0.119940 + 0.207742i 0.919744 0.392520i \(-0.128397\pi\)
−0.799804 + 0.600261i \(0.795063\pi\)
\(24\) 7.60750 + 4.39219i 1.55288 + 0.896553i
\(25\) −0.242207 + 0.419515i −0.0484414 + 0.0839029i
\(26\) −8.22456 + 0.470536i −1.61297 + 0.0922796i
\(27\) 12.3659 2.37982
\(28\) −5.15153 + 6.78655i −0.973548 + 1.28254i
\(29\) 2.01052 0.373345 0.186672 0.982422i \(-0.440230\pi\)
0.186672 + 0.982422i \(0.440230\pi\)
\(30\) 7.64798 + 13.2467i 1.39632 + 2.41850i
\(31\) 3.98791 + 2.30242i 0.716251 + 0.413527i 0.813371 0.581745i \(-0.197630\pi\)
−0.0971205 + 0.995273i \(0.530963\pi\)
\(32\) 4.96792 + 2.86823i 0.878213 + 0.507037i
\(33\) −0.841600 + 0.485898i −0.146504 + 0.0845840i
\(34\) 4.05494i 0.695416i
\(35\) −5.18295 + 2.17856i −0.876078 + 0.368244i
\(36\) −22.3016 −3.71693
\(37\) 4.79901 2.77071i 0.788953 0.455502i −0.0506410 0.998717i \(-0.516126\pi\)
0.839594 + 0.543215i \(0.182793\pi\)
\(38\) 2.03497 3.52468i 0.330117 0.571779i
\(39\) 9.49673 6.23211i 1.52069 0.997936i
\(40\) −2.96258 5.13134i −0.468425 0.811336i
\(41\) 6.72984i 1.05102i −0.850786 0.525512i \(-0.823874\pi\)
0.850786 0.525512i \(-0.176126\pi\)
\(42\) 2.38737 18.8942i 0.368379 2.91544i
\(43\) −1.52611 −0.232729 −0.116365 0.993207i \(-0.537124\pi\)
−0.116365 + 0.993207i \(0.537124\pi\)
\(44\) 0.860286 0.496686i 0.129693 0.0748783i
\(45\) −12.7443 7.35795i −1.89981 1.09686i
\(46\) 2.27635 + 1.31425i 0.335629 + 0.193776i
\(47\) −8.24297 + 4.75908i −1.20236 + 0.694183i −0.961079 0.276272i \(-0.910901\pi\)
−0.241281 + 0.970455i \(0.577568\pi\)
\(48\) −0.220372 −0.0318079
\(49\) 6.78000 + 1.74116i 0.968571 + 0.248738i
\(50\) 1.10680i 0.156524i
\(51\) −2.79558 4.84209i −0.391460 0.678028i
\(52\) −9.70759 + 6.37048i −1.34620 + 0.883427i
\(53\) −3.72037 + 6.44387i −0.511032 + 0.885134i 0.488886 + 0.872348i \(0.337403\pi\)
−0.999918 + 0.0127862i \(0.995930\pi\)
\(54\) 24.4685 14.1269i 3.32974 1.92243i
\(55\) 0.655486 0.0883857
\(56\) −0.924789 + 7.31901i −0.123580 + 0.978044i
\(57\) 5.61186i 0.743309i
\(58\) 3.97823 2.29683i 0.522368 0.301589i
\(59\) −7.03304 4.06053i −0.915624 0.528636i −0.0333877 0.999442i \(-0.510630\pi\)
−0.882236 + 0.470807i \(0.843963\pi\)
\(60\) 18.6708 + 10.7796i 2.41039 + 1.39164i
\(61\) 1.72037 + 2.97977i 0.220271 + 0.381521i 0.954890 0.296959i \(-0.0959725\pi\)
−0.734619 + 0.678480i \(0.762639\pi\)
\(62\) 10.5212 1.33620
\(63\) 7.09974 + 16.8908i 0.894483 + 2.12804i
\(64\) 12.9669 1.62086
\(65\) −7.64926 + 0.437622i −0.948773 + 0.0542803i
\(66\) −1.11019 + 1.92290i −0.136654 + 0.236692i
\(67\) −10.9249 6.30747i −1.33468 0.770580i −0.348671 0.937245i \(-0.613367\pi\)
−0.986014 + 0.166665i \(0.946700\pi\)
\(68\) 2.85765 + 4.94960i 0.346541 + 0.600227i
\(69\) −3.62431 −0.436316
\(70\) −7.76673 + 10.2318i −0.928302 + 1.22293i
\(71\) 1.35070i 0.160299i −0.996783 0.0801494i \(-0.974460\pi\)
0.996783 0.0801494i \(-0.0255397\pi\)
\(72\) −16.7226 + 9.65478i −1.97077 + 1.13783i
\(73\) 10.2894 + 5.94059i 1.20428 + 0.695293i 0.961505 0.274789i \(-0.0886079\pi\)
0.242778 + 0.970082i \(0.421941\pi\)
\(74\) 6.33056 10.9648i 0.735912 1.27464i
\(75\) −0.763054 1.32165i −0.0881099 0.152611i
\(76\) 5.73646i 0.658018i
\(77\) −0.650054 0.493443i −0.0740805 0.0562330i
\(78\) 11.6716 23.1806i 1.32155 2.62469i
\(79\) 3.96258 + 6.86339i 0.445825 + 0.772191i 0.998109 0.0614644i \(-0.0195771\pi\)
−0.552284 + 0.833656i \(0.686244\pi\)
\(80\) 0.128728 + 0.0743214i 0.0143923 + 0.00830939i
\(81\) −9.09116 + 15.7464i −1.01013 + 1.74960i
\(82\) −7.68821 13.3164i −0.849021 1.47055i
\(83\) 11.2290i 1.23255i −0.787533 0.616273i \(-0.788642\pi\)
0.787533 0.616273i \(-0.211358\pi\)
\(84\) −10.4013 24.7454i −1.13487 2.69995i
\(85\) 3.77130i 0.409055i
\(86\) −3.01972 + 1.74344i −0.325625 + 0.188000i
\(87\) −3.16700 + 5.48540i −0.339538 + 0.588096i
\(88\) 0.430050 0.744869i 0.0458435 0.0794033i
\(89\) 1.43688 0.829583i 0.152309 0.0879357i −0.421909 0.906638i \(-0.638640\pi\)
0.574218 + 0.818703i \(0.305306\pi\)
\(90\) −33.6231 −3.54418
\(91\) 7.91530 + 5.32428i 0.829749 + 0.558137i
\(92\) 3.70479 0.386251
\(93\) −12.5636 + 7.25360i −1.30279 + 0.752164i
\(94\) −10.8736 + 18.8336i −1.12153 + 1.94254i
\(95\) 1.89263 3.27813i 0.194180 0.336329i
\(96\) −15.6511 + 9.03614i −1.59738 + 0.922247i
\(97\) 7.66641i 0.778406i −0.921152 0.389203i \(-0.872750\pi\)
0.921152 0.389203i \(-0.127250\pi\)
\(98\) 15.4047 4.30026i 1.55611 0.434392i
\(99\) 2.13617i 0.214693i
\(100\) 0.779996 + 1.35099i 0.0779996 + 0.135099i
\(101\) 4.55864 7.89579i 0.453601 0.785660i −0.545005 0.838433i \(-0.683472\pi\)
0.998607 + 0.0527721i \(0.0168057\pi\)
\(102\) −11.0633 6.38738i −1.09543 0.632445i
\(103\) 3.02085 + 5.23226i 0.297653 + 0.515550i 0.975599 0.219562i \(-0.0704629\pi\)
−0.677946 + 0.735112i \(0.737130\pi\)
\(104\) −4.52122 + 8.97943i −0.443342 + 0.880506i
\(105\) 2.22037 17.5726i 0.216686 1.71491i
\(106\) 17.0007i 1.65125i
\(107\) −6.04305 10.4669i −0.584204 1.01187i −0.994974 0.100132i \(-0.968074\pi\)
0.410770 0.911739i \(-0.365260\pi\)
\(108\) 19.9114 34.4876i 1.91598 3.31857i
\(109\) −1.17942 0.680941i −0.112968 0.0652223i 0.442451 0.896793i \(-0.354109\pi\)
−0.555420 + 0.831570i \(0.687442\pi\)
\(110\) 1.29701 0.748831i 0.123665 0.0713983i
\(111\) 17.4578i 1.65702i
\(112\) −0.0717133 0.170611i −0.00677627 0.0161212i
\(113\) −9.42009 −0.886168 −0.443084 0.896480i \(-0.646116\pi\)
−0.443084 + 0.896480i \(0.646116\pi\)
\(114\) 6.41103 + 11.1042i 0.600448 + 1.04001i
\(115\) 2.11712 + 1.22232i 0.197422 + 0.113982i
\(116\) 3.23731 5.60719i 0.300577 0.520615i
\(117\) 1.42617 + 24.9282i 0.131849 + 2.30462i
\(118\) −18.5551 −1.70814
\(119\) 2.83899 3.74004i 0.260250 0.342849i
\(120\) 18.6667 1.70403
\(121\) −5.45242 9.44388i −0.495675 0.858534i
\(122\) 6.80822 + 3.93073i 0.616387 + 0.355871i
\(123\) 18.3613 + 10.6009i 1.65558 + 0.955852i
\(124\) 12.8426 7.41466i 1.15330 0.665856i
\(125\) 11.6543i 1.04239i
\(126\) 33.3444 + 25.3111i 2.97056 + 2.25489i
\(127\) 13.3998 1.18904 0.594519 0.804081i \(-0.297342\pi\)
0.594519 + 0.804081i \(0.297342\pi\)
\(128\) 15.7217 9.07695i 1.38962 0.802297i
\(129\) 2.40394 4.16375i 0.211655 0.366598i
\(130\) −14.6357 + 9.60448i −1.28363 + 0.842369i
\(131\) −6.69854 11.6022i −0.585254 1.01369i −0.994844 0.101420i \(-0.967662\pi\)
0.409590 0.912270i \(-0.365672\pi\)
\(132\) 3.12954i 0.272392i
\(133\) −4.34469 + 1.82621i −0.376732 + 0.158353i
\(134\) −28.8228 −2.48991
\(135\) 22.7569 13.1387i 1.95860 1.13080i
\(136\) 4.28555 + 2.47427i 0.367483 + 0.212167i
\(137\) 0.433917 + 0.250522i 0.0370720 + 0.0214036i 0.518421 0.855125i \(-0.326520\pi\)
−0.481349 + 0.876529i \(0.659853\pi\)
\(138\) −7.17145 + 4.14044i −0.610475 + 0.352458i
\(139\) 1.41936 0.120388 0.0601941 0.998187i \(-0.480828\pi\)
0.0601941 + 0.998187i \(0.480828\pi\)
\(140\) −2.26967 + 17.9627i −0.191822 + 1.51813i
\(141\) 29.9862i 2.52529i
\(142\) −1.54305 2.67264i −0.129490 0.224283i
\(143\) −0.610200 0.929847i −0.0510275 0.0777577i
\(144\) 0.242207 0.419515i 0.0201839 0.0349596i
\(145\) 3.69996 2.13617i 0.307265 0.177399i
\(146\) 27.1463 2.24664
\(147\) −15.4304 + 15.7555i −1.27268 + 1.29949i
\(148\) 17.8454i 1.46689i
\(149\) −18.2652 + 10.5454i −1.49635 + 0.863916i −0.999991 0.00420426i \(-0.998662\pi\)
−0.496355 + 0.868120i \(0.665328\pi\)
\(150\) −3.01972 1.74344i −0.246559 0.142351i
\(151\) −15.1591 8.75211i −1.23363 0.712236i −0.265845 0.964016i \(-0.585651\pi\)
−0.967785 + 0.251779i \(0.918984\pi\)
\(152\) −2.48343 4.30142i −0.201432 0.348891i
\(153\) 12.2903 0.993614
\(154\) −1.84998 0.233753i −0.149075 0.0188363i
\(155\) 9.78526 0.785971
\(156\) −2.08937 36.5205i −0.167284 2.92398i
\(157\) −0.0377894 + 0.0654532i −0.00301593 + 0.00522374i −0.867529 0.497386i \(-0.834293\pi\)
0.864514 + 0.502610i \(0.167627\pi\)
\(158\) 15.6816 + 9.05375i 1.24756 + 0.720278i
\(159\) −11.7207 20.3009i −0.929515 1.60997i
\(160\) 12.1899 0.963699
\(161\) −1.17942 2.80593i −0.0929516 0.221138i
\(162\) 41.5432i 3.26394i
\(163\) 8.73102 5.04086i 0.683866 0.394830i −0.117444 0.993080i \(-0.537470\pi\)
0.801310 + 0.598249i \(0.204137\pi\)
\(164\) −18.7690 10.8363i −1.46561 0.846172i
\(165\) −1.03253 + 1.78839i −0.0803822 + 0.139226i
\(166\) −12.8281 22.2189i −0.995655 1.72452i
\(167\) 5.84989i 0.452678i 0.974049 + 0.226339i \(0.0726757\pi\)
−0.974049 + 0.226339i \(0.927324\pi\)
\(168\) −18.5120 14.0521i −1.42824 1.08415i
\(169\) 7.74159 + 10.4436i 0.595507 + 0.803350i
\(170\) 4.30835 + 7.46229i 0.330436 + 0.572331i
\(171\) −10.6831 6.16791i −0.816960 0.471672i
\(172\) −2.45732 + 4.25620i −0.187369 + 0.324532i
\(173\) 8.49511 + 14.7140i 0.645871 + 1.11868i 0.984100 + 0.177617i \(0.0568390\pi\)
−0.338229 + 0.941064i \(0.609828\pi\)
\(174\) 14.4720i 1.09712i
\(175\) 0.774903 1.02084i 0.0585771 0.0771686i
\(176\) 0.0215771i 0.00162644i
\(177\) 22.1570 12.7924i 1.66543 0.961534i
\(178\) 1.89544 3.28300i 0.142069 0.246072i
\(179\) −7.65079 + 13.2516i −0.571847 + 0.990468i 0.424529 + 0.905414i \(0.360440\pi\)
−0.996376 + 0.0850537i \(0.972894\pi\)
\(180\) −41.0415 + 23.6953i −3.05905 + 1.76615i
\(181\) −5.84958 −0.434796 −0.217398 0.976083i \(-0.569757\pi\)
−0.217398 + 0.976083i \(0.569757\pi\)
\(182\) 21.7446 + 1.49270i 1.61181 + 0.110646i
\(183\) −10.8398 −0.801301
\(184\) 2.77799 1.60387i 0.204796 0.118239i
\(185\) 5.88774 10.1979i 0.432875 0.749761i
\(186\) −16.5731 + 28.7055i −1.21520 + 2.10479i
\(187\) −0.474101 + 0.273722i −0.0346697 + 0.0200165i
\(188\) 30.6520i 2.23553i
\(189\) −32.4590 4.10134i −2.36105 0.298329i
\(190\) 8.64861i 0.627436i
\(191\) 13.4090 + 23.2250i 0.970238 + 1.68050i 0.694831 + 0.719173i \(0.255479\pi\)
0.275407 + 0.961328i \(0.411188\pi\)
\(192\) −20.4255 + 35.3780i −1.47409 + 2.55319i
\(193\) −0.185315 0.106992i −0.0133393 0.00770145i 0.493316 0.869850i \(-0.335785\pi\)
−0.506655 + 0.862149i \(0.669118\pi\)
\(194\) −8.75816 15.1696i −0.628799 1.08911i
\(195\) 10.8552 21.5592i 0.777358 1.54388i
\(196\) 15.7730 16.1053i 1.12664 1.15038i
\(197\) 11.2290i 0.800035i 0.916508 + 0.400017i \(0.130996\pi\)
−0.916508 + 0.400017i \(0.869004\pi\)
\(198\) −2.44038 4.22685i −0.173430 0.300389i
\(199\) 10.2100 17.6843i 0.723771 1.25361i −0.235707 0.971824i \(-0.575741\pi\)
0.959478 0.281784i \(-0.0909261\pi\)
\(200\) 1.16974 + 0.675351i 0.0827132 + 0.0477545i
\(201\) 34.4179 19.8712i 2.42765 1.40161i
\(202\) 20.8313i 1.46568i
\(203\) −5.27738 0.666820i −0.370399 0.0468016i
\(204\) −18.0056 −1.26065
\(205\) −7.15042 12.3849i −0.499407 0.864999i
\(206\) 11.9547 + 6.90207i 0.832926 + 0.480890i
\(207\) 3.98343 6.89950i 0.276867 0.479548i
\(208\) −0.0144055 0.251796i −0.000998842 0.0174589i
\(209\) 0.549471 0.0380077
\(210\) −15.6816 37.3075i −1.08213 2.57446i
\(211\) 8.41738 0.579476 0.289738 0.957106i \(-0.406432\pi\)
0.289738 + 0.957106i \(0.406432\pi\)
\(212\) 11.9810 + 20.7517i 0.822857 + 1.42523i
\(213\) 3.68518 + 2.12764i 0.252504 + 0.145783i
\(214\) −23.9148 13.8072i −1.63479 0.943844i
\(215\) −2.80849 + 1.62148i −0.191537 + 0.110584i
\(216\) 34.4801i 2.34607i
\(217\) −9.70417 7.36624i −0.658762 0.500053i
\(218\) −3.11164 −0.210747
\(219\) −32.4159 + 18.7154i −2.19047 + 1.26467i
\(220\) 1.05545 1.82810i 0.0711587 0.123250i
\(221\) 5.34982 3.51075i 0.359868 0.236159i
\(222\) 19.9439 + 34.5439i 1.33855 + 2.31843i
\(223\) 13.6091i 0.911333i 0.890151 + 0.455666i \(0.150599\pi\)
−0.890151 + 0.455666i \(0.849401\pi\)
\(224\) −12.0889 9.17646i −0.807725 0.613128i
\(225\) 3.35464 0.223643
\(226\) −18.6396 + 10.7616i −1.23989 + 0.715849i
\(227\) 3.12008 + 1.80138i 0.207087 + 0.119562i 0.599957 0.800032i \(-0.295184\pi\)
−0.392870 + 0.919594i \(0.628518\pi\)
\(228\) 15.6511 + 9.03614i 1.03652 + 0.598433i
\(229\) 15.9212 9.19208i 1.05210 0.607430i 0.128863 0.991662i \(-0.458867\pi\)
0.923236 + 0.384232i \(0.125534\pi\)
\(230\) 5.58554 0.368299
\(231\) 2.37025 0.996294i 0.155951 0.0655514i
\(232\) 5.60598i 0.368051i
\(233\) 10.1348 + 17.5541i 0.663955 + 1.15000i 0.979567 + 0.201116i \(0.0644568\pi\)
−0.315612 + 0.948888i \(0.602210\pi\)
\(234\) 31.3002 + 47.6964i 2.04616 + 3.11801i
\(235\) −10.1130 + 17.5162i −0.659699 + 1.14263i
\(236\) −22.6490 + 13.0764i −1.47432 + 0.851202i
\(237\) −24.9676 −1.62182
\(238\) 1.34488 10.6437i 0.0871758 0.689931i
\(239\) 20.8097i 1.34607i −0.739612 0.673033i \(-0.764991\pi\)
0.739612 0.673033i \(-0.235009\pi\)
\(240\) −0.405549 + 0.234144i −0.0261781 + 0.0151139i
\(241\) 11.0113 + 6.35736i 0.709299 + 0.409514i 0.810801 0.585322i \(-0.199032\pi\)
−0.101503 + 0.994835i \(0.532365\pi\)
\(242\) −21.5775 12.4578i −1.38705 0.800816i
\(243\) −10.0922 17.4801i −0.647412 1.12135i
\(244\) 11.0805 0.709355
\(245\) 14.3272 3.99946i 0.915330 0.255516i
\(246\) 48.4422 3.08856
\(247\) −6.41210 + 0.366843i −0.407992 + 0.0233417i
\(248\) 6.41990 11.1196i 0.407664 0.706094i
\(249\) 30.6367 + 17.6881i 1.94152 + 1.12094i
\(250\) 13.3140 + 23.0605i 0.842050 + 1.45847i
\(251\) −13.7436 −0.867486 −0.433743 0.901037i \(-0.642807\pi\)
−0.433743 + 0.901037i \(0.642807\pi\)
\(252\) 58.5390 + 7.39666i 3.68761 + 0.465946i
\(253\) 0.354865i 0.0223102i
\(254\) 26.5142 15.3080i 1.66365 0.960510i
\(255\) −10.2894 5.94059i −0.644347 0.372014i
\(256\) 7.77229 13.4620i 0.485768 0.841375i
\(257\) −3.66736 6.35206i −0.228764 0.396231i 0.728678 0.684856i \(-0.240135\pi\)
−0.957442 + 0.288626i \(0.906802\pi\)
\(258\) 10.9851i 0.683904i
\(259\) −13.5158 + 5.68112i −0.839830 + 0.353008i
\(260\) −11.0962 + 22.0378i −0.688159 + 1.36673i
\(261\) −6.96159 12.0578i −0.430912 0.746361i
\(262\) −26.5089 15.3049i −1.63772 0.945540i
\(263\) 3.33942 5.78405i 0.205918 0.356660i −0.744507 0.667615i \(-0.767315\pi\)
0.950425 + 0.310955i \(0.100649\pi\)
\(264\) 1.35484 + 2.34665i 0.0833846 + 0.144426i
\(265\) 15.8115i 0.971293i
\(266\) −6.51058 + 8.57693i −0.399189 + 0.525886i
\(267\) 5.22708i 0.319892i
\(268\) −35.1821 + 20.3124i −2.14909 + 1.24078i
\(269\) −8.11263 + 14.0515i −0.494636 + 0.856735i −0.999981 0.00618287i \(-0.998032\pi\)
0.505345 + 0.862917i \(0.331365\pi\)
\(270\) 30.0195 51.9953i 1.82693 3.16433i
\(271\) −16.2277 + 9.36904i −0.985760 + 0.569129i −0.904004 0.427524i \(-0.859386\pi\)
−0.0817555 + 0.996652i \(0.526053\pi\)
\(272\) −0.124143 −0.00752725
\(273\) −26.9948 + 13.2088i −1.63380 + 0.799433i
\(274\) 1.14479 0.0691595
\(275\) −0.129406 + 0.0747124i −0.00780346 + 0.00450533i
\(276\) −5.83582 + 10.1079i −0.351275 + 0.608426i
\(277\) 15.0163 26.0090i 0.902243 1.56273i 0.0776679 0.996979i \(-0.475253\pi\)
0.824575 0.565752i \(-0.191414\pi\)
\(278\) 2.80849 1.62148i 0.168442 0.0972501i
\(279\) 31.8893i 1.90916i
\(280\) 6.07453 + 14.4517i 0.363023 + 0.863656i
\(281\) 2.23065i 0.133070i 0.997784 + 0.0665348i \(0.0211943\pi\)
−0.997784 + 0.0665348i \(0.978806\pi\)
\(282\) −34.2565 59.3339i −2.03994 3.53328i
\(283\) 6.88774 11.9299i 0.409433 0.709159i −0.585393 0.810750i \(-0.699060\pi\)
0.994826 + 0.101590i \(0.0323931\pi\)
\(284\) −3.76700 2.17488i −0.223531 0.129055i
\(285\) 5.96258 + 10.3275i 0.353193 + 0.611748i
\(286\) −2.26967 1.14280i −0.134208 0.0675750i
\(287\) −2.23205 + 17.6650i −0.131754 + 1.04273i
\(288\) 39.7259i 2.34087i
\(289\) 6.92516 + 11.9947i 0.407362 + 0.705572i
\(290\) 4.88075 8.45371i 0.286608 0.496419i
\(291\) 20.9166 + 12.0762i 1.22615 + 0.707920i
\(292\) 33.1357 19.1309i 1.93912 1.11955i
\(293\) 1.01231i 0.0591400i −0.999563 0.0295700i \(-0.990586\pi\)
0.999563 0.0295700i \(-0.00941380\pi\)
\(294\) −12.5331 + 48.8033i −0.730946 + 2.84626i
\(295\) −17.2572 −1.00475
\(296\) −7.72563 13.3812i −0.449043 0.777766i
\(297\) 3.30341 + 1.90723i 0.191683 + 0.110668i
\(298\) −24.0943 + 41.7326i −1.39575 + 2.41751i
\(299\) −0.236918 4.14113i −0.0137013 0.239488i
\(300\) −4.91464 −0.283747
\(301\) 4.00585 + 0.506157i 0.230893 + 0.0291744i
\(302\) −39.9939 −2.30139
\(303\) 14.3616 + 24.8751i 0.825054 + 1.42904i
\(304\) 0.107909 + 0.0623010i 0.00618898 + 0.00357321i
\(305\) 6.33199 + 3.65577i 0.362568 + 0.209329i
\(306\) 24.3189 14.0405i 1.39022 0.802645i
\(307\) 24.0527i 1.37276i 0.727244 + 0.686379i \(0.240801\pi\)
−0.727244 + 0.686379i \(0.759199\pi\)
\(308\) −2.42288 + 1.01842i −0.138057 + 0.0580296i
\(309\) −19.0339 −1.08280
\(310\) 19.3622 11.1787i 1.09970 0.634910i
\(311\) −4.49548 + 7.78639i −0.254915 + 0.441526i −0.964872 0.262719i \(-0.915381\pi\)
0.709957 + 0.704245i \(0.248714\pi\)
\(312\) −17.3771 26.4799i −0.983786 1.49913i
\(313\) 7.61806 + 13.1949i 0.430598 + 0.745818i 0.996925 0.0783626i \(-0.0249692\pi\)
−0.566326 + 0.824181i \(0.691636\pi\)
\(314\) 0.172684i 0.00974510i
\(315\) 31.0120 + 23.5406i 1.74733 + 1.32636i
\(316\) 25.5220 1.43572
\(317\) −5.91972 + 3.41775i −0.332484 + 0.191960i −0.656944 0.753940i \(-0.728151\pi\)
0.324459 + 0.945900i \(0.394818\pi\)
\(318\) −46.3838 26.7797i −2.60107 1.50173i
\(319\) 0.537088 + 0.310088i 0.0300712 + 0.0173616i
\(320\) 23.8628 13.7772i 1.33397 0.770170i
\(321\) 38.0763 2.12521
\(322\) −5.53925 4.20473i −0.308690 0.234321i
\(323\) 3.16135i 0.175902i
\(324\) 29.2769 + 50.7091i 1.62650 + 2.81717i
\(325\) 1.46023 0.958259i 0.0809991 0.0531546i
\(326\) 11.5174 19.9487i 0.637890 1.10486i
\(327\) 3.71568 2.14525i 0.205478 0.118633i
\(328\) −18.7649 −1.03612
\(329\) 23.2152 9.75811i 1.27990 0.537982i
\(330\) 4.71827i 0.259732i
\(331\) −11.9637 + 6.90727i −0.657587 + 0.379658i −0.791357 0.611354i \(-0.790625\pi\)
0.133770 + 0.991012i \(0.457292\pi\)
\(332\) −31.3169 18.0808i −1.71874 0.992314i
\(333\) −33.2339 19.1876i −1.82121 1.05147i
\(334\) 6.68295 + 11.5752i 0.365675 + 0.633367i
\(335\) −26.8066 −1.46460
\(336\) 0.578449 + 0.0730896i 0.0315570 + 0.00398736i
\(337\) −27.0432 −1.47314 −0.736568 0.676364i \(-0.763555\pi\)
−0.736568 + 0.676364i \(0.763555\pi\)
\(338\) 27.2491 + 11.8207i 1.48216 + 0.642961i
\(339\) 14.8386 25.7013i 0.805924 1.39590i
\(340\) 10.5179 + 6.07249i 0.570411 + 0.329327i
\(341\) 0.710218 + 1.23013i 0.0384604 + 0.0666154i
\(342\) −28.1850 −1.52407
\(343\) −17.2192 6.81903i −0.929749 0.368193i
\(344\) 4.25528i 0.229429i
\(345\) −6.66981 + 3.85082i −0.359091 + 0.207321i
\(346\) 33.6186 + 19.4097i 1.80735 + 1.04347i
\(347\) 9.65568 16.7241i 0.518344 0.897799i −0.481429 0.876485i \(-0.659882\pi\)
0.999773 0.0213132i \(-0.00678472\pi\)
\(348\) 10.1989 + 17.6650i 0.546719 + 0.946944i
\(349\) 14.1573i 0.757821i −0.925433 0.378911i \(-0.876299\pi\)
0.925433 0.378911i \(-0.123701\pi\)
\(350\) 0.367085 2.90521i 0.0196215 0.155290i
\(351\) −39.8228 20.0511i −2.12558 1.07025i
\(352\) 0.884750 + 1.53243i 0.0471573 + 0.0816789i
\(353\) −14.6919 8.48235i −0.781969 0.451470i 0.0551585 0.998478i \(-0.482434\pi\)
−0.837128 + 0.547008i \(0.815767\pi\)
\(354\) 29.2282 50.6247i 1.55346 2.69067i
\(355\) −1.43511 2.48569i −0.0761680 0.131927i
\(356\) 5.34313i 0.283186i
\(357\) 5.73212 + 13.6371i 0.303376 + 0.721752i
\(358\) 34.9613i 1.84776i
\(359\) 19.7136 11.3816i 1.04044 0.600700i 0.120484 0.992715i \(-0.461555\pi\)
0.919959 + 0.392016i \(0.128222\pi\)
\(360\) −20.5163 + 35.5353i −1.08131 + 1.87288i
\(361\) −7.91348 + 13.7065i −0.416499 + 0.721397i
\(362\) −11.5746 + 6.68260i −0.608347 + 0.351229i
\(363\) 34.3549 1.80316
\(364\) 27.5941 13.5021i 1.44633 0.707702i
\(365\) 25.2474 1.32151
\(366\) −21.4488 + 12.3835i −1.12114 + 0.647293i
\(367\) −8.29168 + 14.3616i −0.432822 + 0.749670i −0.997115 0.0759048i \(-0.975815\pi\)
0.564293 + 0.825575i \(0.309149\pi\)
\(368\) −0.0402359 + 0.0696907i −0.00209744 + 0.00363288i
\(369\) −40.3613 + 23.3026i −2.10112 + 1.21308i
\(370\) 26.9048i 1.39871i
\(371\) 11.9027 15.6805i 0.617959 0.814090i
\(372\) 46.7186i 2.42225i
\(373\) −13.8230 23.9422i −0.715730 1.23968i −0.962677 0.270652i \(-0.912761\pi\)
0.246947 0.969029i \(-0.420573\pi\)
\(374\) −0.625404 + 1.08323i −0.0323389 + 0.0560126i
\(375\) −31.7970 18.3580i −1.64199 0.948004i
\(376\) 13.2698 + 22.9840i 0.684340 + 1.18531i
\(377\) −6.47463 3.26003i −0.333460 0.167900i
\(378\) −68.9122 + 28.9660i −3.54446 + 1.48985i
\(379\) 9.24228i 0.474744i −0.971419 0.237372i \(-0.923714\pi\)
0.971419 0.237372i \(-0.0762860\pi\)
\(380\) −6.09497 10.5568i −0.312665 0.541552i
\(381\) −21.1075 + 36.5592i −1.08137 + 1.87299i
\(382\) 53.0648 + 30.6369i 2.71503 + 1.56752i
\(383\) 6.62358 3.82413i 0.338449 0.195404i −0.321137 0.947033i \(-0.604065\pi\)
0.659586 + 0.751629i \(0.270732\pi\)
\(384\) 57.1925i 2.91859i
\(385\) −1.72057 0.217402i −0.0876885 0.0110798i
\(386\) −0.488913 −0.0248850
\(387\) 5.28427 + 9.15262i 0.268614 + 0.465254i
\(388\) −21.3810 12.3443i −1.08546 0.626689i
\(389\) 3.26868 5.66153i 0.165729 0.287051i −0.771185 0.636611i \(-0.780336\pi\)
0.936914 + 0.349560i \(0.113669\pi\)
\(390\) −3.15006 55.0603i −0.159509 2.78809i
\(391\) −2.04169 −0.103253
\(392\) 4.85492 18.9048i 0.245211 0.954837i
\(393\) 42.2064 2.12903
\(394\) 12.8281 + 22.2189i 0.646271 + 1.11937i
\(395\) 14.5846 + 8.42044i 0.733833 + 0.423678i
\(396\) −5.95762 3.43963i −0.299381 0.172848i
\(397\) −25.0548 + 14.4654i −1.25746 + 0.725996i −0.972581 0.232566i \(-0.925288\pi\)
−0.284882 + 0.958563i \(0.591954\pi\)
\(398\) 46.6561i 2.33866i
\(399\) 1.86126 14.7305i 0.0931795 0.737446i
\(400\) −0.0338847 −0.00169423
\(401\) −23.1603 + 13.3716i −1.15657 + 0.667747i −0.950480 0.310786i \(-0.899408\pi\)
−0.206092 + 0.978533i \(0.566075\pi\)
\(402\) 45.4020 78.6385i 2.26444 3.92213i
\(403\) −9.10923 13.8810i −0.453763 0.691462i
\(404\) −14.6805 25.4274i −0.730382 1.26506i
\(405\) 38.6373i 1.91990i
\(406\) −11.2042 + 4.70947i −0.556053 + 0.233727i
\(407\) 1.70934 0.0847287
\(408\) −13.5013 + 7.79498i −0.668414 + 0.385909i
\(409\) 30.1138 + 17.3862i 1.48903 + 0.859694i 0.999922 0.0125273i \(-0.00398768\pi\)
0.489112 + 0.872221i \(0.337321\pi\)
\(410\) −28.2972 16.3374i −1.39750 0.806846i
\(411\) −1.36702 + 0.789250i −0.0674302 + 0.0389309i
\(412\) 19.4565 0.958553
\(413\) 17.1142 + 12.9910i 0.842133 + 0.639246i
\(414\) 18.2028i 0.894617i
\(415\) −11.9308 20.6647i −0.585659 1.01439i
\(416\) −11.3478 17.2922i −0.556370 0.847819i
\(417\) −2.23579 + 3.87250i −0.109487 + 0.189637i
\(418\) 1.08724 0.627719i 0.0531787 0.0307027i
\(419\) −4.19246 −0.204815 −0.102407 0.994743i \(-0.532655\pi\)
−0.102407 + 0.994743i \(0.532655\pi\)
\(420\) −45.4333 34.4876i −2.21692 1.68282i
\(421\) 20.9526i 1.02117i −0.859828 0.510584i \(-0.829429\pi\)
0.859828 0.510584i \(-0.170571\pi\)
\(422\) 16.6555 9.61607i 0.810778 0.468103i
\(423\) 57.0838 + 32.9574i 2.77551 + 1.60244i
\(424\) 17.9676 + 10.3736i 0.872583 + 0.503786i
\(425\) −0.429853 0.744528i −0.0208509 0.0361149i
\(426\) 9.72252 0.471058
\(427\) −3.52748 8.39213i −0.170707 0.406124i
\(428\) −38.9217 −1.88135
\(429\) 3.49814 0.200132i 0.168892 0.00966247i
\(430\) −3.70479 + 6.41688i −0.178661 + 0.309449i
\(431\) −14.6309 8.44713i −0.704744 0.406884i 0.104368 0.994539i \(-0.466718\pi\)
−0.809112 + 0.587655i \(0.800051\pi\)
\(432\) 0.432497 + 0.749106i 0.0208085 + 0.0360414i
\(433\) 3.42241 0.164471 0.0822353 0.996613i \(-0.473794\pi\)
0.0822353 + 0.996613i \(0.473794\pi\)
\(434\) −27.6169 3.48952i −1.32566 0.167502i
\(435\) 13.4597i 0.645342i
\(436\) −3.79818 + 2.19288i −0.181900 + 0.105020i
\(437\) 1.77470 + 1.02463i 0.0848956 + 0.0490145i
\(438\) −42.7611 + 74.0644i −2.04320 + 3.53893i
\(439\) 9.03253 + 15.6448i 0.431099 + 0.746685i 0.996968 0.0778096i \(-0.0247926\pi\)
−0.565869 + 0.824495i \(0.691459\pi\)
\(440\) 1.82771i 0.0871324i
\(441\) −13.0339 46.6910i −0.620661 2.22338i
\(442\) 6.57501 13.0584i 0.312742 0.621125i
\(443\) −3.22173 5.58020i −0.153069 0.265123i 0.779285 0.626669i \(-0.215582\pi\)
−0.932354 + 0.361546i \(0.882249\pi\)
\(444\) 48.6885 + 28.1103i 2.31065 + 1.33406i
\(445\) 1.76286 3.05336i 0.0835674 0.144743i
\(446\) 15.5471 + 26.9284i 0.736178 + 1.27510i
\(447\) 66.4451i 3.14275i
\(448\) −34.0364 4.30065i −1.60807 0.203187i
\(449\) 1.75306i 0.0827322i −0.999144 0.0413661i \(-0.986829\pi\)
0.999144 0.0413661i \(-0.0131710\pi\)
\(450\) 6.63785 3.83237i 0.312911 0.180659i
\(451\) 1.03796 1.79780i 0.0488757 0.0846551i
\(452\) −15.1681 + 26.2719i −0.713447 + 1.23573i
\(453\) 47.7575 27.5728i 2.24385 1.29548i
\(454\) 8.23163 0.386330
\(455\) 20.2235 + 1.38829i 0.948094 + 0.0650839i
\(456\) 15.6477 0.732770
\(457\) 28.3277 16.3550i 1.32511 0.765054i 0.340573 0.940218i \(-0.389379\pi\)
0.984539 + 0.175164i \(0.0560455\pi\)
\(458\) 21.0022 36.3769i 0.981368 1.69978i
\(459\) −10.9731 + 19.0060i −0.512180 + 0.887123i
\(460\) 6.81790 3.93632i 0.317886 0.183532i
\(461\) 7.66641i 0.357060i 0.983934 + 0.178530i \(0.0571342\pi\)
−0.983934 + 0.178530i \(0.942866\pi\)
\(462\) 3.55186 4.67917i 0.165248 0.217695i
\(463\) 14.4720i 0.672570i 0.941760 + 0.336285i \(0.109171\pi\)
−0.941760 + 0.336285i \(0.890829\pi\)
\(464\) 0.0703179 + 0.121794i 0.00326443 + 0.00565415i
\(465\) −15.4138 + 26.6976i −0.714800 + 1.23807i
\(466\) 40.1077 + 23.1562i 1.85795 + 1.07269i
\(467\) −1.68801 2.92373i −0.0781120 0.135294i 0.824323 0.566119i \(-0.191556\pi\)
−0.902435 + 0.430825i \(0.858223\pi\)
\(468\) 71.8194 + 36.1616i 3.31985 + 1.67157i
\(469\) 26.5845 + 20.1798i 1.22756 + 0.931815i
\(470\) 46.2126i 2.13163i
\(471\) −0.119053 0.206205i −0.00548566 0.00950144i
\(472\) −11.3221 + 19.6104i −0.521140 + 0.902641i
\(473\) −0.407683 0.235376i −0.0187453 0.0108226i
\(474\) −49.4035 + 28.5231i −2.26918 + 1.31011i
\(475\) 0.862889i 0.0395921i
\(476\) −5.85939 13.9399i −0.268565 0.638934i
\(477\) 51.5283 2.35932
\(478\) −23.7731 41.1763i −1.08736 1.88336i
\(479\) 0.125768 + 0.0726124i 0.00574651 + 0.00331775i 0.502871 0.864362i \(-0.332277\pi\)
−0.497124 + 0.867680i \(0.665611\pi\)
\(480\) −19.2017 + 33.2584i −0.876435 + 1.51803i
\(481\) −19.9473 + 1.14120i −0.909517 + 0.0520344i
\(482\) 29.0508 1.32323
\(483\) 9.51339 + 1.20206i 0.432874 + 0.0546956i
\(484\) −35.1177 −1.59626
\(485\) −8.14553 14.1085i −0.369869 0.640633i
\(486\) −39.9388 23.0587i −1.81166 1.04596i
\(487\) 14.2214 + 8.21073i 0.644433 + 0.372064i 0.786320 0.617819i \(-0.211984\pi\)
−0.141887 + 0.989883i \(0.545317\pi\)
\(488\) 8.30856 4.79695i 0.376111 0.217148i
\(489\) 31.7616i 1.43631i
\(490\) 23.7803 24.2812i 1.07428 1.09691i
\(491\) −18.2077 −0.821701 −0.410850 0.911703i \(-0.634768\pi\)
−0.410850 + 0.911703i \(0.634768\pi\)
\(492\) 59.1303 34.1389i 2.66580 1.53910i
\(493\) −1.78407 + 3.09010i −0.0803506 + 0.139171i
\(494\) −12.2686 + 8.05110i −0.551990 + 0.362236i
\(495\) −2.26967 3.93119i −0.102014 0.176694i
\(496\) 0.322108i 0.0144631i
\(497\) −0.447981 + 3.54543i −0.0200947 + 0.159034i
\(498\) 80.8279 3.62199
\(499\) 32.5383 18.7860i 1.45661 0.840976i 0.457770 0.889070i \(-0.348648\pi\)
0.998843 + 0.0480945i \(0.0153148\pi\)
\(500\) 32.5030 + 18.7656i 1.45358 + 0.839225i
\(501\) −15.9605 9.21481i −0.713063 0.411687i
\(502\) −27.1945 + 15.7007i −1.21375 + 0.700758i
\(503\) −4.20535 −0.187507 −0.0937537 0.995595i \(-0.529887\pi\)
−0.0937537 + 0.995595i \(0.529887\pi\)
\(504\) 47.0969 19.7964i 2.09786 0.881800i
\(505\) 19.3741i 0.862137i
\(506\) 0.405400 + 0.702174i 0.0180222 + 0.0312154i
\(507\) −40.6883 + 4.67092i −1.80703 + 0.207443i
\(508\) 21.5761 37.3710i 0.957287 1.65807i
\(509\) −7.30705 + 4.21873i −0.323879 + 0.186992i −0.653120 0.757254i \(-0.726540\pi\)
0.329241 + 0.944246i \(0.393207\pi\)
\(510\) −27.1463 −1.20206
\(511\) −25.0382 19.0060i −1.10762 0.840775i
\(512\) 0.791350i 0.0349731i
\(513\) 19.0763 11.0137i 0.842240 0.486268i
\(514\) −14.5133 8.37924i −0.640153 0.369593i
\(515\) 11.1185 + 6.41927i 0.489940 + 0.282867i
\(516\) −7.74159 13.4088i −0.340804 0.590290i
\(517\) −2.93602 −0.129126
\(518\) −20.2536 + 26.6818i −0.889893 + 1.17233i
\(519\) −53.5263 −2.34955
\(520\) 1.22023 + 21.3286i 0.0535106 + 0.935320i
\(521\) −12.9140 + 22.3677i −0.565773 + 0.979948i 0.431204 + 0.902254i \(0.358089\pi\)
−0.996977 + 0.0776936i \(0.975244\pi\)
\(522\) −27.5499 15.9059i −1.20583 0.696184i
\(523\) 0.378202 + 0.655065i 0.0165376 + 0.0286440i 0.874176 0.485610i \(-0.161402\pi\)
−0.857638 + 0.514254i \(0.828069\pi\)
\(524\) −43.1436 −1.88473
\(525\) 1.56458 + 3.72225i 0.0682839 + 0.162452i
\(526\) 15.2599i 0.665364i
\(527\) −7.07749 + 4.08619i −0.308300 + 0.177997i
\(528\) −0.0588698 0.0339885i −0.00256198 0.00147916i
\(529\) 10.8383 18.7724i 0.471229 0.816192i
\(530\) 18.0632 + 31.2863i 0.784614 + 1.35899i
\(531\) 56.2396i 2.44059i
\(532\) −1.90259 + 15.0575i −0.0824876 + 0.652827i
\(533\) −10.9123 + 21.6726i −0.472665 + 0.938744i
\(534\) 5.97145 + 10.3428i 0.258410 + 0.447579i
\(535\) −22.2420 12.8414i −0.961606 0.555183i
\(536\) −17.5873 + 30.4620i −0.759654 + 1.31576i
\(537\) −24.1032 41.7480i −1.04013 1.80156i
\(538\) 37.0717i 1.59827i
\(539\) 1.54266 + 1.51083i 0.0664469 + 0.0650760i
\(540\) 84.6231i 3.64160i
\(541\) −19.4099 + 11.2063i −0.834496 + 0.481797i −0.855390 0.517985i \(-0.826682\pi\)
0.0208936 + 0.999782i \(0.493349\pi\)
\(542\) −21.4065 + 37.0772i −0.919488 + 1.59260i
\(543\) 9.21432 15.9597i 0.395424 0.684895i
\(544\) −8.81675 + 5.09035i −0.378015 + 0.218247i
\(545\) −2.89398 −0.123965
\(546\) −38.3249 + 56.9753i −1.64015 + 2.43832i
\(547\) −11.8059 −0.504784 −0.252392 0.967625i \(-0.581217\pi\)
−0.252392 + 0.967625i \(0.581217\pi\)
\(548\) 1.39737 0.806774i 0.0596929 0.0344637i
\(549\) 11.9138 20.6354i 0.508470 0.880697i
\(550\) −0.170704 + 0.295668i −0.00727884 + 0.0126073i
\(551\) 3.10154 1.79068i 0.132130 0.0762854i
\(552\) 10.1058i 0.430129i
\(553\) −8.12495 19.3298i −0.345508 0.821988i
\(554\) 68.6190i 2.91534i
\(555\) 18.5489 + 32.1276i 0.787355 + 1.36374i
\(556\) 2.28543 3.95848i 0.0969238 0.167877i
\(557\) 7.59273 + 4.38366i 0.321714 + 0.185742i 0.652156 0.758084i \(-0.273865\pi\)
−0.330442 + 0.943826i \(0.607198\pi\)
\(558\) −36.4305 63.0995i −1.54223 2.67122i
\(559\) 4.91464 + 2.47456i 0.207867 + 0.104663i
\(560\) −0.313247 0.237780i −0.0132371 0.0100480i
\(561\) 1.72468i 0.0728161i
\(562\) 2.54831 + 4.41380i 0.107494 + 0.186185i
\(563\) 18.3879 31.8488i 0.774958 1.34227i −0.159860 0.987140i \(-0.551104\pi\)
0.934818 0.355127i \(-0.115562\pi\)
\(564\) −83.6293 48.2834i −3.52143 2.03310i
\(565\) −17.3358 + 10.0088i −0.729321 + 0.421074i
\(566\) 31.4744i 1.32297i
\(567\) 29.0857 38.3171i 1.22149 1.60917i
\(568\) −3.76619 −0.158026
\(569\) −17.8918 30.9896i −0.750065 1.29915i −0.947791 0.318893i \(-0.896689\pi\)
0.197726 0.980257i \(-0.436644\pi\)
\(570\) 23.5964 + 13.6234i 0.988344 + 0.570621i
\(571\) 7.46920 12.9370i 0.312576 0.541398i −0.666343 0.745645i \(-0.732141\pi\)
0.978919 + 0.204248i \(0.0654747\pi\)
\(572\) −3.57581 + 0.204576i −0.149512 + 0.00855374i
\(573\) −84.4877 −3.52952
\(574\) 15.7641 + 37.5038i 0.657979 + 1.56538i
\(575\) −0.557280 −0.0232402
\(576\) −44.8987 77.7669i −1.87078 3.24029i
\(577\) −14.5892 8.42309i −0.607357 0.350658i 0.164573 0.986365i \(-0.447375\pi\)
−0.771930 + 0.635707i \(0.780709\pi\)
\(578\) 27.4057 + 15.8227i 1.13993 + 0.658137i
\(579\) 0.583822 0.337070i 0.0242628 0.0140081i
\(580\) 13.7585i 0.571292i
\(581\) −3.72428 + 29.4748i −0.154509 + 1.22282i
\(582\) 55.1838 2.28744
\(583\) −1.98771 + 1.14761i −0.0823226 + 0.0475290i
\(584\) 16.5643 28.6901i 0.685434 1.18721i
\(585\) 29.1107 + 44.3601i 1.20358 + 1.83406i
\(586\) −1.15647 2.00307i −0.0477735 0.0827461i
\(587\) 36.8833i 1.52234i −0.648555 0.761168i \(-0.724626\pi\)
0.648555 0.761168i \(-0.275374\pi\)
\(588\) 19.0950 + 68.4035i 0.787463 + 2.82091i
\(589\) 8.20264 0.337984
\(590\) −34.1469 + 19.7147i −1.40580 + 0.811642i
\(591\) −30.6367 17.6881i −1.26022 0.727590i
\(592\) 0.335690 + 0.193811i 0.0137968 + 0.00796558i
\(593\) 13.9894 8.07676i 0.574474 0.331673i −0.184460 0.982840i \(-0.559054\pi\)
0.758934 + 0.651167i \(0.225720\pi\)
\(594\) 8.71531 0.357593
\(595\) 1.25081 9.89920i 0.0512781 0.405828i
\(596\) 67.9204i 2.78213i
\(597\) 32.1660 + 55.7131i 1.31646 + 2.28018i
\(598\) −5.19965 7.92343i −0.212629 0.324013i
\(599\) 1.24238 2.15186i 0.0507622 0.0879227i −0.839528 0.543317i \(-0.817168\pi\)
0.890290 + 0.455394i \(0.150502\pi\)
\(600\) −3.68518 + 2.12764i −0.150447 + 0.0868605i
\(601\) 9.55999 0.389960 0.194980 0.980807i \(-0.437536\pi\)
0.194980 + 0.980807i \(0.437536\pi\)
\(602\) 8.50464 3.57478i 0.346623 0.145697i
\(603\) 87.3605i 3.55759i
\(604\) −48.8179 + 28.1850i −1.98637 + 1.14683i
\(605\) −20.0682 11.5864i −0.815886 0.471052i
\(606\) 56.8349 + 32.8136i 2.30876 + 1.33296i
\(607\) 9.74294 + 16.8753i 0.395454 + 0.684946i 0.993159 0.116770i \(-0.0372540\pi\)
−0.597705 + 0.801716i \(0.703921\pi\)
\(608\) 10.2184 0.414411
\(609\) 10.1323 13.3481i 0.410582 0.540894i
\(610\) 16.7055 0.676387
\(611\) 34.2622 1.96017i 1.38610 0.0793002i
\(612\) 19.7897 34.2768i 0.799951 1.38556i
\(613\) −12.7896 7.38409i −0.516568 0.298241i 0.218962 0.975733i \(-0.429733\pi\)
−0.735529 + 0.677493i \(0.763066\pi\)
\(614\) 27.4779 + 47.5931i 1.10892 + 1.92070i
\(615\) 45.0537 1.81674
\(616\) −1.37588 + 1.81256i −0.0554357 + 0.0730301i
\(617\) 30.9478i 1.24591i −0.782257 0.622955i \(-0.785932\pi\)
0.782257 0.622955i \(-0.214068\pi\)
\(618\) −37.6625 + 21.7444i −1.51501 + 0.874689i
\(619\) −11.3297 6.54123i −0.455380 0.262914i 0.254719 0.967015i \(-0.418017\pi\)
−0.710100 + 0.704101i \(0.751350\pi\)
\(620\) 15.7561 27.2903i 0.632780 1.09601i
\(621\) 7.11300 + 12.3201i 0.285435 + 0.494388i
\(622\) 20.5426i 0.823685i
\(623\) −4.04678 + 1.70099i −0.162131 + 0.0681489i
\(624\) 0.709679 + 0.357329i 0.0284099 + 0.0143046i
\(625\) 11.1716 + 19.3498i 0.446865 + 0.773994i
\(626\) 30.1478 + 17.4059i 1.20495 + 0.695678i
\(627\) −0.865532 + 1.49915i −0.0345660 + 0.0598701i
\(628\) 0.121696 + 0.210784i 0.00485620 + 0.00841119i
\(629\) 9.83456i 0.392130i
\(630\) 88.2566 + 11.1516i 3.51623 + 0.444291i
\(631\) 35.3591i 1.40762i 0.710387 + 0.703812i \(0.248520\pi\)
−0.710387 + 0.703812i \(0.751480\pi\)
\(632\) 19.1373 11.0489i 0.761242 0.439503i
\(633\) −13.2591 + 22.9655i −0.527004 + 0.912797i
\(634\) −7.80892 + 13.5254i −0.310132 + 0.537164i
\(635\) 24.6596 14.2372i 0.978585 0.564986i
\(636\) −75.4903 −2.99338
\(637\) −19.0108 16.6008i −0.753237 0.657749i
\(638\) 1.41699 0.0560990
\(639\) −8.10065 + 4.67691i −0.320457 + 0.185016i
\(640\) 19.2884 33.4086i 0.762443 1.32059i
\(641\) −10.6188 + 18.3923i −0.419417 + 0.726452i −0.995881 0.0906706i \(-0.971099\pi\)
0.576464 + 0.817123i \(0.304432\pi\)
\(642\) 75.3418 43.4986i 2.97351 1.71675i
\(643\) 25.4808i 1.00486i 0.864617 + 0.502432i \(0.167561\pi\)
−0.864617 + 0.502432i \(0.832439\pi\)
\(644\) −9.72462 1.22875i −0.383204 0.0484195i
\(645\) 10.2167i 0.402283i
\(646\) 3.61154 + 6.25537i 0.142094 + 0.246114i
\(647\) 11.3928 19.7329i 0.447897 0.775781i −0.550352 0.834933i \(-0.685506\pi\)
0.998249 + 0.0591522i \(0.0188397\pi\)
\(648\) 43.9059 + 25.3491i 1.72479 + 0.995806i
\(649\) −1.25253 2.16945i −0.0491662 0.0851583i
\(650\) 1.79465 3.56429i 0.0703919 0.139803i
\(651\) 35.3837 14.8729i 1.38680 0.582916i
\(652\) 32.4669i 1.27150i
\(653\) −8.13928 14.0976i −0.318515 0.551684i 0.661664 0.749801i \(-0.269851\pi\)
−0.980178 + 0.198117i \(0.936517\pi\)
\(654\) 4.90150 8.48964i 0.191664 0.331971i
\(655\) −24.6546 14.2343i −0.963334 0.556181i
\(656\) 0.407683 0.235376i 0.0159173 0.00918988i
\(657\) 82.2790i 3.21001i
\(658\) 34.7884 45.8297i 1.35619 1.78663i
\(659\) 20.5596 0.800888 0.400444 0.916321i \(-0.368856\pi\)
0.400444 + 0.916321i \(0.368856\pi\)
\(660\) 3.32513 + 5.75929i 0.129430 + 0.224180i
\(661\) −24.0518 13.8863i −0.935507 0.540115i −0.0469576 0.998897i \(-0.514953\pi\)
−0.888549 + 0.458782i \(0.848286\pi\)
\(662\) −15.7818 + 27.3349i −0.613378 + 1.06240i
\(663\) 1.15145 + 20.1263i 0.0447185 + 0.781642i
\(664\) −31.3101 −1.21507
\(665\) −6.05517 + 7.97698i −0.234809 + 0.309334i
\(666\) −87.6802 −3.39754
\(667\) 1.15647 + 2.00307i 0.0447789 + 0.0775593i
\(668\) 16.3149 + 9.41941i 0.631242 + 0.364448i
\(669\) −37.1303 21.4372i −1.43554 0.828810i
\(670\) −53.0425 + 30.6241i −2.04921 + 1.18311i
\(671\) 1.06135i 0.0409730i
\(672\) 44.0791 18.5279i 1.70039 0.714729i
\(673\) 5.20337 0.200575 0.100288 0.994958i \(-0.468024\pi\)
0.100288 + 0.994958i \(0.468024\pi\)
\(674\) −53.5105 + 30.8943i −2.06115 + 1.19000i
\(675\) −2.99511 + 5.18768i −0.115282 + 0.199674i
\(676\) 41.5917 4.77463i 1.59968 0.183640i
\(677\) −22.4239 38.8394i −0.861821 1.49272i −0.870169 0.492753i \(-0.835991\pi\)
0.00834820 0.999965i \(-0.497343\pi\)
\(678\) 67.8070i 2.60411i
\(679\) −2.54268 + 20.1234i −0.0975792 + 0.772266i
\(680\) 10.5156 0.403254
\(681\) −9.82957 + 5.67510i −0.376670 + 0.217470i
\(682\) 2.81062 + 1.62271i 0.107624 + 0.0621370i
\(683\) 16.4318 + 9.48691i 0.628745 + 0.363006i 0.780266 0.625448i \(-0.215084\pi\)
−0.151521 + 0.988454i \(0.548417\pi\)
\(684\) −34.4037 + 19.8630i −1.31546 + 0.759479i
\(685\) 1.06471 0.0406807
\(686\) −41.8618 + 6.17846i −1.59829 + 0.235895i
\(687\) 57.9179i 2.20970i
\(688\) −0.0533755 0.0924491i −0.00203492 0.00352459i
\(689\) 22.4296 14.7191i 0.854500 0.560755i
\(690\) −8.79840 + 15.2393i −0.334949 + 0.580149i
\(691\) 32.4085 18.7111i 1.23288 0.711803i 0.265250 0.964180i \(-0.414545\pi\)
0.967629 + 0.252376i \(0.0812121\pi\)
\(692\) 54.7148 2.07994
\(693\) −0.708493 + 5.60719i −0.0269134 + 0.213000i
\(694\) 44.1229i 1.67488i
\(695\) 2.61204 1.50806i 0.0990802 0.0572040i
\(696\) 15.2951 + 8.83060i 0.579757 + 0.334723i
\(697\) 10.3435 + 5.97184i 0.391789 + 0.226200i
\(698\) −16.1734 28.0131i −0.612171 1.06031i
\(699\) −63.8580 −2.41533
\(700\) −1.59932 3.80489i −0.0604486 0.143811i
\(701\) 42.5513 1.60714 0.803570 0.595210i \(-0.202931\pi\)
0.803570 + 0.595210i \(0.202931\pi\)
\(702\) −101.704 + 5.81860i −3.83857 + 0.219609i
\(703\) 4.93548 8.54851i 0.186145 0.322413i
\(704\) 3.46395 + 1.99991i 0.130552 + 0.0753745i
\(705\) −31.8602 55.1835i −1.19993 2.07833i
\(706\) −38.7612 −1.45880
\(707\) −14.5846 + 19.2136i −0.548512 + 0.722600i
\(708\) 82.3924i 3.09650i
\(709\) 43.5889 25.1661i 1.63702 0.945131i 0.655163 0.755488i \(-0.272600\pi\)
0.981853 0.189644i \(-0.0607333\pi\)
\(710\) −5.67934 3.27897i −0.213142 0.123057i
\(711\) 27.4415 47.5300i 1.02914 1.78252i
\(712\) −2.31315 4.00648i −0.0866888 0.150149i
\(713\) 5.29752i 0.198394i
\(714\) 26.9213 + 20.4354i 1.00750 + 0.764776i
\(715\) −2.11091 1.06286i −0.0789435 0.0397487i
\(716\) 24.6384 + 42.6749i 0.920780 + 1.59484i
\(717\) 56.7760 + 32.7796i 2.12034 + 1.22418i
\(718\) 26.0049 45.0418i 0.970495 1.68095i
\(719\) 14.4616 + 25.0482i 0.539326 + 0.934141i 0.998940 + 0.0460219i \(0.0146544\pi\)
−0.459614 + 0.888119i \(0.652012\pi\)
\(720\) 1.02938i 0.0383625i
\(721\) −6.19400 14.7360i −0.230677 0.548796i
\(722\) 36.1616i 1.34580i
\(723\) −34.6902 + 20.0284i −1.29014 + 0.744863i
\(724\) −9.41891 + 16.3140i −0.350051 + 0.606306i
\(725\) −0.486962 + 0.843444i −0.0180853 + 0.0313247i
\(726\) 67.9782 39.2472i 2.52291 1.45660i
\(727\) 19.8593 0.736539 0.368269 0.929719i \(-0.379950\pi\)
0.368269 + 0.929719i \(0.379950\pi\)
\(728\) 14.8458 22.0704i 0.550222 0.817984i
\(729\) 9.04209 0.334892
\(730\) 49.9572 28.8428i 1.84900 1.06752i
\(731\) 1.35422 2.34558i 0.0500876 0.0867543i
\(732\) −17.4541 + 30.2314i −0.645121 + 1.11738i
\(733\) 17.6237 10.1751i 0.650947 0.375824i −0.137872 0.990450i \(-0.544026\pi\)
0.788819 + 0.614626i \(0.210693\pi\)
\(734\) 37.8899i 1.39854i
\(735\) −11.6564 + 45.3895i −0.429954 + 1.67422i
\(736\) 6.59935i 0.243255i
\(737\) −1.94564 3.36994i −0.0716684 0.124133i
\(738\) −53.2421 + 92.2180i −1.95987 + 3.39459i
\(739\) 16.4554 + 9.50055i 0.605323 + 0.349483i 0.771133 0.636674i \(-0.219690\pi\)
−0.165810 + 0.986158i \(0.553024\pi\)
\(740\) −18.9607 32.8409i −0.697009 1.20726i
\(741\) 9.09954 18.0723i 0.334280 0.663902i
\(742\) 5.63854 44.6248i 0.206997 1.63823i
\(743\) 8.15098i 0.299030i 0.988759 + 0.149515i \(0.0477713\pi\)
−0.988759 + 0.149515i \(0.952229\pi\)
\(744\) 20.2254 + 35.0314i 0.741498 + 1.28431i
\(745\) −22.4090 + 38.8134i −0.821000 + 1.42201i
\(746\) −54.7035 31.5831i −2.00284 1.15634i
\(747\) −67.3445 + 38.8814i −2.46401 + 1.42260i
\(748\) 1.76297i 0.0644607i
\(749\) 12.3908 + 29.4786i 0.452750 + 1.07712i
\(750\) −83.8893 −3.06320
\(751\) 18.3713 + 31.8201i 0.670379 + 1.16113i 0.977797 + 0.209556i \(0.0672020\pi\)
−0.307417 + 0.951575i \(0.599465\pi\)
\(752\) −0.576595 0.332897i −0.0210262 0.0121395i
\(753\) 21.6490 37.4972i 0.788934 1.36647i
\(754\) −16.5357 + 0.946022i −0.602193 + 0.0344521i
\(755\) −37.1963 −1.35371
\(756\) −63.7034 + 83.9218i −2.31687 + 3.05221i
\(757\) 38.3971 1.39557 0.697783 0.716310i \(-0.254170\pi\)
0.697783 + 0.716310i \(0.254170\pi\)
\(758\) −10.5584 18.2878i −0.383500 0.664241i
\(759\) −0.968195 0.558987i −0.0351432 0.0202900i
\(760\) −9.14048 5.27726i −0.331560 0.191426i
\(761\) −10.7922 + 6.23089i −0.391218 + 0.225870i −0.682688 0.730710i \(-0.739189\pi\)
0.291470 + 0.956580i \(0.405856\pi\)
\(762\) 96.4533i 3.49414i
\(763\) 2.87000 + 2.17856i 0.103901 + 0.0788692i
\(764\) 86.3636 3.12453
\(765\) 22.6178 13.0584i 0.817749 0.472128i
\(766\) 8.73742 15.1336i 0.315696 0.546801i
\(767\) 16.0649 + 24.4804i 0.580071 + 0.883935i
\(768\) 24.4860 + 42.4110i 0.883562 + 1.53037i
\(769\) 4.81390i 0.173594i 0.996226 + 0.0867969i \(0.0276631\pi\)
−0.996226 + 0.0867969i \(0.972337\pi\)
\(770\) −3.65287 + 1.53542i −0.131640 + 0.0553326i
\(771\) 23.1075 0.832196
\(772\) −0.596785 + 0.344554i −0.0214787 + 0.0124008i
\(773\) −24.4863 14.1372i −0.880713 0.508480i −0.00981931 0.999952i \(-0.503126\pi\)
−0.870893 + 0.491472i \(0.836459\pi\)
\(774\) 20.9120 + 12.0736i 0.751668 + 0.433975i
\(775\) −1.93180 + 1.11533i −0.0693923 + 0.0400637i