Properties

Label 91.2.r.a.25.5
Level $91$
Weight $2$
Character 91.25
Analytic conductor $0.727$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 11 x^{14} + 85 x^{12} - 334 x^{10} + 952 x^{8} - 1050 x^{6} + 853 x^{4} - 93 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 25.5
Root \(-0.287846 - 0.166188i\) of defining polynomial
Character \(\chi\) \(=\) 91.25
Dual form 91.2.r.a.51.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.287846 - 0.166188i) q^{2} +(-0.729919 + 1.26426i) q^{3} +(-0.944763 + 1.63638i) q^{4} +(1.25195 - 0.722811i) q^{5} +0.485214i q^{6} +(2.26391 + 1.36920i) q^{7} +1.29278i q^{8} +(0.434437 + 0.752468i) q^{9} +O(q^{10})\) \(q+(0.287846 - 0.166188i) q^{2} +(-0.729919 + 1.26426i) q^{3} +(-0.944763 + 1.63638i) q^{4} +(1.25195 - 0.722811i) q^{5} +0.485214i q^{6} +(2.26391 + 1.36920i) q^{7} +1.29278i q^{8} +(0.434437 + 0.752468i) q^{9} +(0.240245 - 0.416116i) q^{10} +(-5.15732 - 2.97758i) q^{11} +(-1.37920 - 2.38885i) q^{12} +(1.88953 - 3.07078i) q^{13} +(0.879201 + 0.0178849i) q^{14} +2.11037i q^{15} +(-1.67468 - 2.90063i) q^{16} +(2.16436 - 3.74877i) q^{17} +(0.250102 + 0.144396i) q^{18} +(1.69527 - 0.978767i) q^{19} +2.73154i q^{20} +(-3.38349 + 1.86276i) q^{21} -1.97935 q^{22} +(-0.270081 - 0.467795i) q^{23} +(-1.63441 - 0.943626i) q^{24} +(-1.45509 + 2.52029i) q^{25} +(0.0335660 - 1.19793i) q^{26} -5.64793 q^{27} +(-4.37939 + 2.41104i) q^{28} +7.15857 q^{29} +(0.350718 + 0.607461i) q^{30} +(5.28968 + 3.05400i) q^{31} +(-3.20327 - 1.84941i) q^{32} +(7.52885 - 4.34678i) q^{33} -1.43876i q^{34} +(3.82396 + 0.0777879i) q^{35} -1.64176 q^{36} +(-6.95316 + 4.01441i) q^{37} +(0.325318 - 0.563467i) q^{38} +(2.50305 + 4.63027i) q^{39} +(0.934437 + 1.61849i) q^{40} -7.55362i q^{41} +(-0.664356 + 1.09848i) q^{42} -4.24839 q^{43} +(9.74489 - 5.62622i) q^{44} +(1.08778 + 0.628032i) q^{45} +(-0.155483 - 0.0897684i) q^{46} +(-5.42204 + 3.13042i) q^{47} +4.88953 q^{48} +(3.25057 + 6.19950i) q^{49} +0.967272i q^{50} +(3.15961 + 5.47260i) q^{51} +(3.23980 + 5.99314i) q^{52} +(1.38953 - 2.40673i) q^{53} +(-1.62573 + 0.938616i) q^{54} -8.60891 q^{55} +(-1.77008 + 2.92674i) q^{56} +2.85768i q^{57} +(2.06056 - 1.18967i) q^{58} +(-0.737119 - 0.425576i) q^{59} +(-3.45337 - 1.99380i) q^{60} +(-3.38953 - 5.87083i) q^{61} +2.03015 q^{62} +(-0.0467536 + 2.29835i) q^{63} +5.46933 q^{64} +(0.145991 - 5.21022i) q^{65} +(1.44476 - 2.50240i) q^{66} +(0.854859 + 0.493553i) q^{67} +(4.08961 + 7.08341i) q^{68} +0.788550 q^{69} +(1.11364 - 0.613105i) q^{70} +3.76223i q^{71} +(-0.972777 + 0.561633i) q^{72} +(-7.91131 - 4.56760i) q^{73} +(-1.33429 + 2.31106i) q^{74} +(-2.12419 - 3.67921i) q^{75} +3.69881i q^{76} +(-7.59879 - 13.8024i) q^{77} +(1.48999 + 0.916825i) q^{78} +(0.0655625 + 0.113558i) q^{79} +(-4.19322 - 2.42096i) q^{80} +(2.81922 - 4.88303i) q^{81} +(-1.25532 - 2.17428i) q^{82} +2.66812i q^{83} +(0.148428 - 7.29653i) q^{84} -6.25768i q^{85} +(-1.22288 + 0.706030i) q^{86} +(-5.22517 + 9.05026i) q^{87} +(3.84936 - 6.66729i) q^{88} +(-8.41550 + 4.85869i) q^{89} +0.417485 q^{90} +(8.48224 - 4.36482i) q^{91} +1.02065 q^{92} +(-7.72207 + 4.45834i) q^{93} +(-1.04047 + 1.80215i) q^{94} +(1.41493 - 2.45072i) q^{95} +(4.67625 - 2.69983i) q^{96} +6.58319i q^{97} +(1.96594 + 1.24429i) q^{98} -5.17429i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} + O(q^{10}) \) \( 16q - 4q^{3} + 6q^{4} - 12q^{9} - 6q^{10} + 18q^{12} - 12q^{13} - 26q^{14} + 2q^{16} + 8q^{17} - 36q^{22} - 12q^{23} - 6q^{26} + 32q^{27} - 16q^{29} + 38q^{30} - 56q^{36} + 34q^{38} + 18q^{39} - 4q^{40} + 16q^{42} + 16q^{43} + 36q^{48} + 40q^{49} + 16q^{51} - 42q^{52} - 20q^{53} + 24q^{55} - 36q^{56} - 12q^{61} + 44q^{62} + 88q^{64} - 30q^{65} + 2q^{66} - 2q^{68} - 56q^{69} + 42q^{74} + 8q^{75} - 76q^{77} + 20q^{78} + 20q^{79} - 24q^{81} - 16q^{82} - 68q^{87} + 4q^{88} - 216q^{90} + 56q^{91} + 12q^{92} - 26q^{94} - 16q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.287846 0.166188i 0.203538 0.117512i −0.394767 0.918781i \(-0.629175\pi\)
0.598304 + 0.801269i \(0.295841\pi\)
\(3\) −0.729919 + 1.26426i −0.421419 + 0.729919i −0.996079 0.0884737i \(-0.971801\pi\)
0.574660 + 0.818392i \(0.305134\pi\)
\(4\) −0.944763 + 1.63638i −0.472382 + 0.818189i
\(5\) 1.25195 0.722811i 0.559887 0.323251i −0.193213 0.981157i \(-0.561891\pi\)
0.753100 + 0.657906i \(0.228558\pi\)
\(6\) 0.485214i 0.198088i
\(7\) 2.26391 + 1.36920i 0.855677 + 0.517510i
\(8\) 1.29278i 0.457068i
\(9\) 0.434437 + 0.752468i 0.144812 + 0.250823i
\(10\) 0.240245 0.416116i 0.0759720 0.131587i
\(11\) −5.15732 2.97758i −1.55499 0.897774i −0.997723 0.0674405i \(-0.978517\pi\)
−0.557267 0.830333i \(-0.688150\pi\)
\(12\) −1.37920 2.38885i −0.398141 0.689600i
\(13\) 1.88953 3.07078i 0.524060 0.851681i
\(14\) 0.879201 + 0.0178849i 0.234976 + 0.00477994i
\(15\) 2.11037i 0.544896i
\(16\) −1.67468 2.90063i −0.418670 0.725159i
\(17\) 2.16436 3.74877i 0.524933 0.909211i −0.474645 0.880177i \(-0.657424\pi\)
0.999578 0.0290341i \(-0.00924314\pi\)
\(18\) 0.250102 + 0.144396i 0.0589496 + 0.0340345i
\(19\) 1.69527 0.978767i 0.388923 0.224545i −0.292771 0.956183i \(-0.594577\pi\)
0.681693 + 0.731638i \(0.261244\pi\)
\(20\) 2.73154i 0.610791i
\(21\) −3.38349 + 1.86276i −0.738339 + 0.406486i
\(22\) −1.97935 −0.421998
\(23\) −0.270081 0.467795i −0.0563158 0.0975419i 0.836493 0.547977i \(-0.184602\pi\)
−0.892809 + 0.450436i \(0.851269\pi\)
\(24\) −1.63441 0.943626i −0.333622 0.192617i
\(25\) −1.45509 + 2.52029i −0.291018 + 0.504058i
\(26\) 0.0335660 1.19793i 0.00658282 0.234933i
\(27\) −5.64793 −1.08694
\(28\) −4.37939 + 2.41104i −0.827627 + 0.455644i
\(29\) 7.15857 1.32931 0.664656 0.747149i \(-0.268578\pi\)
0.664656 + 0.747149i \(0.268578\pi\)
\(30\) 0.350718 + 0.607461i 0.0640320 + 0.110907i
\(31\) 5.28968 + 3.05400i 0.950055 + 0.548514i 0.893098 0.449862i \(-0.148527\pi\)
0.0569568 + 0.998377i \(0.481860\pi\)
\(32\) −3.20327 1.84941i −0.566263 0.326932i
\(33\) 7.52885 4.34678i 1.31060 0.756678i
\(34\) 1.43876i 0.246745i
\(35\) 3.82396 + 0.0777879i 0.646368 + 0.0131486i
\(36\) −1.64176 −0.273627
\(37\) −6.95316 + 4.01441i −1.14309 + 0.659964i −0.947194 0.320660i \(-0.896095\pi\)
−0.195897 + 0.980624i \(0.562762\pi\)
\(38\) 0.325318 0.563467i 0.0527736 0.0914065i
\(39\) 2.50305 + 4.63027i 0.400809 + 0.741436i
\(40\) 0.934437 + 1.61849i 0.147748 + 0.255906i
\(41\) 7.55362i 1.17968i −0.807521 0.589839i \(-0.799191\pi\)
0.807521 0.589839i \(-0.200809\pi\)
\(42\) −0.664356 + 1.09848i −0.102512 + 0.169499i
\(43\) −4.24839 −0.647873 −0.323936 0.946079i \(-0.605006\pi\)
−0.323936 + 0.946079i \(0.605006\pi\)
\(44\) 9.74489 5.62622i 1.46910 0.848184i
\(45\) 1.08778 + 0.628032i 0.162157 + 0.0936215i
\(46\) −0.155483 0.0897684i −0.0229248 0.0132356i
\(47\) −5.42204 + 3.13042i −0.790886 + 0.456618i −0.840274 0.542161i \(-0.817606\pi\)
0.0493882 + 0.998780i \(0.484273\pi\)
\(48\) 4.88953 0.705742
\(49\) 3.25057 + 6.19950i 0.464367 + 0.885643i
\(50\) 0.967272i 0.136793i
\(51\) 3.15961 + 5.47260i 0.442434 + 0.766317i
\(52\) 3.23980 + 5.99314i 0.449280 + 0.831099i
\(53\) 1.38953 2.40673i 0.190866 0.330590i −0.754671 0.656103i \(-0.772204\pi\)
0.945538 + 0.325513i \(0.105537\pi\)
\(54\) −1.62573 + 0.938616i −0.221234 + 0.127729i
\(55\) −8.60891 −1.16082
\(56\) −1.77008 + 2.92674i −0.236537 + 0.391103i
\(57\) 2.85768i 0.378509i
\(58\) 2.06056 1.18967i 0.270565 0.156211i
\(59\) −0.737119 0.425576i −0.0959647 0.0554053i 0.451250 0.892398i \(-0.350978\pi\)
−0.547214 + 0.836993i \(0.684312\pi\)
\(60\) −3.45337 1.99380i −0.445828 0.257399i
\(61\) −3.38953 5.87083i −0.433984 0.751683i 0.563228 0.826302i \(-0.309559\pi\)
−0.997212 + 0.0746187i \(0.976226\pi\)
\(62\) 2.03015 0.257829
\(63\) −0.0467536 + 2.29835i −0.00589039 + 0.289565i
\(64\) 5.46933 0.683667
\(65\) 0.145991 5.21022i 0.0181079 0.646248i
\(66\) 1.44476 2.50240i 0.177838 0.308025i
\(67\) 0.854859 + 0.493553i 0.104438 + 0.0602971i 0.551309 0.834301i \(-0.314129\pi\)
−0.446871 + 0.894598i \(0.647462\pi\)
\(68\) 4.08961 + 7.08341i 0.495938 + 0.858990i
\(69\) 0.788550 0.0949302
\(70\) 1.11364 0.613105i 0.133105 0.0732801i
\(71\) 3.76223i 0.446494i 0.974762 + 0.223247i \(0.0716657\pi\)
−0.974762 + 0.223247i \(0.928334\pi\)
\(72\) −0.972777 + 0.561633i −0.114643 + 0.0661891i
\(73\) −7.91131 4.56760i −0.925949 0.534597i −0.0404208 0.999183i \(-0.512870\pi\)
−0.885528 + 0.464586i \(0.846203\pi\)
\(74\) −1.33429 + 2.31106i −0.155108 + 0.268655i
\(75\) −2.12419 3.67921i −0.245281 0.424839i
\(76\) 3.69881i 0.424283i
\(77\) −7.59879 13.8024i −0.865963 1.57293i
\(78\) 1.48999 + 0.916825i 0.168708 + 0.103810i
\(79\) 0.0655625 + 0.113558i 0.00737636 + 0.0127762i 0.869690 0.493598i \(-0.164319\pi\)
−0.862314 + 0.506375i \(0.830985\pi\)
\(80\) −4.19322 2.42096i −0.468816 0.270671i
\(81\) 2.81922 4.88303i 0.313246 0.542558i
\(82\) −1.25532 2.17428i −0.138627 0.240109i
\(83\) 2.66812i 0.292865i 0.989221 + 0.146432i \(0.0467791\pi\)
−0.989221 + 0.146432i \(0.953221\pi\)
\(84\) 0.148428 7.29653i 0.0161948 0.796117i
\(85\) 6.25768i 0.678741i
\(86\) −1.22288 + 0.706030i −0.131866 + 0.0761331i
\(87\) −5.22517 + 9.05026i −0.560197 + 0.970290i
\(88\) 3.84936 6.66729i 0.410344 0.710736i
\(89\) −8.41550 + 4.85869i −0.892042 + 0.515021i −0.874610 0.484828i \(-0.838882\pi\)
−0.0174319 + 0.999848i \(0.505549\pi\)
\(90\) 0.417485 0.0440068
\(91\) 8.48224 4.36482i 0.889180 0.457558i
\(92\) 1.02065 0.106410
\(93\) −7.72207 + 4.45834i −0.800742 + 0.462308i
\(94\) −1.04047 + 1.80215i −0.107317 + 0.185878i
\(95\) 1.41493 2.45072i 0.145168 0.251439i
\(96\) 4.67625 2.69983i 0.477267 0.275550i
\(97\) 6.58319i 0.668422i 0.942498 + 0.334211i \(0.108470\pi\)
−0.942498 + 0.334211i \(0.891530\pi\)
\(98\) 1.96594 + 1.24429i 0.198590 + 0.125693i
\(99\) 5.17429i 0.520036i
\(100\) −2.74943 4.76215i −0.274943 0.476215i
\(101\) −0.0354144 + 0.0613396i −0.00352387 + 0.00610352i −0.867782 0.496945i \(-0.834455\pi\)
0.864258 + 0.503049i \(0.167788\pi\)
\(102\) 1.81896 + 1.05018i 0.180104 + 0.103983i
\(103\) 3.16910 + 5.48905i 0.312261 + 0.540852i 0.978852 0.204572i \(-0.0655803\pi\)
−0.666590 + 0.745424i \(0.732247\pi\)
\(104\) 3.96985 + 2.44275i 0.389276 + 0.239531i
\(105\) −2.88953 + 4.77769i −0.281989 + 0.466255i
\(106\) 0.923689i 0.0897166i
\(107\) −3.87476 6.71129i −0.374588 0.648805i 0.615678 0.787998i \(-0.288882\pi\)
−0.990265 + 0.139193i \(0.955549\pi\)
\(108\) 5.33596 9.24215i 0.513453 0.889326i
\(109\) 0.0290658 + 0.0167811i 0.00278400 + 0.00160734i 0.501391 0.865221i \(-0.332822\pi\)
−0.498607 + 0.866828i \(0.666155\pi\)
\(110\) −2.47804 + 1.43069i −0.236271 + 0.136411i
\(111\) 11.7208i 1.11249i
\(112\) 0.180227 8.85975i 0.0170298 0.837168i
\(113\) −9.19987 −0.865451 −0.432725 0.901526i \(-0.642448\pi\)
−0.432725 + 0.901526i \(0.642448\pi\)
\(114\) 0.474911 + 0.822571i 0.0444795 + 0.0770408i
\(115\) −0.676254 0.390435i −0.0630610 0.0364083i
\(116\) −6.76315 + 11.7141i −0.627943 + 1.08763i
\(117\) 3.13154 + 0.0877460i 0.289511 + 0.00811212i
\(118\) −0.282902 −0.0260432
\(119\) 10.0327 5.52344i 0.919699 0.506333i
\(120\) −2.72825 −0.249054
\(121\) 12.2320 + 21.1864i 1.11200 + 1.92603i
\(122\) −1.95132 1.12660i −0.176664 0.101997i
\(123\) 9.54971 + 5.51353i 0.861068 + 0.497138i
\(124\) −9.99499 + 5.77061i −0.897577 + 0.518216i
\(125\) 11.4351i 1.02279i
\(126\) 0.368500 + 0.669340i 0.0328286 + 0.0596296i
\(127\) −14.3952 −1.27737 −0.638683 0.769470i \(-0.720520\pi\)
−0.638683 + 0.769470i \(0.720520\pi\)
\(128\) 7.98085 4.60775i 0.705414 0.407271i
\(129\) 3.10098 5.37105i 0.273026 0.472895i
\(130\) −0.823851 1.52400i −0.0722565 0.133664i
\(131\) 4.73414 + 8.19978i 0.413624 + 0.716418i 0.995283 0.0970151i \(-0.0309295\pi\)
−0.581659 + 0.813433i \(0.697596\pi\)
\(132\) 16.4267i 1.42976i
\(133\) 5.17808 + 0.105334i 0.448996 + 0.00913357i
\(134\) 0.328090 0.0283426
\(135\) −7.07090 + 4.08238i −0.608566 + 0.351356i
\(136\) 4.84635 + 2.79804i 0.415571 + 0.239930i
\(137\) 14.3814 + 8.30313i 1.22869 + 0.709384i 0.966756 0.255702i \(-0.0823065\pi\)
0.261934 + 0.965086i \(0.415640\pi\)
\(138\) 0.226980 0.131047i 0.0193219 0.0111555i
\(139\) 18.4778 1.56726 0.783632 0.621225i \(-0.213365\pi\)
0.783632 + 0.621225i \(0.213365\pi\)
\(140\) −3.74003 + 6.18396i −0.316090 + 0.522640i
\(141\) 9.13980i 0.769710i
\(142\) 0.625236 + 1.08294i 0.0524687 + 0.0908784i
\(143\) −18.8884 + 10.2108i −1.57953 + 0.853868i
\(144\) 1.45509 2.52029i 0.121257 0.210024i
\(145\) 8.96213 5.17429i 0.744264 0.429701i
\(146\) −3.03631 −0.251287
\(147\) −10.2104 0.415577i −0.842140 0.0342762i
\(148\) 15.1707i 1.24702i
\(149\) −2.66805 + 1.54040i −0.218575 + 0.126195i −0.605290 0.796005i \(-0.706943\pi\)
0.386715 + 0.922199i \(0.373610\pi\)
\(150\) −1.22288 0.706030i −0.0998477 0.0576471i
\(151\) 2.20737 + 1.27442i 0.179633 + 0.103711i 0.587120 0.809500i \(-0.300262\pi\)
−0.407487 + 0.913211i \(0.633595\pi\)
\(152\) 1.26533 + 2.19162i 0.102632 + 0.177764i
\(153\) 3.76111 0.304068
\(154\) −4.48106 2.71013i −0.361095 0.218388i
\(155\) 8.82985 0.709231
\(156\) −9.94166 0.278566i −0.795970 0.0223031i
\(157\) 4.70452 8.14847i 0.375461 0.650318i −0.614935 0.788578i \(-0.710818\pi\)
0.990396 + 0.138260i \(0.0441509\pi\)
\(158\) 0.0377438 + 0.0217914i 0.00300273 + 0.00173363i
\(159\) 2.02848 + 3.51344i 0.160869 + 0.278634i
\(160\) −5.34708 −0.422724
\(161\) 0.0290658 1.42884i 0.00229070 0.112608i
\(162\) 1.87408i 0.147241i
\(163\) −0.602023 + 0.347578i −0.0471541 + 0.0272244i −0.523392 0.852092i \(-0.675334\pi\)
0.476238 + 0.879317i \(0.342000\pi\)
\(164\) 12.3606 + 7.13638i 0.965199 + 0.557258i
\(165\) 6.28380 10.8839i 0.489193 0.847308i
\(166\) 0.443409 + 0.768007i 0.0344152 + 0.0596089i
\(167\) 13.9840i 1.08211i −0.840986 0.541056i \(-0.818025\pi\)
0.840986 0.541056i \(-0.181975\pi\)
\(168\) −2.40814 4.37412i −0.185792 0.337471i
\(169\) −5.85938 11.6046i −0.450721 0.892665i
\(170\) −1.03995 1.80125i −0.0797605 0.138149i
\(171\) 1.47298 + 0.850426i 0.112642 + 0.0650337i
\(172\) 4.01372 6.95197i 0.306043 0.530083i
\(173\) −2.71824 4.70813i −0.206664 0.357952i 0.743998 0.668182i \(-0.232927\pi\)
−0.950662 + 0.310230i \(0.899594\pi\)
\(174\) 3.47344i 0.263321i
\(175\) −6.74497 + 3.71339i −0.509872 + 0.280706i
\(176\) 19.9460i 1.50349i
\(177\) 1.07607 0.621272i 0.0808827 0.0466976i
\(178\) −1.61491 + 2.79711i −0.121043 + 0.209652i
\(179\) 2.67912 4.64037i 0.200247 0.346838i −0.748361 0.663292i \(-0.769159\pi\)
0.948608 + 0.316454i \(0.102492\pi\)
\(180\) −2.05540 + 1.18668i −0.153200 + 0.0884502i
\(181\) −7.54016 −0.560456 −0.280228 0.959933i \(-0.590410\pi\)
−0.280228 + 0.959933i \(0.590410\pi\)
\(182\) 1.71619 2.66604i 0.127213 0.197620i
\(183\) 9.89632 0.731557
\(184\) 0.604757 0.349157i 0.0445833 0.0257402i
\(185\) −5.80331 + 10.0516i −0.426668 + 0.739011i
\(186\) −1.48184 + 2.56663i −0.108654 + 0.188194i
\(187\) −22.3245 + 12.8891i −1.63253 + 0.942543i
\(188\) 11.8300i 0.862793i
\(189\) −12.7864 7.73316i −0.930074 0.562504i
\(190\) 0.940574i 0.0682364i
\(191\) −6.77316 11.7315i −0.490089 0.848859i 0.509846 0.860266i \(-0.329702\pi\)
−0.999935 + 0.0114067i \(0.996369\pi\)
\(192\) −3.99217 + 6.91464i −0.288110 + 0.499021i
\(193\) 16.0702 + 9.27812i 1.15676 + 0.667853i 0.950524 0.310650i \(-0.100547\pi\)
0.206232 + 0.978503i \(0.433880\pi\)
\(194\) 1.09405 + 1.89494i 0.0785479 + 0.136049i
\(195\) 6.48049 + 3.98760i 0.464077 + 0.285558i
\(196\) −13.2157 0.537898i −0.943982 0.0384213i
\(197\) 2.66812i 0.190096i −0.995473 0.0950480i \(-0.969700\pi\)
0.995473 0.0950480i \(-0.0303004\pi\)
\(198\) −0.859903 1.48940i −0.0611106 0.105847i
\(199\) 10.0999 17.4936i 0.715965 1.24009i −0.246621 0.969112i \(-0.579320\pi\)
0.962586 0.270976i \(-0.0873465\pi\)
\(200\) −3.25819 1.88111i −0.230389 0.133015i
\(201\) −1.24795 + 0.720507i −0.0880239 + 0.0508206i
\(202\) 0.0235418i 0.00165639i
\(203\) 16.2063 + 9.80152i 1.13746 + 0.687932i
\(204\) −11.9403 −0.835990
\(205\) −5.45984 9.45672i −0.381332 0.660486i
\(206\) 1.82443 + 1.05333i 0.127114 + 0.0733891i
\(207\) 0.234667 0.406455i 0.0163105 0.0282506i
\(208\) −12.0716 0.338246i −0.837012 0.0234531i
\(209\) −11.6574 −0.806361
\(210\) −0.0377438 + 1.85544i −0.00260457 + 0.128038i
\(211\) 13.1268 0.903683 0.451842 0.892098i \(-0.350767\pi\)
0.451842 + 0.892098i \(0.350767\pi\)
\(212\) 2.62555 + 4.54758i 0.180323 + 0.312329i
\(213\) −4.75642 2.74612i −0.325905 0.188161i
\(214\) −2.23067 1.28788i −0.152485 0.0880374i
\(215\) −5.31875 + 3.07078i −0.362736 + 0.209425i
\(216\) 7.30155i 0.496807i
\(217\) 7.79382 + 14.1566i 0.529079 + 0.961014i
\(218\) 0.0111553 0.000755530
\(219\) 11.5492 6.66795i 0.780424 0.450578i
\(220\) 8.13338 14.0874i 0.548352 0.949774i
\(221\) −7.42205 13.7297i −0.499261 0.923558i
\(222\) −1.94785 3.37377i −0.130731 0.226433i
\(223\) 2.22334i 0.148886i −0.997225 0.0744428i \(-0.976282\pi\)
0.997225 0.0744428i \(-0.0237178\pi\)
\(224\) −4.71969 8.57281i −0.315348 0.572795i
\(225\) −2.52858 −0.168572
\(226\) −2.64814 + 1.52890i −0.176152 + 0.101701i
\(227\) −23.4732 13.5523i −1.55797 0.899495i −0.997451 0.0713539i \(-0.977268\pi\)
−0.560520 0.828141i \(-0.689399\pi\)
\(228\) −4.67625 2.69983i −0.309692 0.178801i
\(229\) 16.4447 9.49437i 1.08670 0.627406i 0.154003 0.988070i \(-0.450783\pi\)
0.932696 + 0.360665i \(0.117450\pi\)
\(230\) −0.259542 −0.0171137
\(231\) 22.9962 + 0.467795i 1.51304 + 0.0307786i
\(232\) 9.25447i 0.607586i
\(233\) 10.8700 + 18.8274i 0.712118 + 1.23343i 0.964060 + 0.265683i \(0.0855974\pi\)
−0.251942 + 0.967742i \(0.581069\pi\)
\(234\) 0.915983 0.495167i 0.0598797 0.0323701i
\(235\) −4.52540 + 7.83822i −0.295205 + 0.511309i
\(236\) 1.39281 0.804137i 0.0906639 0.0523449i
\(237\) −0.191421 −0.0124342
\(238\) 1.96995 3.25722i 0.127693 0.211134i
\(239\) 19.9695i 1.29172i 0.763455 + 0.645861i \(0.223501\pi\)
−0.763455 + 0.645861i \(0.776499\pi\)
\(240\) 6.12142 3.53420i 0.395136 0.228132i
\(241\) 2.79768 + 1.61524i 0.180214 + 0.104047i 0.587393 0.809302i \(-0.300154\pi\)
−0.407179 + 0.913348i \(0.633487\pi\)
\(242\) 7.04183 + 4.06560i 0.452666 + 0.261347i
\(243\) −4.35630 7.54533i −0.279456 0.484033i
\(244\) 12.8092 0.820025
\(245\) 8.55060 + 5.41188i 0.546278 + 0.345753i
\(246\) 3.66512 0.233680
\(247\) 0.197688 7.05522i 0.0125786 0.448913i
\(248\) −3.94816 + 6.83841i −0.250708 + 0.434239i
\(249\) −3.37319 1.94751i −0.213767 0.123419i
\(250\) 1.90038 + 3.29155i 0.120190 + 0.208176i
\(251\) −12.4916 −0.788466 −0.394233 0.919011i \(-0.628990\pi\)
−0.394233 + 0.919011i \(0.628990\pi\)
\(252\) −3.71680 2.24790i −0.234136 0.141605i
\(253\) 3.21675i 0.202236i
\(254\) −4.14359 + 2.39230i −0.259992 + 0.150106i
\(255\) 7.91131 + 4.56760i 0.495425 + 0.286034i
\(256\) −3.93783 + 6.82052i −0.246114 + 0.426283i
\(257\) 2.91379 + 5.04682i 0.181757 + 0.314812i 0.942479 0.334266i \(-0.108488\pi\)
−0.760722 + 0.649078i \(0.775155\pi\)
\(258\) 2.06138i 0.128336i
\(259\) −21.2378 0.432025i −1.31966 0.0268447i
\(260\) 8.38796 + 5.16132i 0.520199 + 0.320091i
\(261\) 3.10995 + 5.38659i 0.192501 + 0.333422i
\(262\) 2.72540 + 1.57351i 0.168376 + 0.0972119i
\(263\) −8.75736 + 15.1682i −0.540002 + 0.935311i 0.458901 + 0.888487i \(0.348243\pi\)
−0.998903 + 0.0468234i \(0.985090\pi\)
\(264\) 5.61945 + 9.73316i 0.345853 + 0.599035i
\(265\) 4.01746i 0.246791i
\(266\) 1.50799 0.830213i 0.0924609 0.0509036i
\(267\) 14.1858i 0.868157i
\(268\) −1.61528 + 0.932581i −0.0986688 + 0.0569665i
\(269\) −11.1644 + 19.3372i −0.680703 + 1.17901i 0.294064 + 0.955786i \(0.404992\pi\)
−0.974767 + 0.223226i \(0.928341\pi\)
\(270\) −1.35688 + 2.35019i −0.0825773 + 0.143028i
\(271\) 22.8366 13.1847i 1.38723 0.800916i 0.394225 0.919014i \(-0.371013\pi\)
0.993002 + 0.118098i \(0.0376796\pi\)
\(272\) −14.4984 −0.879097
\(273\) −0.673087 + 13.9097i −0.0407371 + 0.841852i
\(274\) 5.51951 0.333446
\(275\) 15.0087 8.66529i 0.905060 0.522536i
\(276\) −0.744993 + 1.29037i −0.0448433 + 0.0776709i
\(277\) −4.68809 + 8.12001i −0.281680 + 0.487884i −0.971799 0.235812i \(-0.924225\pi\)
0.690119 + 0.723696i \(0.257558\pi\)
\(278\) 5.31875 3.07078i 0.318997 0.184173i
\(279\) 5.30709i 0.317727i
\(280\) −0.100563 + 4.94356i −0.00600978 + 0.295434i
\(281\) 17.7754i 1.06039i 0.847876 + 0.530195i \(0.177881\pi\)
−0.847876 + 0.530195i \(0.822119\pi\)
\(282\) −1.51892 2.63085i −0.0904505 0.156665i
\(283\) −4.80331 + 8.31958i −0.285527 + 0.494548i −0.972737 0.231911i \(-0.925502\pi\)
0.687210 + 0.726459i \(0.258835\pi\)
\(284\) −6.15643 3.55442i −0.365317 0.210916i
\(285\) 2.06556 + 3.57766i 0.122353 + 0.211922i
\(286\) −3.74003 + 6.07814i −0.221153 + 0.359408i
\(287\) 10.3424 17.1007i 0.610494 1.00942i
\(288\) 3.21380i 0.189375i
\(289\) −0.868875 1.50494i −0.0511103 0.0885256i
\(290\) 1.71981 2.97879i 0.100990 0.174921i
\(291\) −8.32284 4.80519i −0.487894 0.281685i
\(292\) 14.9486 8.63060i 0.874803 0.505067i
\(293\) 11.6338i 0.679654i 0.940488 + 0.339827i \(0.110369\pi\)
−0.940488 + 0.339827i \(0.889631\pi\)
\(294\) −3.00808 + 1.57722i −0.175435 + 0.0919855i
\(295\) −1.23044 −0.0716392
\(296\) −5.18976 8.98892i −0.301648 0.522470i
\(297\) 29.1282 + 16.8172i 1.69019 + 0.975830i
\(298\) −0.511991 + 0.886795i −0.0296588 + 0.0513706i
\(299\) −1.94682 0.0545500i −0.112588 0.00315471i
\(300\) 8.02744 0.463464
\(301\) −9.61796 5.81690i −0.554370 0.335281i
\(302\) 0.847174 0.0487494
\(303\) −0.0516993 0.0895459i −0.00297005 0.00514427i
\(304\) −5.67809 3.27825i −0.325661 0.188020i
\(305\) −8.48700 4.89997i −0.485964 0.280572i
\(306\) 1.08262 0.625050i 0.0618892 0.0357317i
\(307\) 13.8280i 0.789204i −0.918852 0.394602i \(-0.870882\pi\)
0.918852 0.394602i \(-0.129118\pi\)
\(308\) 29.7650 + 0.605485i 1.69602 + 0.0345007i
\(309\) −9.25275 −0.526371
\(310\) 2.54163 1.46741i 0.144355 0.0833435i
\(311\) 15.3572 26.5994i 0.870827 1.50832i 0.00968369 0.999953i \(-0.496918\pi\)
0.861143 0.508363i \(-0.169749\pi\)
\(312\) −5.98593 + 3.23590i −0.338886 + 0.183197i
\(313\) −5.54334 9.60135i −0.313328 0.542701i 0.665752 0.746173i \(-0.268111\pi\)
−0.979081 + 0.203472i \(0.934777\pi\)
\(314\) 3.12733i 0.176486i
\(315\) 1.60274 + 2.91120i 0.0903042 + 0.164028i
\(316\) −0.247764 −0.0139378
\(317\) −20.6836 + 11.9417i −1.16171 + 0.670712i −0.951712 0.306991i \(-0.900678\pi\)
−0.209994 + 0.977703i \(0.567344\pi\)
\(318\) 1.16778 + 0.674218i 0.0654858 + 0.0378083i
\(319\) −36.9190 21.3152i −2.06707 1.19342i
\(320\) 6.84731 3.95329i 0.382776 0.220996i
\(321\) 11.3130 0.631433
\(322\) −0.229089 0.416116i −0.0127666 0.0231892i
\(323\) 8.47360i 0.471484i
\(324\) 5.32698 + 9.22661i 0.295944 + 0.512589i
\(325\) 4.98982 + 9.23041i 0.276785 + 0.512011i
\(326\) −0.115526 + 0.200098i −0.00639842 + 0.0110824i
\(327\) −0.0424313 + 0.0244977i −0.00234646 + 0.00135473i
\(328\) 9.76519 0.539192
\(329\) −16.5612 0.336891i −0.913048 0.0185734i
\(330\) 4.17716i 0.229945i
\(331\) −15.8690 + 9.16200i −0.872241 + 0.503589i −0.868092 0.496403i \(-0.834654\pi\)
−0.00414903 + 0.999991i \(0.501321\pi\)
\(332\) −4.36606 2.52075i −0.239619 0.138344i
\(333\) −6.04142 3.48802i −0.331068 0.191142i
\(334\) −2.32396 4.02522i −0.127162 0.220250i
\(335\) 1.42698 0.0779643
\(336\) 11.0694 + 6.69475i 0.603888 + 0.365229i
\(337\) 7.21762 0.393169 0.196584 0.980487i \(-0.437015\pi\)
0.196584 + 0.980487i \(0.437015\pi\)
\(338\) −3.61514 2.36659i −0.196638 0.128725i
\(339\) 6.71516 11.6310i 0.364717 0.631709i
\(340\) 10.2399 + 5.91203i 0.555338 + 0.320625i
\(341\) −18.1870 31.5009i −0.984884 1.70587i
\(342\) 0.565321 0.0305691
\(343\) −1.12937 + 18.4858i −0.0609804 + 0.998139i
\(344\) 5.49224i 0.296122i
\(345\) 0.987221 0.569972i 0.0531502 0.0306863i
\(346\) −1.56487 0.903476i −0.0841277 0.0485712i
\(347\) 10.5391 18.2543i 0.565770 0.979942i −0.431208 0.902253i \(-0.641912\pi\)
0.996978 0.0776892i \(-0.0247542\pi\)
\(348\) −9.87310 17.1007i −0.529254 0.916694i
\(349\) 30.7629i 1.64670i 0.567534 + 0.823350i \(0.307898\pi\)
−0.567534 + 0.823350i \(0.692102\pi\)
\(350\) −1.32439 + 2.18982i −0.0707917 + 0.117051i
\(351\) −10.6719 + 17.3435i −0.569624 + 0.925730i
\(352\) 11.0135 + 19.0760i 0.587022 + 1.01675i
\(353\) −5.30157 3.06086i −0.282174 0.162913i 0.352233 0.935912i \(-0.385422\pi\)
−0.634407 + 0.772999i \(0.718756\pi\)
\(354\) 0.206495 0.357660i 0.0109751 0.0190094i
\(355\) 2.71938 + 4.71010i 0.144330 + 0.249986i
\(356\) 18.3613i 0.973145i
\(357\) −0.340033 + 16.7156i −0.0179964 + 0.884684i
\(358\) 1.78095i 0.0941259i
\(359\) 16.8257 9.71433i 0.888028 0.512703i 0.0147308 0.999891i \(-0.495311\pi\)
0.873297 + 0.487189i \(0.161978\pi\)
\(360\) −0.811909 + 1.40627i −0.0427914 + 0.0741168i
\(361\) −7.58403 + 13.1359i −0.399160 + 0.691365i
\(362\) −2.17040 + 1.25308i −0.114074 + 0.0658605i
\(363\) −35.7133 −1.87446
\(364\) −0.871204 + 18.0039i −0.0456635 + 0.943659i
\(365\) −13.2060 −0.691235
\(366\) 2.84861 1.64465i 0.148899 0.0859670i
\(367\) 2.70234 4.68058i 0.141061 0.244324i −0.786836 0.617163i \(-0.788282\pi\)
0.927896 + 0.372838i \(0.121615\pi\)
\(368\) −0.904601 + 1.56681i −0.0471556 + 0.0816758i
\(369\) 5.68385 3.28158i 0.295890 0.170832i
\(370\) 3.85776i 0.200555i
\(371\) 6.44106 3.54608i 0.334403 0.184103i
\(372\) 16.8483i 0.873544i
\(373\) −8.12533 14.0735i −0.420714 0.728698i 0.575296 0.817946i \(-0.304887\pi\)
−0.996009 + 0.0892478i \(0.971554\pi\)
\(374\) −4.28401 + 7.42013i −0.221521 + 0.383686i
\(375\) −14.4569 8.34671i −0.746553 0.431022i
\(376\) −4.04695 7.00952i −0.208706 0.361489i
\(377\) 13.5263 21.9824i 0.696640 1.13215i
\(378\) −4.96566 0.101013i −0.255406 0.00519553i
\(379\) 25.1730i 1.29305i 0.762893 + 0.646525i \(0.223778\pi\)
−0.762893 + 0.646525i \(0.776222\pi\)
\(380\) 2.67354 + 4.63071i 0.137150 + 0.237550i
\(381\) 10.5073 18.1992i 0.538306 0.932373i
\(382\) −3.89925 2.25123i −0.199503 0.115183i
\(383\) 3.30335 1.90719i 0.168793 0.0974529i −0.413223 0.910630i \(-0.635597\pi\)
0.582017 + 0.813177i \(0.302264\pi\)
\(384\) 13.4531i 0.686527i
\(385\) −19.4898 11.7873i −0.993291 0.600738i
\(386\) 6.16764 0.313924
\(387\) −1.84566 3.19677i −0.0938201 0.162501i
\(388\) −10.7726 6.21956i −0.546895 0.315750i
\(389\) −1.43548 + 2.48632i −0.0727817 + 0.126062i −0.900119 0.435643i \(-0.856521\pi\)
0.827338 + 0.561705i \(0.189854\pi\)
\(390\) 2.52807 + 0.0708367i 0.128014 + 0.00358695i
\(391\) −2.33821 −0.118248
\(392\) −8.01461 + 4.20228i −0.404799 + 0.212247i
\(393\) −13.8222 −0.697236
\(394\) −0.443409 0.768007i −0.0223386 0.0386917i
\(395\) 0.164161 + 0.0947786i 0.00825986 + 0.00476883i
\(396\) 8.46709 + 4.88848i 0.425487 + 0.245655i
\(397\) 16.5570 9.55919i 0.830972 0.479762i −0.0232131 0.999731i \(-0.507390\pi\)
0.854185 + 0.519968i \(0.174056\pi\)
\(398\) 6.71394i 0.336539i
\(399\) −3.91274 + 6.46953i −0.195882 + 0.323882i
\(400\) 9.74725 0.487362
\(401\) −2.59655 + 1.49912i −0.129666 + 0.0748625i −0.563430 0.826164i \(-0.690518\pi\)
0.433764 + 0.901026i \(0.357185\pi\)
\(402\) −0.239479 + 0.414789i −0.0119441 + 0.0206878i
\(403\) 19.3732 10.4728i 0.965045 0.521689i
\(404\) −0.0669165 0.115903i −0.00332922 0.00576638i
\(405\) 8.15104i 0.405028i
\(406\) 6.29382 + 0.128030i 0.312357 + 0.00635403i
\(407\) 47.8129 2.37000
\(408\) −7.07489 + 4.08469i −0.350259 + 0.202222i
\(409\) 29.5146 + 17.0403i 1.45940 + 0.842587i 0.998982 0.0451127i \(-0.0143647\pi\)
0.460422 + 0.887700i \(0.347698\pi\)
\(410\) −3.14318 1.81472i −0.155231 0.0896224i
\(411\) −20.9946 + 12.1212i −1.03559 + 0.597896i
\(412\) −11.9762 −0.590026
\(413\) −1.08607 1.97273i −0.0534421 0.0970717i
\(414\) 0.155995i 0.00766674i
\(415\) 1.92855 + 3.34034i 0.0946687 + 0.163971i
\(416\) −11.7318 + 6.34202i −0.575198 + 0.310943i
\(417\) −13.4873 + 23.3606i −0.660475 + 1.14398i
\(418\) −3.35554 + 1.93732i −0.164125 + 0.0947574i
\(419\) 34.7759 1.69891 0.849457 0.527657i \(-0.176929\pi\)
0.849457 + 0.527657i \(0.176929\pi\)
\(420\) −5.08819 9.24215i −0.248278 0.450971i
\(421\) 24.1400i 1.17651i −0.808674 0.588257i \(-0.799814\pi\)
0.808674 0.588257i \(-0.200186\pi\)
\(422\) 3.77848 2.18151i 0.183933 0.106194i
\(423\) −4.71108 2.71994i −0.229060 0.132248i
\(424\) 3.11138 + 1.79636i 0.151102 + 0.0872388i
\(425\) 6.29866 + 10.9096i 0.305530 + 0.529193i
\(426\) −1.82549 −0.0884451
\(427\) 0.364776 17.9320i 0.0176528 0.867789i
\(428\) 14.6429 0.707793
\(429\) 0.877946 31.3328i 0.0423876 1.51276i
\(430\) −1.02065 + 1.76782i −0.0492202 + 0.0852519i
\(431\) 4.12641 + 2.38238i 0.198762 + 0.114755i 0.596078 0.802927i \(-0.296725\pi\)
−0.397316 + 0.917682i \(0.630058\pi\)
\(432\) 9.45848 + 16.3826i 0.455071 + 0.788207i
\(433\) −22.0231 −1.05836 −0.529181 0.848509i \(-0.677501\pi\)
−0.529181 + 0.848509i \(0.677501\pi\)
\(434\) 4.59607 + 2.77968i 0.220618 + 0.133429i
\(435\) 15.1072i 0.724337i
\(436\) −0.0549206 + 0.0317084i −0.00263022 + 0.00151856i
\(437\) −0.915724 0.528693i −0.0438050 0.0252908i
\(438\) 2.21626 3.83868i 0.105897 0.183419i
\(439\) 1.71620 + 2.97254i 0.0819097 + 0.141872i 0.904070 0.427384i \(-0.140565\pi\)
−0.822161 + 0.569256i \(0.807231\pi\)
\(440\) 11.1294i 0.530576i
\(441\) −3.25275 + 5.13924i −0.154893 + 0.244726i
\(442\) −4.41811 2.71857i −0.210148 0.129309i
\(443\) 4.35297 + 7.53957i 0.206816 + 0.358216i 0.950710 0.310082i \(-0.100357\pi\)
−0.743894 + 0.668298i \(0.767023\pi\)
\(444\) 19.1796 + 11.0733i 0.910223 + 0.525518i
\(445\) −7.02383 + 12.1656i −0.332962 + 0.576706i
\(446\) −0.369491 0.639977i −0.0174959 0.0303038i
\(447\) 4.49747i 0.212723i
\(448\) 12.3821 + 7.48862i 0.584998 + 0.353804i
\(449\) 17.6120i 0.831159i 0.909557 + 0.415580i \(0.136421\pi\)
−0.909557 + 0.415580i \(0.863579\pi\)
\(450\) −0.727841 + 0.420219i −0.0343107 + 0.0198093i
\(451\) −22.4915 + 38.9564i −1.05908 + 1.83439i
\(452\) 8.69170 15.0545i 0.408823 0.708102i
\(453\) −3.22240 + 1.86045i −0.151401 + 0.0874116i
\(454\) −9.00887 −0.422807
\(455\) 7.46435 11.5956i 0.349934 0.543609i
\(456\) −3.69436 −0.173004
\(457\) 7.85717 4.53634i 0.367543 0.212201i −0.304842 0.952403i \(-0.598604\pi\)
0.672384 + 0.740202i \(0.265270\pi\)
\(458\) 3.15570 5.46583i 0.147456 0.255401i
\(459\) −12.2241 + 21.1728i −0.570573 + 0.988262i
\(460\) 1.27780 0.737738i 0.0595777 0.0343972i
\(461\) 6.58319i 0.306610i −0.988179 0.153305i \(-0.951008\pi\)
0.988179 0.153305i \(-0.0489917\pi\)
\(462\) 6.69711 3.68704i 0.311578 0.171537i
\(463\) 3.47344i 0.161424i 0.996737 + 0.0807121i \(0.0257194\pi\)
−0.996737 + 0.0807121i \(0.974281\pi\)
\(464\) −11.9883 20.7644i −0.556544 0.963962i
\(465\) −6.44507 + 11.1632i −0.298883 + 0.517681i
\(466\) 6.25777 + 3.61293i 0.289886 + 0.167366i
\(467\) 14.8927 + 25.7949i 0.689152 + 1.19365i 0.972112 + 0.234515i \(0.0753502\pi\)
−0.282960 + 0.959132i \(0.591316\pi\)
\(468\) −3.10215 + 5.04149i −0.143397 + 0.233043i
\(469\) 1.25955 + 2.28783i 0.0581606 + 0.105642i
\(470\) 3.00826i 0.138761i
\(471\) 6.86783 + 11.8954i 0.316453 + 0.548113i
\(472\) 0.550177 0.952935i 0.0253240 0.0438624i
\(473\) 21.9103 + 12.6499i 1.00744 + 0.581643i
\(474\) −0.0550998 + 0.0318119i −0.00253082 + 0.00146117i
\(475\) 5.69677i 0.261386i
\(476\) −0.440118 + 21.6357i −0.0201728 + 0.991671i
\(477\) 2.41465 0.110559
\(478\) 3.31869 + 5.74814i 0.151793 + 0.262914i
\(479\) −30.4715 17.5927i −1.39228 0.803833i −0.398712 0.917076i \(-0.630543\pi\)
−0.993567 + 0.113243i \(0.963876\pi\)
\(480\) 3.90294 6.76008i 0.178144 0.308554i
\(481\) −0.810814 + 28.9369i −0.0369700 + 1.31941i
\(482\) 1.07373 0.0489072
\(483\) 1.78520 + 1.07968i 0.0812296 + 0.0491273i
\(484\) −46.2252 −2.10115
\(485\) 4.75840 + 8.24179i 0.216068 + 0.374241i
\(486\) −2.50788 1.44793i −0.113760 0.0656792i
\(487\) −1.56018 0.900769i −0.0706984 0.0408178i 0.464234 0.885713i \(-0.346330\pi\)
−0.534933 + 0.844895i \(0.679663\pi\)
\(488\) 7.58971 4.38192i 0.343570 0.198360i
\(489\) 1.01482i 0.0458916i
\(490\) 3.36064 + 0.136782i 0.151818 + 0.00617920i
\(491\) 8.19322 0.369755 0.184877 0.982762i \(-0.440811\pi\)
0.184877 + 0.982762i \(0.440811\pi\)
\(492\) −18.0444 + 10.4180i −0.813506 + 0.469678i
\(493\) 15.4937 26.8358i 0.697800 1.20863i
\(494\) −1.11559 2.06367i −0.0501926 0.0928487i
\(495\) −3.74003 6.47792i −0.168102 0.291161i
\(496\) 20.4579i 0.918587i
\(497\) −5.15125 + 8.51734i −0.231065 + 0.382055i
\(498\) −1.29461 −0.0580129
\(499\) 31.6242 18.2582i 1.41569 0.817350i 0.419775 0.907628i \(-0.362109\pi\)
0.995917 + 0.0902781i \(0.0287756\pi\)
\(500\) −18.7122 10.8035i −0.836834 0.483147i
\(501\) 17.6793 + 10.2072i 0.789854 + 0.456022i
\(502\) −3.59566 + 2.07596i −0.160482 + 0.0926545i
\(503\) −3.02972 −0.135089 −0.0675443 0.997716i \(-0.521516\pi\)
−0.0675443 + 0.997716i \(0.521516\pi\)
\(504\) −2.97127 0.0604422i −0.132351 0.00269231i
\(505\) 0.102392i 0.00455637i
\(506\) 0.534585 + 0.925928i 0.0237652 + 0.0411625i
\(507\) 18.9481 + 1.06269i 0.841515 + 0.0471956i
\(508\) 13.6000 23.5559i 0.603404 1.04513i
\(509\) −25.4133 + 14.6724i −1.12642 + 0.650341i −0.943033 0.332699i \(-0.892041\pi\)
−0.183391 + 0.983040i \(0.558707\pi\)
\(510\) 3.03631 0.134450
\(511\) −11.6565 21.1728i −0.515654 0.936630i
\(512\) 21.0487i 0.930229i
\(513\) −9.57479 + 5.52800i −0.422737 + 0.244067i
\(514\) 1.67744 + 0.968471i 0.0739887 + 0.0427174i
\(515\) 7.93509 + 4.58133i 0.349662 + 0.201877i
\(516\) 5.85938 + 10.1487i 0.257945 + 0.446773i
\(517\) 37.2843 1.63976
\(518\) −6.18502 + 3.40511i −0.271754 + 0.149612i
\(519\) 7.93637 0.348368
\(520\) 6.73568 + 0.188734i 0.295379 + 0.00827654i
\(521\) 14.8419 25.7069i 0.650236 1.12624i −0.332830 0.942987i \(-0.608003\pi\)
0.983066 0.183254i \(-0.0586632\pi\)
\(522\) 1.79037 + 1.03367i 0.0783624 + 0.0452425i
\(523\) −10.2864 17.8165i −0.449791 0.779062i 0.548581 0.836098i \(-0.315168\pi\)
−0.998372 + 0.0570361i \(0.981835\pi\)
\(524\) −17.8906 −0.781553
\(525\) 0.228603 11.2379i 0.00997704 0.490460i
\(526\) 5.82146i 0.253828i
\(527\) 22.8975 13.2199i 0.997431 0.575867i
\(528\) −25.2168 14.5590i −1.09742 0.633597i
\(529\) 11.3541 19.6659i 0.493657 0.855039i
\(530\) −0.667652 1.15641i −0.0290010 0.0502311i
\(531\) 0.739544i 0.0320935i
\(532\) −5.06442 + 8.37377i −0.219571 + 0.363049i
\(533\) −23.1955 14.2728i −1.00471 0.618222i
\(534\) −2.35751 4.08332i −0.102019 0.176703i
\(535\) −9.70198 5.60144i −0.419453 0.242171i
\(536\) −0.638057 + 1.10515i −0.0275599 + 0.0477351i
\(537\) 3.91108 + 6.77419i 0.168775 + 0.292328i
\(538\) 7.42151i 0.319964i
\(539\) 1.69527 41.6516i 0.0730206 1.79406i
\(540\) 15.4275i 0.663896i
\(541\) −29.5027 + 17.0334i −1.26842 + 0.732324i −0.974689 0.223564i \(-0.928231\pi\)
−0.293732 + 0.955888i \(0.594897\pi\)
\(542\) 4.38228 7.59034i 0.188235 0.326033i
\(543\) 5.50371 9.53270i 0.236187 0.409087i
\(544\) −13.8660 + 8.00555i −0.594500 + 0.343235i
\(545\) 0.0485183 0.00207830
\(546\) 2.11787 + 4.11570i 0.0906366 + 0.176136i
\(547\) −0.850931 −0.0363832 −0.0181916 0.999835i \(-0.505791\pi\)
−0.0181916 + 0.999835i \(0.505791\pi\)
\(548\) −27.1741 + 15.6890i −1.16082 + 0.670200i
\(549\) 2.94507 5.10102i 0.125693 0.217706i
\(550\) 2.88013 4.98853i 0.122809 0.212712i
\(551\) 12.1357 7.00657i 0.516999 0.298490i
\(552\) 1.01942i 0.0433895i
\(553\) −0.00705575 + 0.346853i −0.000300041 + 0.0147497i
\(554\) 3.11641i 0.132404i
\(555\) −8.47189 14.6737i −0.359612 0.622866i
\(556\) −17.4571 + 30.2366i −0.740347 + 1.28232i
\(557\) −15.3530 8.86404i −0.650526 0.375581i 0.138132 0.990414i \(-0.455890\pi\)
−0.788658 + 0.614833i \(0.789224\pi\)
\(558\) 0.881972 + 1.52762i 0.0373369 + 0.0646694i
\(559\) −8.02744 + 13.0459i −0.339525 + 0.551781i
\(560\) −6.17829 11.2222i −0.261080 0.474224i
\(561\) 37.6319i 1.58882i
\(562\) 2.95405 + 5.11656i 0.124609 + 0.215829i
\(563\) −12.0903 + 20.9410i −0.509545 + 0.882558i 0.490394 + 0.871501i \(0.336853\pi\)
−0.999939 + 0.0110571i \(0.996480\pi\)
\(564\) 14.9562 + 8.63495i 0.629768 + 0.363597i
\(565\) −11.5177 + 6.64976i −0.484555 + 0.279758i
\(566\) 3.19301i 0.134212i
\(567\) 13.0683 7.19465i 0.548817 0.302147i
\(568\) −4.86375 −0.204078
\(569\) −21.3874 37.0441i −0.896608 1.55297i −0.831802 0.555073i \(-0.812690\pi\)
−0.0648066 0.997898i \(-0.520643\pi\)
\(570\) 1.18913 + 0.686542i 0.0498070 + 0.0287561i
\(571\) 3.68140 6.37637i 0.154062 0.266843i −0.778655 0.627452i \(-0.784098\pi\)
0.932717 + 0.360609i \(0.117431\pi\)
\(572\) 1.13636 40.5553i 0.0475137 1.69570i
\(573\) 19.7754 0.826131
\(574\) 0.135096 6.64115i 0.00563878 0.277196i
\(575\) 1.57197 0.0655557
\(576\) 2.37608 + 4.11550i 0.0990035 + 0.171479i
\(577\) 7.09615 + 4.09696i 0.295417 + 0.170559i 0.640382 0.768057i \(-0.278776\pi\)
−0.344965 + 0.938615i \(0.612109\pi\)
\(578\) −0.500204 0.288793i −0.0208057 0.0120122i
\(579\) −23.4598 + 13.5445i −0.974957 + 0.562892i
\(580\) 19.5539i 0.811932i
\(581\) −3.65320 + 6.04039i −0.151560 + 0.250598i
\(582\) −3.19426 −0.132406
\(583\) −14.3325 + 8.27485i −0.593590 + 0.342709i
\(584\) 5.90491 10.2276i 0.244347 0.423221i
\(585\) 3.98394 2.15366i 0.164716 0.0890429i
\(586\) 1.93339 + 3.34874i 0.0798678 + 0.138335i
\(587\) 39.1141i 1.61441i 0.590271 + 0.807205i \(0.299021\pi\)
−0.590271 + 0.807205i \(0.700979\pi\)
\(588\) 10.3265 16.3155i 0.425856 0.672838i
\(589\) 11.9566 0.492664
\(590\) −0.354178 + 0.204485i −0.0145813 + 0.00841849i
\(591\) 3.37319 + 1.94751i 0.138755 + 0.0801100i
\(592\) 23.2886 + 13.4457i 0.957158 + 0.552615i
\(593\) 1.05082 0.606691i 0.0431520 0.0249138i −0.478269 0.878213i \(-0.658736\pi\)
0.521421 + 0.853300i \(0.325402\pi\)
\(594\) 11.1792 0.458689
\(595\) 8.56803 14.1668i 0.351255 0.580783i
\(596\) 5.82125i 0.238448i
\(597\) 14.7443 + 25.5378i 0.603442 + 1.04519i
\(598\) −0.569449 + 0.307836i −0.0232865 + 0.0125883i
\(599\) −16.3319 + 28.2877i −0.667303 + 1.15580i 0.311352 + 0.950295i \(0.399218\pi\)
−0.978655 + 0.205508i \(0.934115\pi\)
\(600\) 4.75642 2.74612i 0.194180 0.112110i
\(601\) 2.50114 0.102024 0.0510118 0.998698i \(-0.483755\pi\)
0.0510118 + 0.998698i \(0.483755\pi\)
\(602\) −3.73519 0.0759819i −0.152235 0.00309679i
\(603\) 0.857671i 0.0349271i
\(604\) −4.17088 + 2.40806i −0.169711 + 0.0979825i
\(605\) 30.6275 + 17.6828i 1.24518 + 0.718907i
\(606\) −0.0297628 0.0171836i −0.00120903 0.000698035i
\(607\) −6.32282 10.9515i −0.256635 0.444506i 0.708703 0.705507i \(-0.249281\pi\)
−0.965338 + 0.261001i \(0.915947\pi\)
\(608\) −7.24055 −0.293643
\(609\) −24.2209 + 13.3347i −0.981482 + 0.540347i
\(610\) −3.25726 −0.131883
\(611\) −0.632270 + 22.5649i −0.0255789 + 0.912879i
\(612\) −3.55336 + 6.15460i −0.143636 + 0.248785i
\(613\) −17.3448 10.0140i −0.700548 0.404462i 0.107003 0.994259i \(-0.465874\pi\)
−0.807552 + 0.589797i \(0.799208\pi\)
\(614\) −2.29804 3.98032i −0.0927413 0.160633i
\(615\) 15.9409 0.642801
\(616\) 17.8435 9.82359i 0.718934 0.395804i
\(617\) 45.2926i 1.82341i −0.410846 0.911705i \(-0.634767\pi\)
0.410846 0.911705i \(-0.365233\pi\)
\(618\) −2.66336 + 1.53769i −0.107136 + 0.0618551i
\(619\) −3.83922 2.21658i −0.154311 0.0890917i 0.420856 0.907127i \(-0.361730\pi\)
−0.575167 + 0.818036i \(0.695063\pi\)
\(620\) −8.34212 + 14.4490i −0.335028 + 0.580285i
\(621\) 1.52540 + 2.64207i 0.0612122 + 0.106023i
\(622\) 10.2087i 0.409332i
\(623\) −25.7045 0.522886i −1.02983 0.0209490i
\(624\) 9.23889 15.0147i 0.369852 0.601067i
\(625\) 0.989985 + 1.71471i 0.0395994 + 0.0685882i
\(626\) −3.19125 1.84247i −0.127548 0.0736400i
\(627\) 8.50897 14.7380i 0.339816 0.588578i
\(628\) 8.88931 + 15.3967i 0.354722 + 0.614397i
\(629\) 34.7544i 1.38575i
\(630\) 0.945148 + 0.571621i 0.0376556 + 0.0227739i
\(631\) 19.7358i 0.785672i −0.919609 0.392836i \(-0.871494\pi\)
0.919609 0.392836i \(-0.128506\pi\)
\(632\) −0.146805 + 0.0847581i −0.00583961 + 0.00337150i
\(633\) −9.58147 + 16.5956i −0.380829 + 0.659615i
\(634\) −3.96912 + 6.87472i −0.157634 + 0.273030i
\(635\) −18.0220 + 10.4050i −0.715180 + 0.412909i
\(636\) −7.66574 −0.303967
\(637\) 25.1793 + 1.73233i 0.997642 + 0.0686375i
\(638\) −14.1693 −0.560968
\(639\) −2.83096 + 1.63445i −0.111991 + 0.0646580i
\(640\) 6.66106 11.5373i 0.263302 0.456052i
\(641\) 19.8213 34.3314i 0.782893 1.35601i −0.147357 0.989083i \(-0.547077\pi\)
0.930250 0.366926i \(-0.119590\pi\)
\(642\) 3.25641 1.88009i 0.128520 0.0742012i
\(643\) 20.8300i 0.821453i −0.911759 0.410727i \(-0.865275\pi\)
0.911759 0.410727i \(-0.134725\pi\)
\(644\) 2.31066 + 1.39748i 0.0910529 + 0.0550684i
\(645\) 8.96568i 0.353023i
\(646\) −1.40821 2.43909i −0.0554052 0.0959646i
\(647\) −7.87206 + 13.6348i −0.309482 + 0.536039i −0.978249 0.207433i \(-0.933489\pi\)
0.668767 + 0.743472i \(0.266822\pi\)
\(648\) 6.31269 + 3.64463i 0.247986 + 0.143175i
\(649\) 2.53437 + 4.38966i 0.0994828 + 0.172309i
\(650\) 2.97028 + 1.82769i 0.116504 + 0.0716877i
\(651\) −23.5864 0.479800i −0.924426 0.0188049i
\(652\) 1.31352i 0.0514413i
\(653\) 13.5132 + 23.4055i 0.528812 + 0.915930i 0.999436 + 0.0335954i \(0.0106958\pi\)
−0.470623 + 0.882334i \(0.655971\pi\)
\(654\) −0.00814244 + 0.0141031i −0.000318395 + 0.000551476i
\(655\) 11.8538 + 6.84378i 0.463165 + 0.267409i
\(656\) −21.9103 + 12.6499i −0.855453 + 0.493896i
\(657\) 7.93734i 0.309665i
\(658\) −4.82305 + 2.65529i −0.188022 + 0.103514i
\(659\) −6.79491 −0.264692 −0.132346 0.991204i \(-0.542251\pi\)
−0.132346 + 0.991204i \(0.542251\pi\)
\(660\) 11.8734 + 20.5653i 0.462172 + 0.800505i
\(661\) −6.23994 3.60263i −0.242705 0.140126i 0.373714 0.927544i \(-0.378084\pi\)
−0.616420 + 0.787418i \(0.711417\pi\)
\(662\) −3.04522 + 5.27448i −0.118356 + 0.204998i
\(663\) 22.7753 + 0.638165i 0.884520 + 0.0247843i
\(664\) −3.44930 −0.133859
\(665\) 6.55880 3.61090i 0.254339 0.140025i
\(666\) −2.31866 −0.0898463
\(667\) −1.93339 3.34874i −0.0748613 0.129664i
\(668\) 22.8831 + 13.2115i 0.885372 + 0.511170i
\(669\) 2.81087 + 1.62285i 0.108674 + 0.0627432i
\(670\) 0.410750 0.237147i 0.0158687 0.00916178i
\(671\) 40.3703i 1.55848i
\(672\) 14.2832 + 0.290552i 0.550987 + 0.0112083i
\(673\) −8.32130 −0.320763 −0.160381 0.987055i \(-0.551272\pi\)
−0.160381 + 0.987055i \(0.551272\pi\)
\(674\) 2.07756 1.19948i 0.0800246 0.0462022i
\(675\) 8.21824 14.2344i 0.316320 0.547883i
\(676\) 24.5253 + 1.37548i 0.943281 + 0.0529031i
\(677\) 14.9978 + 25.9770i 0.576413 + 0.998376i 0.995887 + 0.0906086i \(0.0288812\pi\)
−0.419474 + 0.907767i \(0.637785\pi\)
\(678\) 4.46391i 0.171435i
\(679\) −9.01372 + 14.9037i −0.345915 + 0.571953i
\(680\) 8.08982 0.310231
\(681\) 34.2671 19.7841i 1.31312 0.758128i
\(682\) −10.4701 6.04493i −0.400922 0.231472i
\(683\) 31.2496 + 18.0420i 1.19573 + 0.690356i 0.959601 0.281365i \(-0.0907871\pi\)
0.236132 + 0.971721i \(0.424120\pi\)
\(684\) −2.78324 + 1.60690i −0.106420 + 0.0614415i
\(685\) 24.0064 0.917236
\(686\) 2.74703 + 5.50874i 0.104882 + 0.210325i
\(687\) 27.7205i 1.05760i
\(688\) 7.11470 + 12.3230i 0.271245 + 0.469811i
\(689\) −4.76499 8.81451i −0.181532 0.335806i
\(690\) 0.189445 0.328128i 0.00721204 0.0124916i
\(691\) 22.3155 12.8838i 0.848920 0.490124i −0.0113665 0.999935i \(-0.503618\pi\)
0.860286 + 0.509811i \(0.170285\pi\)
\(692\) 10.2724 0.390497
\(693\) 7.08465 11.7141i 0.269123 0.444983i
\(694\) 7.00589i 0.265940i
\(695\) 23.1332 13.3559i 0.877491 0.506620i
\(696\) −11.7000 6.75501i −0.443488 0.256048i
\(697\) −28.3168 16.3487i −1.07258 0.619252i
\(698\) 5.11242 + 8.85496i 0.193508 + 0.335165i
\(699\) −31.7369 −1.20040
\(700\) 0.295890 14.5456i 0.0111836 0.549772i
\(701\) −41.7872 −1.57828 −0.789141 0.614213i \(-0.789474\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(702\) −0.189578 + 6.76580i −0.00715516 + 0.255359i
\(703\) −7.85834 + 13.6110i −0.296383 + 0.513350i
\(704\) −28.2071 16.2854i −1.06310 0.613778i
\(705\) −6.60635 11.4425i −0.248809 0.430951i
\(706\) −2.03471 −0.0765774
\(707\) −0.164161 + 0.0903778i −0.00617393 + 0.00339901i
\(708\) 2.34782i 0.0882364i
\(709\) 0.297781 0.171924i 0.0111834 0.00645673i −0.494398 0.869236i \(-0.664611\pi\)
0.505581 + 0.862779i \(0.331278\pi\)
\(710\) 1.56552 + 0.903855i 0.0587530 + 0.0339211i
\(711\) −0.0569657 + 0.0986674i −0.00213638 + 0.00370032i
\(712\) −6.28124 10.8794i −0.235399 0.407724i
\(713\) 3.29931i 0.123560i
\(714\) 2.68005 + 4.86802i 0.100298 + 0.182181i
\(715\) −16.2668 + 26.4361i −0.608342 + 0.988652i
\(716\) 5.06227 + 8.76810i 0.189186 + 0.327679i
\(717\) −25.2466 14.5761i −0.942852 0.544356i
\(718\) 3.22881 5.59246i 0.120498 0.208709i
\(719\) 4.39005 + 7.60379i 0.163721 + 0.283574i 0.936200 0.351467i \(-0.114317\pi\)
−0.772479 + 0.635040i \(0.780984\pi\)
\(720\) 4.20702i 0.156786i
\(721\) −0.341055 + 16.7659i −0.0127015 + 0.624393i
\(722\) 5.04149i 0.187625i
\(723\) −4.08416 + 2.35799i −0.151891 + 0.0876946i
\(724\) 7.12367 12.3386i 0.264749 0.458559i
\(725\) −10.4164 + 18.0416i −0.386854 + 0.670050i
\(726\) −10.2799 + 5.93512i −0.381524 + 0.220273i
\(727\) 17.3658 0.644064 0.322032 0.946729i \(-0.395634\pi\)
0.322032 + 0.946729i \(0.395634\pi\)
\(728\) 5.64277 + 10.9657i 0.209135 + 0.406415i
\(729\) 29.6343 1.09757
\(730\) −3.80130 + 2.19468i −0.140692 + 0.0812288i
\(731\) −9.19502 + 15.9262i −0.340090 + 0.589053i
\(732\) −9.34968 + 16.1941i −0.345574 + 0.598552i
\(733\) 7.84528 4.52947i 0.289772 0.167300i −0.348067 0.937470i \(-0.613162\pi\)
0.637839 + 0.770170i \(0.279828\pi\)
\(734\) 1.79638i 0.0663056i
\(735\) −13.0833 + 6.85991i −0.482583 + 0.253032i
\(736\) 1.99796i 0.0736458i
\(737\) −2.93919 5.09082i −0.108266 0.187523i
\(738\) 1.09071 1.88917i 0.0401498 0.0695414i
\(739\) 6.13010 + 3.53921i 0.225499 + 0.130192i 0.608494 0.793558i \(-0.291774\pi\)
−0.382995 + 0.923751i \(0.625107\pi\)
\(740\) −10.9655 18.9928i −0.403100 0.698190i
\(741\) 8.77531 + 5.39966i 0.322369 + 0.198362i
\(742\) 1.26472 2.09115i 0.0464292 0.0767685i
\(743\) 14.6779i 0.538479i 0.963073 + 0.269240i \(0.0867724\pi\)
−0.963073 + 0.269240i \(0.913228\pi\)
\(744\) −5.76367 9.98297i −0.211306 0.365993i
\(745\) −2.22684 + 3.85699i −0.0815849 + 0.141309i
\(746\) −4.67768 2.70066i −0.171262 0.0988782i
\(747\) −2.00768 + 1.15913i −0.0734571 + 0.0424105i
\(748\) 48.7085i 1.78096i
\(749\) 0.416997 20.4991i 0.0152367 0.749020i
\(750\) −5.54848 −0.202602
\(751\) −15.8556 27.4628i −0.578580 1.00213i −0.995643 0.0932523i \(-0.970274\pi\)
0.417062 0.908878i \(-0.363060\pi\)
\(752\) 18.1604 + 10.4849i 0.662241 + 0.382345i
\(753\) 9.11788 15.7926i 0.332274 0.575516i
\(754\) 0.240284 8.57543i 0.00875063 0.312299i
\(755\) 3.68467 0.134099
\(756\) 24.7345 13.6174i 0.899585 0.495259i
\(757\) 15.5317 0.564510 0.282255 0.959339i \(-0.408918\pi\)
0.282255 + 0.959339i \(0.408918\pi\)
\(758\) 4.18344 + 7.24593i 0.151949 + 0.263184i
\(759\) −4.06680 2.34797i −0.147616 0.0852259i
\(760\) 3.16825 + 1.82919i 0.114925 + 0.0663518i
\(761\) 0.216826 0.125185i 0.00785993 0.00453794i −0.496065 0.868285i \(-0.665222\pi\)
0.503925 + 0.863748i \(0.331889\pi\)
\(762\) 6.98474i 0.253030i
\(763\) 0.0428255 + 0.0777879i 0.00155039 + 0.00281611i
\(764\) 25.5961 0.926036
\(765\) 4.70870 2.71857i 0.170243 0.0982901i
\(766\) 0.633903 1.09795i 0.0229039 0.0396706i
\(767\) −2.69966 + 1.45939i −0.0974789 + 0.0526956i
\(768\) −5.74859 9.95686i −0.207435 0.359287i
\(769\) 24.0146i 0.865988i 0.901397 + 0.432994i \(0.142543\pi\)
−0.901397 + 0.432994i \(0.857457\pi\)
\(770\) −7.56896 0.153969i −0.272766 0.00554867i
\(771\) −8.50731 −0.306383
\(772\) −30.3650 + 17.5312i −1.09286 + 0.630963i
\(773\) 26.4192 + 15.2531i 0.950231 + 0.548616i 0.893153 0.449753i \(-0.148488\pi\)
0.0570784 + 0.998370i \(0.481821\pi\)
\(774\) −1.06253 0.613451i −0.0381918 0.0220501i
\(775\)