# Properties

 Label 91.2.r Level $91$ Weight $2$ Character orbit 91.r Rep. character $\chi_{91}(25,\cdot)$ Character field $\Q(\zeta_{6})$ Dimension $16$ Newform subspaces $1$ Sturm bound $18$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$91 = 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 91.r (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$91$$ Character field: $$\Q(\zeta_{6})$$ Newform subspaces: $$1$$ Sturm bound: $$18$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(91, [\chi])$$.

Total New Old
Modular forms 24 24 0
Cusp forms 16 16 0
Eisenstein series 8 8 0

## Trace form

 $$16 q - 4 q^{3} + 6 q^{4} - 12 q^{9} + O(q^{10})$$ $$16 q - 4 q^{3} + 6 q^{4} - 12 q^{9} - 6 q^{10} + 18 q^{12} - 12 q^{13} - 26 q^{14} + 2 q^{16} + 8 q^{17} - 36 q^{22} - 12 q^{23} - 6 q^{26} + 32 q^{27} - 16 q^{29} + 38 q^{30} - 56 q^{36} + 34 q^{38} + 18 q^{39} - 4 q^{40} + 16 q^{42} + 16 q^{43} + 36 q^{48} + 40 q^{49} + 16 q^{51} - 42 q^{52} - 20 q^{53} + 24 q^{55} - 36 q^{56} - 12 q^{61} + 44 q^{62} + 88 q^{64} - 30 q^{65} + 2 q^{66} - 2 q^{68} - 56 q^{69} + 42 q^{74} + 8 q^{75} - 76 q^{77} + 20 q^{78} + 20 q^{79} - 24 q^{81} - 16 q^{82} - 68 q^{87} + 4 q^{88} - 216 q^{90} + 56 q^{91} + 12 q^{92} - 26 q^{94} - 16 q^{95} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(91, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
91.2.r.a $16$ $0.727$ $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ None $$0$$ $$-4$$ $$0$$ $$0$$ $$q+\beta _{11}q^{2}+(-1+\beta _{3}+\beta _{6})q^{3}+(1+\cdots)q^{4}+\cdots$$