Properties

Label 91.2.q.a.43.3
Level $91$
Weight $2$
Character 91.43
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
Defining polynomial: \(x^{12} - 5 x^{10} - 2 x^{9} + 15 x^{8} + 2 x^{7} - 30 x^{6} + 4 x^{5} + 60 x^{4} - 16 x^{3} - 80 x^{2} + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 43.3
Root \(1.34408 - 0.439820i\) of defining polynomial
Character \(\chi\) \(=\) 91.43
Dual form 91.2.q.a.36.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.104235 - 0.0601799i) q^{2} +(0.291146 - 0.504280i) q^{3} +(-0.992757 - 1.71951i) q^{4} -1.68817i q^{5} +(-0.0606950 + 0.0350423i) q^{6} +(0.866025 - 0.500000i) q^{7} +0.479696i q^{8} +(1.33047 + 2.30444i) q^{9} +O(q^{10})\) \(q+(-0.104235 - 0.0601799i) q^{2} +(0.291146 - 0.504280i) q^{3} +(-0.992757 - 1.71951i) q^{4} -1.68817i q^{5} +(-0.0606950 + 0.0350423i) q^{6} +(0.866025 - 0.500000i) q^{7} +0.479696i q^{8} +(1.33047 + 2.30444i) q^{9} +(-0.101594 + 0.175965i) q^{10} +(-0.315769 - 0.182309i) q^{11} -1.15615 q^{12} +(1.80124 + 3.12338i) q^{13} -0.120360 q^{14} +(-0.851308 - 0.491503i) q^{15} +(-1.95665 + 3.38901i) q^{16} +(-1.59277 - 2.75877i) q^{17} -0.320270i q^{18} +(1.25046 - 0.721954i) q^{19} +(-2.90281 + 1.67594i) q^{20} -0.582292i q^{21} +(0.0219427 + 0.0380059i) q^{22} +(-2.54161 + 4.40219i) q^{23} +(0.241901 + 0.139662i) q^{24} +2.15010 q^{25} +(0.000212944 - 0.433964i) q^{26} +3.29632 q^{27} +(-1.71951 - 0.992757i) q^{28} +(-4.09831 + 7.09848i) q^{29} +(0.0591572 + 0.102463i) q^{30} -4.69775i q^{31} +(1.23876 - 0.715198i) q^{32} +(-0.183870 + 0.106157i) q^{33} +0.383412i q^{34} +(-0.844083 - 1.46199i) q^{35} +(2.64166 - 4.57549i) q^{36} +(5.46967 + 3.15792i) q^{37} -0.173789 q^{38} +(2.09948 + 0.00103020i) q^{39} +0.809806 q^{40} +(-5.04661 - 2.91366i) q^{41} +(-0.0350423 + 0.0606950i) q^{42} +(-0.386561 - 0.669543i) q^{43} +0.723954i q^{44} +(3.89027 - 2.24605i) q^{45} +(0.529847 - 0.305907i) q^{46} -12.7905i q^{47} +(1.13934 + 1.97339i) q^{48} +(0.500000 - 0.866025i) q^{49} +(-0.224115 - 0.129393i) q^{50} -1.85492 q^{51} +(3.58248 - 6.19801i) q^{52} +1.37110 q^{53} +(-0.343591 - 0.198372i) q^{54} +(-0.307768 + 0.533070i) q^{55} +(0.239848 + 0.415429i) q^{56} -0.840776i q^{57} +(0.854372 - 0.493272i) q^{58} +(-8.10770 + 4.68098i) q^{59} +1.95177i q^{60} +(4.51242 + 7.81574i) q^{61} +(-0.282711 + 0.489669i) q^{62} +(2.30444 + 1.33047i) q^{63} +7.65442 q^{64} +(5.27279 - 3.04080i) q^{65} +0.0255541 q^{66} +(-11.6705 - 6.73797i) q^{67} +(-3.16247 + 5.47757i) q^{68} +(1.47996 + 2.56336i) q^{69} +0.203187i q^{70} +(-6.13246 + 3.54058i) q^{71} +(-1.10543 + 0.638220i) q^{72} +2.16083i q^{73} +(-0.380087 - 0.658329i) q^{74} +(0.625992 - 1.08425i) q^{75} +(-2.48281 - 1.43345i) q^{76} -0.364618 q^{77} +(-0.218777 - 0.126454i) q^{78} -6.88781 q^{79} +(5.72121 + 3.30314i) q^{80} +(-3.03169 + 5.25105i) q^{81} +(0.350688 + 0.607409i) q^{82} +0.567380i q^{83} +(-1.00125 + 0.578074i) q^{84} +(-4.65725 + 2.68887i) q^{85} +0.0930528i q^{86} +(2.38641 + 4.13339i) q^{87} +(0.0874529 - 0.151473i) q^{88} +(-0.986346 - 0.569467i) q^{89} -0.540669 q^{90} +(3.12161 + 1.80431i) q^{91} +10.0928 q^{92} +(-2.36898 - 1.36773i) q^{93} +(-0.769734 + 1.33322i) q^{94} +(-1.21878 - 2.11098i) q^{95} -0.832908i q^{96} +(6.86572 - 3.96393i) q^{97} +(-0.104235 + 0.0601799i) q^{98} -0.970225i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 18q^{6} - 4q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 18q^{6} - 4q^{9} + 12q^{10} + 6q^{11} - 4q^{12} + 4q^{13} - 8q^{14} + 6q^{15} - 8q^{16} - 4q^{17} - 12q^{20} + 6q^{22} - 12q^{23} + 12q^{24} - 20q^{25} - 42q^{26} + 12q^{27} + 8q^{29} + 8q^{30} + 36q^{32} - 30q^{33} + 6q^{35} - 10q^{36} - 42q^{37} + 4q^{38} - 4q^{39} + 92q^{40} + 30q^{41} + 4q^{42} + 2q^{43} + 12q^{46} - 2q^{48} + 6q^{49} - 18q^{50} + 52q^{51} + 2q^{52} - 44q^{53} + 12q^{54} - 6q^{55} - 12q^{56} - 12q^{58} + 18q^{59} + 14q^{61} - 4q^{62} + 12q^{63} - 52q^{64} + 60q^{65} - 52q^{66} - 24q^{67} - 8q^{68} + 4q^{69} - 24q^{71} + 60q^{72} + 6q^{74} + 46q^{75} - 18q^{76} + 8q^{77} - 10q^{78} - 56q^{79} - 72q^{80} + 2q^{81} + 14q^{82} + 18q^{84} - 48q^{85} - 2q^{87} - 14q^{88} - 12q^{89} + 24q^{90} + 14q^{91} + 24q^{92} - 18q^{93} + 4q^{94} - 22q^{95} + 6q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.104235 0.0601799i −0.0737051 0.0425536i 0.462695 0.886518i \(-0.346883\pi\)
−0.536400 + 0.843964i \(0.680216\pi\)
\(3\) 0.291146 0.504280i 0.168093 0.291146i −0.769656 0.638459i \(-0.779572\pi\)
0.937749 + 0.347313i \(0.112906\pi\)
\(4\) −0.992757 1.71951i −0.496378 0.859753i
\(5\) 1.68817i 0.754971i −0.926016 0.377485i \(-0.876789\pi\)
0.926016 0.377485i \(-0.123211\pi\)
\(6\) −0.0606950 + 0.0350423i −0.0247786 + 0.0143060i
\(7\) 0.866025 0.500000i 0.327327 0.188982i
\(8\) 0.479696i 0.169598i
\(9\) 1.33047 + 2.30444i 0.443489 + 0.768146i
\(10\) −0.101594 + 0.175965i −0.0321267 + 0.0556452i
\(11\) −0.315769 0.182309i −0.0952078 0.0549682i 0.451640 0.892200i \(-0.350839\pi\)
−0.546848 + 0.837232i \(0.684172\pi\)
\(12\) −1.15615 −0.333751
\(13\) 1.80124 + 3.12338i 0.499575 + 0.866271i
\(14\) −0.120360 −0.0321675
\(15\) −0.851308 0.491503i −0.219807 0.126905i
\(16\) −1.95665 + 3.38901i −0.489161 + 0.847252i
\(17\) −1.59277 2.75877i −0.386304 0.669099i 0.605645 0.795735i \(-0.292915\pi\)
−0.991949 + 0.126636i \(0.959582\pi\)
\(18\) 0.320270i 0.0754884i
\(19\) 1.25046 0.721954i 0.286875 0.165628i −0.349657 0.936878i \(-0.613702\pi\)
0.636532 + 0.771250i \(0.280368\pi\)
\(20\) −2.90281 + 1.67594i −0.649088 + 0.374751i
\(21\) 0.582292i 0.127067i
\(22\) 0.0219427 + 0.0380059i 0.00467820 + 0.00810288i
\(23\) −2.54161 + 4.40219i −0.529962 + 0.917920i 0.469428 + 0.882971i \(0.344460\pi\)
−0.999389 + 0.0349493i \(0.988873\pi\)
\(24\) 0.241901 + 0.139662i 0.0493778 + 0.0285083i
\(25\) 2.15010 0.430020
\(26\) 0.000212944 0.433964i 4.17617e−5 0.0851073i
\(27\) 3.29632 0.634377
\(28\) −1.71951 0.992757i −0.324956 0.187613i
\(29\) −4.09831 + 7.09848i −0.761037 + 1.31815i 0.181280 + 0.983432i \(0.441976\pi\)
−0.942317 + 0.334723i \(0.891357\pi\)
\(30\) 0.0591572 + 0.102463i 0.0108006 + 0.0187071i
\(31\) 4.69775i 0.843742i −0.906656 0.421871i \(-0.861374\pi\)
0.906656 0.421871i \(-0.138626\pi\)
\(32\) 1.23876 0.715198i 0.218984 0.126430i
\(33\) −0.183870 + 0.106157i −0.0320076 + 0.0184796i
\(34\) 0.383412i 0.0657546i
\(35\) −0.844083 1.46199i −0.142676 0.247122i
\(36\) 2.64166 4.57549i 0.440277 0.762582i
\(37\) 5.46967 + 3.15792i 0.899209 + 0.519159i 0.876943 0.480594i \(-0.159579\pi\)
0.0222655 + 0.999752i \(0.492912\pi\)
\(38\) −0.173789 −0.0281922
\(39\) 2.09948 + 0.00103020i 0.336186 + 0.000164965i
\(40\) 0.809806 0.128042
\(41\) −5.04661 2.91366i −0.788148 0.455037i 0.0511624 0.998690i \(-0.483707\pi\)
−0.839310 + 0.543653i \(0.817041\pi\)
\(42\) −0.0350423 + 0.0606950i −0.00540714 + 0.00936545i
\(43\) −0.386561 0.669543i −0.0589500 0.102104i 0.835044 0.550183i \(-0.185442\pi\)
−0.893994 + 0.448078i \(0.852109\pi\)
\(44\) 0.723954i 0.109140i
\(45\) 3.89027 2.24605i 0.579928 0.334821i
\(46\) 0.529847 0.305907i 0.0781217 0.0451036i
\(47\) 12.7905i 1.86569i −0.360275 0.932846i \(-0.617317\pi\)
0.360275 0.932846i \(-0.382683\pi\)
\(48\) 1.13934 + 1.97339i 0.164449 + 0.284835i
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) −0.224115 0.129393i −0.0316946 0.0182989i
\(51\) −1.85492 −0.259741
\(52\) 3.58248 6.19801i 0.496800 0.859509i
\(53\) 1.37110 0.188334 0.0941672 0.995556i \(-0.469981\pi\)
0.0941672 + 0.995556i \(0.469981\pi\)
\(54\) −0.343591 0.198372i −0.0467568 0.0269950i
\(55\) −0.307768 + 0.533070i −0.0414994 + 0.0718791i
\(56\) 0.239848 + 0.415429i 0.0320510 + 0.0555140i
\(57\) 0.840776i 0.111363i
\(58\) 0.854372 0.493272i 0.112185 0.0647698i
\(59\) −8.10770 + 4.68098i −1.05553 + 0.609412i −0.924193 0.381925i \(-0.875261\pi\)
−0.131340 + 0.991337i \(0.541928\pi\)
\(60\) 1.95177i 0.251972i
\(61\) 4.51242 + 7.81574i 0.577756 + 1.00070i 0.995736 + 0.0922469i \(0.0294049\pi\)
−0.417980 + 0.908456i \(0.637262\pi\)
\(62\) −0.282711 + 0.489669i −0.0359043 + 0.0621880i
\(63\) 2.30444 + 1.33047i 0.290332 + 0.167623i
\(64\) 7.65442 0.956802
\(65\) 5.27279 3.04080i 0.654009 0.377164i
\(66\) 0.0255541 0.00314549
\(67\) −11.6705 6.73797i −1.42578 0.823174i −0.428995 0.903307i \(-0.641132\pi\)
−0.996784 + 0.0801330i \(0.974466\pi\)
\(68\) −3.16247 + 5.47757i −0.383506 + 0.664252i
\(69\) 1.47996 + 2.56336i 0.178166 + 0.308592i
\(70\) 0.203187i 0.0242855i
\(71\) −6.13246 + 3.54058i −0.727789 + 0.420189i −0.817613 0.575769i \(-0.804703\pi\)
0.0898239 + 0.995958i \(0.471370\pi\)
\(72\) −1.10543 + 0.638220i −0.130276 + 0.0752150i
\(73\) 2.16083i 0.252906i 0.991973 + 0.126453i \(0.0403592\pi\)
−0.991973 + 0.126453i \(0.959641\pi\)
\(74\) −0.380087 0.658329i −0.0441842 0.0765292i
\(75\) 0.625992 1.08425i 0.0722834 0.125198i
\(76\) −2.48281 1.43345i −0.284797 0.164428i
\(77\) −0.364618 −0.0415521
\(78\) −0.218777 0.126454i −0.0247716 0.0143181i
\(79\) −6.88781 −0.774940 −0.387470 0.921882i \(-0.626651\pi\)
−0.387470 + 0.921882i \(0.626651\pi\)
\(80\) 5.72121 + 3.30314i 0.639651 + 0.369302i
\(81\) −3.03169 + 5.25105i −0.336855 + 0.583450i
\(82\) 0.350688 + 0.607409i 0.0387270 + 0.0670771i
\(83\) 0.567380i 0.0622780i 0.999515 + 0.0311390i \(0.00991345\pi\)
−0.999515 + 0.0311390i \(0.990087\pi\)
\(84\) −1.00125 + 0.578074i −0.109246 + 0.0630731i
\(85\) −4.65725 + 2.68887i −0.505150 + 0.291648i
\(86\) 0.0930528i 0.0100341i
\(87\) 2.38641 + 4.13339i 0.255850 + 0.443146i
\(88\) 0.0874529 0.151473i 0.00932251 0.0161471i
\(89\) −0.986346 0.569467i −0.104553 0.0603634i 0.446812 0.894628i \(-0.352559\pi\)
−0.551364 + 0.834264i \(0.685893\pi\)
\(90\) −0.540669 −0.0569915
\(91\) 3.12161 + 1.80431i 0.327234 + 0.189143i
\(92\) 10.0928 1.05225
\(93\) −2.36898 1.36773i −0.245652 0.141827i
\(94\) −0.769734 + 1.33322i −0.0793920 + 0.137511i
\(95\) −1.21878 2.11098i −0.125044 0.216582i
\(96\) 0.832908i 0.0850083i
\(97\) 6.86572 3.96393i 0.697109 0.402476i −0.109161 0.994024i \(-0.534816\pi\)
0.806270 + 0.591548i \(0.201483\pi\)
\(98\) −0.104235 + 0.0601799i −0.0105293 + 0.00607909i
\(99\) 0.970225i 0.0975113i
\(100\) −2.13452 3.69710i −0.213452 0.369710i
\(101\) −7.77322 + 13.4636i −0.773465 + 1.33968i 0.162189 + 0.986760i \(0.448145\pi\)
−0.935653 + 0.352920i \(0.885189\pi\)
\(102\) 0.193347 + 0.111629i 0.0191442 + 0.0110529i
\(103\) −10.2982 −1.01471 −0.507354 0.861738i \(-0.669376\pi\)
−0.507354 + 0.861738i \(0.669376\pi\)
\(104\) −1.49827 + 0.864049i −0.146918 + 0.0847270i
\(105\) −0.983005 −0.0959315
\(106\) −0.142916 0.0825124i −0.0138812 0.00801432i
\(107\) 6.56220 11.3661i 0.634391 1.09880i −0.352252 0.935905i \(-0.614584\pi\)
0.986644 0.162893i \(-0.0520826\pi\)
\(108\) −3.27244 5.66804i −0.314891 0.545407i
\(109\) 10.4459i 1.00054i 0.865871 + 0.500268i \(0.166765\pi\)
−0.865871 + 0.500268i \(0.833235\pi\)
\(110\) 0.0641602 0.0370429i 0.00611743 0.00353190i
\(111\) 3.18495 1.83883i 0.302302 0.174534i
\(112\) 3.91329i 0.369771i
\(113\) −2.47631 4.28909i −0.232952 0.403484i 0.725724 0.687986i \(-0.241505\pi\)
−0.958675 + 0.284502i \(0.908172\pi\)
\(114\) −0.0505978 + 0.0876380i −0.00473892 + 0.00820805i
\(115\) 7.43163 + 4.29065i 0.693003 + 0.400105i
\(116\) 16.2745 1.51105
\(117\) −4.80115 + 8.30642i −0.443866 + 0.767928i
\(118\) 1.12681 0.103731
\(119\) −2.75877 1.59277i −0.252896 0.146009i
\(120\) 0.235772 0.408369i 0.0215229 0.0372788i
\(121\) −5.43353 9.41114i −0.493957 0.855559i
\(122\) 1.08623i 0.0983425i
\(123\) −2.93860 + 1.69660i −0.264965 + 0.152977i
\(124\) −8.07781 + 4.66373i −0.725409 + 0.418815i
\(125\) 12.0705i 1.07962i
\(126\) −0.160135 0.277362i −0.0142660 0.0247094i
\(127\) 4.03366 6.98650i 0.357929 0.619951i −0.629686 0.776850i \(-0.716816\pi\)
0.987615 + 0.156899i \(0.0501496\pi\)
\(128\) −3.27537 1.89104i −0.289505 0.167146i
\(129\) −0.450183 −0.0396364
\(130\) −0.732603 0.000359484i −0.0642535 3.15288e-5i
\(131\) 18.9039 1.65164 0.825820 0.563934i \(-0.190713\pi\)
0.825820 + 0.563934i \(0.190713\pi\)
\(132\) 0.365075 + 0.210776i 0.0317757 + 0.0183457i
\(133\) 0.721954 1.25046i 0.0626013 0.108429i
\(134\) 0.810981 + 1.40466i 0.0700581 + 0.121344i
\(135\) 5.56473i 0.478936i
\(136\) 1.32337 0.764047i 0.113478 0.0655165i
\(137\) 15.7837 9.11274i 1.34850 0.778554i 0.360459 0.932775i \(-0.382620\pi\)
0.988036 + 0.154221i \(0.0492867\pi\)
\(138\) 0.356255i 0.0303264i
\(139\) −2.62542 4.54737i −0.222686 0.385703i 0.732937 0.680297i \(-0.238149\pi\)
−0.955623 + 0.294594i \(0.904816\pi\)
\(140\) −1.67594 + 2.90281i −0.141643 + 0.245332i
\(141\) −6.45001 3.72392i −0.543189 0.313610i
\(142\) 0.852287 0.0715223
\(143\) 0.000645091 1.31465i 5.39452e−5 0.109936i
\(144\) −10.4130 −0.867751
\(145\) 11.9834 + 6.91862i 0.995167 + 0.574560i
\(146\) 0.130038 0.225233i 0.0107621 0.0186404i
\(147\) −0.291146 0.504280i −0.0240133 0.0415923i
\(148\) 12.5402i 1.03080i
\(149\) 8.03073 4.63654i 0.657903 0.379841i −0.133574 0.991039i \(-0.542646\pi\)
0.791478 + 0.611198i \(0.209312\pi\)
\(150\) −0.130500 + 0.0753444i −0.0106553 + 0.00615184i
\(151\) 14.0132i 1.14038i 0.821513 + 0.570189i \(0.193130\pi\)
−0.821513 + 0.570189i \(0.806870\pi\)
\(152\) 0.346318 + 0.599841i 0.0280901 + 0.0486535i
\(153\) 4.23827 7.34090i 0.342644 0.593476i
\(154\) 0.0380059 + 0.0219427i 0.00306260 + 0.00176819i
\(155\) −7.93059 −0.637000
\(156\) −2.08250 3.61110i −0.166734 0.289119i
\(157\) −17.1825 −1.37131 −0.685656 0.727925i \(-0.740485\pi\)
−0.685656 + 0.727925i \(0.740485\pi\)
\(158\) 0.717949 + 0.414508i 0.0571170 + 0.0329765i
\(159\) 0.399189 0.691415i 0.0316577 0.0548328i
\(160\) −1.20737 2.09123i −0.0954511 0.165326i
\(161\) 5.08321i 0.400613i
\(162\) 0.632016 0.364894i 0.0496558 0.0286688i
\(163\) 10.2128 5.89637i 0.799930 0.461840i −0.0435169 0.999053i \(-0.513856\pi\)
0.843447 + 0.537213i \(0.180523\pi\)
\(164\) 11.5702i 0.903482i
\(165\) 0.179211 + 0.310402i 0.0139515 + 0.0241648i
\(166\) 0.0341449 0.0591407i 0.00265016 0.00459021i
\(167\) 3.73852 + 2.15843i 0.289295 + 0.167025i 0.637624 0.770348i \(-0.279917\pi\)
−0.348329 + 0.937372i \(0.613251\pi\)
\(168\) 0.279323 0.0215502
\(169\) −6.51105 + 11.2519i −0.500850 + 0.865534i
\(170\) 0.647263 0.0496428
\(171\) 3.32739 + 1.92107i 0.254452 + 0.146908i
\(172\) −0.767522 + 1.32939i −0.0585230 + 0.101365i
\(173\) 6.25985 + 10.8424i 0.475928 + 0.824331i 0.999620 0.0275769i \(-0.00877910\pi\)
−0.523692 + 0.851908i \(0.675446\pi\)
\(174\) 0.574457i 0.0435494i
\(175\) 1.86204 1.07505i 0.140757 0.0812660i
\(176\) 1.23569 0.713428i 0.0931440 0.0537767i
\(177\) 5.45140i 0.409752i
\(178\) 0.0685410 + 0.118717i 0.00513737 + 0.00889818i
\(179\) −3.29767 + 5.71173i −0.246479 + 0.426915i −0.962547 0.271117i \(-0.912607\pi\)
0.716067 + 0.698031i \(0.245940\pi\)
\(180\) −7.72419 4.45956i −0.575727 0.332396i
\(181\) −11.0157 −0.818791 −0.409395 0.912357i \(-0.634260\pi\)
−0.409395 + 0.912357i \(0.634260\pi\)
\(182\) −0.216797 0.375930i −0.0160701 0.0278658i
\(183\) 5.25509 0.388468
\(184\) −2.11171 1.21920i −0.155678 0.0898805i
\(185\) 5.33109 9.23371i 0.391949 0.678876i
\(186\) 0.164620 + 0.285130i 0.0120705 + 0.0209068i
\(187\) 1.16151i 0.0849379i
\(188\) −21.9934 + 12.6979i −1.60403 + 0.926089i
\(189\) 2.85470 1.64816i 0.207649 0.119886i
\(190\) 0.293384i 0.0212843i
\(191\) −2.96606 5.13737i −0.214617 0.371727i 0.738537 0.674213i \(-0.235517\pi\)
−0.953154 + 0.302486i \(0.902184\pi\)
\(192\) 2.22855 3.85997i 0.160832 0.278569i
\(193\) 3.63380 + 2.09798i 0.261567 + 0.151016i 0.625049 0.780586i \(-0.285079\pi\)
−0.363482 + 0.931601i \(0.618412\pi\)
\(194\) −0.954196 −0.0685073
\(195\) 0.00173916 3.54428i 0.000124544 0.253811i
\(196\) −1.98551 −0.141822
\(197\) 5.00990 + 2.89247i 0.356941 + 0.206080i 0.667738 0.744396i \(-0.267263\pi\)
−0.310797 + 0.950476i \(0.600596\pi\)
\(198\) −0.0583881 + 0.101131i −0.00414946 + 0.00718708i
\(199\) 5.97988 + 10.3575i 0.423903 + 0.734221i 0.996317 0.0857435i \(-0.0273266\pi\)
−0.572415 + 0.819964i \(0.693993\pi\)
\(200\) 1.03139i 0.0729305i
\(201\) −6.79564 + 3.92347i −0.479328 + 0.276740i
\(202\) 1.62048 0.935584i 0.114017 0.0658275i
\(203\) 8.19662i 0.575290i
\(204\) 1.84148 + 3.18954i 0.128930 + 0.223313i
\(205\) −4.91874 + 8.51951i −0.343540 + 0.595028i
\(206\) 1.07343 + 0.619743i 0.0747891 + 0.0431795i
\(207\) −13.5261 −0.940129
\(208\) −14.1096 0.00692349i −0.978323 0.000480057i
\(209\) −0.526475 −0.0364170
\(210\) 0.102463 + 0.0591572i 0.00707064 + 0.00408223i
\(211\) 4.11795 7.13251i 0.283492 0.491022i −0.688751 0.724998i \(-0.741840\pi\)
0.972242 + 0.233976i \(0.0751738\pi\)
\(212\) −1.36116 2.35761i −0.0934851 0.161921i
\(213\) 4.12330i 0.282524i
\(214\) −1.36802 + 0.789825i −0.0935157 + 0.0539913i
\(215\) −1.13030 + 0.652579i −0.0770858 + 0.0445055i
\(216\) 1.58123i 0.107589i
\(217\) −2.34888 4.06838i −0.159452 0.276179i
\(218\) 0.628633 1.08882i 0.0425764 0.0737445i
\(219\) 1.08966 + 0.629116i 0.0736325 + 0.0425117i
\(220\) 1.22215 0.0823976
\(221\) 5.74771 9.94405i 0.386633 0.668909i
\(222\) −0.442643 −0.0297082
\(223\) 13.2515 + 7.65073i 0.887383 + 0.512331i 0.873086 0.487567i \(-0.162115\pi\)
0.0142977 + 0.999898i \(0.495449\pi\)
\(224\) 0.715198 1.23876i 0.0477861 0.0827680i
\(225\) 2.86064 + 4.95477i 0.190709 + 0.330318i
\(226\) 0.596097i 0.0396518i
\(227\) −6.02292 + 3.47733i −0.399755 + 0.230799i −0.686378 0.727245i \(-0.740801\pi\)
0.286623 + 0.958043i \(0.407467\pi\)
\(228\) −1.44572 + 0.834686i −0.0957450 + 0.0552784i
\(229\) 27.4219i 1.81209i −0.423180 0.906045i \(-0.639086\pi\)
0.423180 0.906045i \(-0.360914\pi\)
\(230\) −0.516422 0.894470i −0.0340519 0.0589796i
\(231\) −0.106157 + 0.183870i −0.00698463 + 0.0120977i
\(232\) −3.40511 1.96594i −0.223556 0.129070i
\(233\) 6.85333 0.448976 0.224488 0.974477i \(-0.427929\pi\)
0.224488 + 0.974477i \(0.427929\pi\)
\(234\) 1.00033 0.576884i 0.0653933 0.0377121i
\(235\) −21.5926 −1.40854
\(236\) 16.0980 + 9.29416i 1.04789 + 0.604998i
\(237\) −2.00536 + 3.47338i −0.130262 + 0.225621i
\(238\) 0.191706 + 0.332045i 0.0124265 + 0.0215233i
\(239\) 22.0754i 1.42794i 0.700177 + 0.713970i \(0.253105\pi\)
−0.700177 + 0.713970i \(0.746895\pi\)
\(240\) 3.33141 1.92339i 0.215042 0.124154i
\(241\) 13.6807 7.89855i 0.881251 0.508790i 0.0101802 0.999948i \(-0.496759\pi\)
0.871071 + 0.491158i \(0.163426\pi\)
\(242\) 1.30796i 0.0840787i
\(243\) 6.70981 + 11.6217i 0.430434 + 0.745534i
\(244\) 8.95947 15.5183i 0.573571 0.993455i
\(245\) −1.46199 0.844083i −0.0934034 0.0539265i
\(246\) 0.408405 0.0260390
\(247\) 4.50732 + 2.60525i 0.286794 + 0.165768i
\(248\) 2.25349 0.143097
\(249\) 0.286118 + 0.165190i 0.0181320 + 0.0104685i
\(250\) −0.726405 + 1.25817i −0.0459419 + 0.0795737i
\(251\) 11.2783 + 19.5346i 0.711882 + 1.23302i 0.964150 + 0.265359i \(0.0854903\pi\)
−0.252268 + 0.967658i \(0.581176\pi\)
\(252\) 5.28332i 0.332818i
\(253\) 1.60512 0.926716i 0.100913 0.0582621i
\(254\) −0.840894 + 0.485490i −0.0527624 + 0.0304624i
\(255\) 3.13141i 0.196097i
\(256\) −7.42681 12.8636i −0.464176 0.803976i
\(257\) 10.2064 17.6781i 0.636660 1.10273i −0.349501 0.936936i \(-0.613649\pi\)
0.986161 0.165791i \(-0.0530179\pi\)
\(258\) 0.0469247 + 0.0270920i 0.00292140 + 0.00168667i
\(259\) 6.31584 0.392447
\(260\) −10.4633 6.04781i −0.648904 0.375069i
\(261\) −21.8107 −1.35005
\(262\) −1.97044 1.13763i −0.121734 0.0702833i
\(263\) 14.7701 25.5826i 0.910764 1.57749i 0.0977768 0.995208i \(-0.468827\pi\)
0.812987 0.582281i \(-0.197840\pi\)
\(264\) −0.0509231 0.0882015i −0.00313410 0.00542842i
\(265\) 2.31464i 0.142187i
\(266\) −0.150505 + 0.0868943i −0.00922807 + 0.00532783i
\(267\) −0.574342 + 0.331596i −0.0351491 + 0.0202934i
\(268\) 26.7567i 1.63442i
\(269\) −13.9581 24.1762i −0.851043 1.47405i −0.880268 0.474477i \(-0.842637\pi\)
0.0292252 0.999573i \(-0.490696\pi\)
\(270\) −0.334885 + 0.580038i −0.0203805 + 0.0353000i
\(271\) −25.5036 14.7245i −1.54924 0.894451i −0.998200 0.0599690i \(-0.980900\pi\)
−0.551035 0.834482i \(-0.685767\pi\)
\(272\) 12.4660 0.755861
\(273\) 1.81872 1.04885i 0.110074 0.0634793i
\(274\) −2.19362 −0.132521
\(275\) −0.678933 0.391982i −0.0409412 0.0236374i
\(276\) 2.93847 5.08959i 0.176875 0.306357i
\(277\) 3.42927 + 5.93967i 0.206045 + 0.356880i 0.950465 0.310831i \(-0.100607\pi\)
−0.744420 + 0.667711i \(0.767274\pi\)
\(278\) 0.631992i 0.0379043i
\(279\) 10.8257 6.25021i 0.648117 0.374190i
\(280\) 0.701313 0.404903i 0.0419114 0.0241976i
\(281\) 29.0940i 1.73561i −0.496909 0.867803i \(-0.665532\pi\)
0.496909 0.867803i \(-0.334468\pi\)
\(282\) 0.448210 + 0.776323i 0.0266905 + 0.0462293i
\(283\) 5.80511 10.0547i 0.345078 0.597692i −0.640290 0.768133i \(-0.721186\pi\)
0.985368 + 0.170441i \(0.0545192\pi\)
\(284\) 12.1761 + 7.02986i 0.722517 + 0.417146i
\(285\) −1.41937 −0.0840761
\(286\) −0.0791828 + 0.136993i −0.00468217 + 0.00810058i
\(287\) −5.82732 −0.343976
\(288\) 3.29626 + 1.90310i 0.194234 + 0.112141i
\(289\) 3.42614 5.93425i 0.201538 0.349074i
\(290\) −0.832724 1.44232i −0.0488993 0.0846960i
\(291\) 4.61633i 0.270614i
\(292\) 3.71555 2.14517i 0.217436 0.125537i
\(293\) −15.4054 + 8.89430i −0.899992 + 0.519610i −0.877197 0.480130i \(-0.840590\pi\)
−0.0227942 + 0.999740i \(0.507256\pi\)
\(294\) 0.0700846i 0.00408742i
\(295\) 7.90228 + 13.6871i 0.460088 + 0.796896i
\(296\) −1.51484 + 2.62378i −0.0880483 + 0.152504i
\(297\) −1.04087 0.600949i −0.0603976 0.0348706i
\(298\) −1.11611 −0.0646544
\(299\) −18.3278 0.00899334i −1.05992 0.000520098i
\(300\) −2.48583 −0.143520
\(301\) −0.669543 0.386561i −0.0385918 0.0222810i
\(302\) 0.843314 1.46066i 0.0485273 0.0840517i
\(303\) 4.52629 + 7.83976i 0.260028 + 0.450382i
\(304\) 5.65043i 0.324074i
\(305\) 13.1943 7.61771i 0.755501 0.436189i
\(306\) −0.883550 + 0.510118i −0.0505092 + 0.0291615i
\(307\) 9.07966i 0.518204i 0.965850 + 0.259102i \(0.0834265\pi\)
−0.965850 + 0.259102i \(0.916573\pi\)
\(308\) 0.361977 + 0.626963i 0.0206256 + 0.0357245i
\(309\) −2.99827 + 5.19315i −0.170566 + 0.295428i
\(310\) 0.826643 + 0.477262i 0.0469501 + 0.0271067i
\(311\) −1.57073 −0.0890677 −0.0445338 0.999008i \(-0.514180\pi\)
−0.0445338 + 0.999008i \(0.514180\pi\)
\(312\) −0.000494185 1.00711i −2.79777e−5 0.0570166i
\(313\) 20.6232 1.16569 0.582846 0.812582i \(-0.301939\pi\)
0.582846 + 0.812582i \(0.301939\pi\)
\(314\) 1.79101 + 1.03404i 0.101073 + 0.0583544i
\(315\) 2.24605 3.89027i 0.126551 0.219192i
\(316\) 6.83792 + 11.8436i 0.384663 + 0.666256i
\(317\) 30.5435i 1.71549i 0.514072 + 0.857747i \(0.328137\pi\)
−0.514072 + 0.857747i \(0.671863\pi\)
\(318\) −0.0832187 + 0.0480463i −0.00466667 + 0.00269430i
\(319\) 2.58823 1.49432i 0.144913 0.0836657i
\(320\) 12.9219i 0.722358i
\(321\) −3.82111 6.61836i −0.213274 0.369401i
\(322\) 0.305907 0.529847i 0.0170476 0.0295272i
\(323\) −3.98340 2.29982i −0.221642 0.127965i
\(324\) 12.0389 0.668830
\(325\) 3.87285 + 6.71558i 0.214827 + 0.372513i
\(326\) −1.41937 −0.0786118
\(327\) 5.26765 + 3.04128i 0.291302 + 0.168183i
\(328\) 1.39767 2.42084i 0.0771735 0.133668i
\(329\) −6.39527 11.0769i −0.352583 0.610691i
\(330\) 0.0431396i 0.00237476i
\(331\) −22.3894 + 12.9265i −1.23063 + 0.710507i −0.967162 0.254161i \(-0.918201\pi\)
−0.263472 + 0.964667i \(0.584868\pi\)
\(332\) 0.975612 0.563270i 0.0535437 0.0309135i
\(333\) 16.8060i 0.920965i
\(334\) −0.259789 0.449967i −0.0142150 0.0246211i
\(335\) −11.3748 + 19.7017i −0.621472 + 1.07642i
\(336\) 1.97339 + 1.13934i 0.107657 + 0.0621560i
\(337\) −21.3954 −1.16548 −0.582742 0.812657i \(-0.698020\pi\)
−0.582742 + 0.812657i \(0.698020\pi\)
\(338\) 1.35582 0.781009i 0.0737468 0.0424813i
\(339\) −2.88387 −0.156630
\(340\) 9.24704 + 5.33878i 0.501491 + 0.289536i
\(341\) −0.856443 + 1.48340i −0.0463790 + 0.0803308i
\(342\) −0.231220 0.400485i −0.0125029 0.0216557i
\(343\) 1.00000i 0.0539949i
\(344\) 0.321177 0.185432i 0.0173167 0.00999781i
\(345\) 4.32738 2.49841i 0.232978 0.134510i
\(346\) 1.50687i 0.0810098i
\(347\) −1.10442 1.91291i −0.0592882 0.102690i 0.834858 0.550466i \(-0.185550\pi\)
−0.894146 + 0.447775i \(0.852216\pi\)
\(348\) 4.73825 8.20689i 0.253997 0.439936i
\(349\) −9.77843 5.64558i −0.523427 0.302201i 0.214908 0.976634i \(-0.431055\pi\)
−0.738336 + 0.674433i \(0.764388\pi\)
\(350\) −0.258786 −0.0138327
\(351\) 5.93747 + 10.2957i 0.316919 + 0.549542i
\(352\) −0.521548 −0.0277986
\(353\) −30.8680 17.8217i −1.64294 0.948552i −0.979781 0.200072i \(-0.935882\pi\)
−0.663158 0.748479i \(-0.730784\pi\)
\(354\) 0.328065 0.568225i 0.0174365 0.0302008i
\(355\) 5.97708 + 10.3526i 0.317230 + 0.549459i
\(356\) 2.26137i 0.119852i
\(357\) −1.60641 + 0.927459i −0.0850201 + 0.0490864i
\(358\) 0.687464 0.396907i 0.0363336 0.0209772i
\(359\) 19.3218i 1.01976i 0.860244 + 0.509882i \(0.170311\pi\)
−0.860244 + 0.509882i \(0.829689\pi\)
\(360\) 1.07742 + 1.86615i 0.0567851 + 0.0983546i
\(361\) −8.45757 + 14.6489i −0.445135 + 0.770997i
\(362\) 1.14822 + 0.662924i 0.0603490 + 0.0348425i
\(363\) −6.32780 −0.332123
\(364\) 0.00351282 7.15887i 0.000184122 0.375227i
\(365\) 3.64783 0.190936
\(366\) −0.547763 0.316251i −0.0286320 0.0165307i
\(367\) 1.86032 3.22218i 0.0971082 0.168196i −0.813378 0.581735i \(-0.802374\pi\)
0.910487 + 0.413539i \(0.135707\pi\)
\(368\) −9.94604 17.2271i −0.518473 0.898022i
\(369\) 15.5061i 0.807217i
\(370\) −1.11137 + 0.641649i −0.0577773 + 0.0333578i
\(371\) 1.18740 0.685548i 0.0616469 0.0355919i
\(372\) 5.43130i 0.281600i
\(373\) 1.75638 + 3.04214i 0.0909420 + 0.157516i 0.907908 0.419170i \(-0.137679\pi\)
−0.816966 + 0.576686i \(0.804346\pi\)
\(374\) 0.0698995 0.121070i 0.00361442 0.00626035i
\(375\) −6.08693 3.51429i −0.314328 0.181477i
\(376\) 6.13557 0.316418
\(377\) −29.5533 0.0145016i −1.52207 0.000746873i
\(378\) −0.396744 −0.0204063
\(379\) 21.6647 + 12.5081i 1.11284 + 0.642500i 0.939564 0.342373i \(-0.111230\pi\)
0.173279 + 0.984873i \(0.444564\pi\)
\(380\) −2.41990 + 4.19139i −0.124138 + 0.215014i
\(381\) −2.34877 4.06818i −0.120331 0.208419i
\(382\) 0.713990i 0.0365309i
\(383\) −19.4556 + 11.2327i −0.994134 + 0.573964i −0.906507 0.422190i \(-0.861262\pi\)
−0.0876266 + 0.996153i \(0.527928\pi\)
\(384\) −1.90722 + 1.10114i −0.0973276 + 0.0561921i
\(385\) 0.615536i 0.0313706i
\(386\) −0.252512 0.437364i −0.0128525 0.0222612i
\(387\) 1.02861 1.78161i 0.0522874 0.0905644i
\(388\) −13.6320 7.87043i −0.692059 0.399561i
\(389\) 13.3364 0.676184 0.338092 0.941113i \(-0.390219\pi\)
0.338092 + 0.941113i \(0.390219\pi\)
\(390\) −0.213476 + 0.369332i −0.0108098 + 0.0187018i
\(391\) 16.1928 0.818906
\(392\) 0.415429 + 0.239848i 0.0209823 + 0.0121142i
\(393\) 5.50379 9.53284i 0.277629 0.480868i
\(394\) −0.348137 0.602991i −0.0175389 0.0303783i
\(395\) 11.6278i 0.585057i
\(396\) −1.66831 + 0.963198i −0.0838356 + 0.0484025i
\(397\) −22.3723 + 12.9166i −1.12283 + 0.648268i −0.942123 0.335268i \(-0.891173\pi\)
−0.180710 + 0.983536i \(0.557840\pi\)
\(398\) 1.43948i 0.0721544i
\(399\) −0.420388 0.728133i −0.0210457 0.0364522i
\(400\) −4.20698 + 7.28670i −0.210349 + 0.364335i
\(401\) 15.2078 + 8.78025i 0.759443 + 0.438465i 0.829096 0.559106i \(-0.188856\pi\)
−0.0696524 + 0.997571i \(0.522189\pi\)
\(402\) 0.944456 0.0471052
\(403\) 14.6729 8.46180i 0.730909 0.421512i
\(404\) 30.8677 1.53572
\(405\) 8.86464 + 5.11800i 0.440487 + 0.254316i
\(406\) 0.493272 0.854372i 0.0244807 0.0424018i
\(407\) −1.15143 1.99434i −0.0570745 0.0988559i
\(408\) 0.889797i 0.0440515i
\(409\) 12.5818 7.26410i 0.622129 0.359186i −0.155568 0.987825i \(-0.549721\pi\)
0.777698 + 0.628639i \(0.216388\pi\)
\(410\) 1.02541 0.592019i 0.0506412 0.0292377i
\(411\) 10.6126i 0.523479i
\(412\) 10.2236 + 17.7077i 0.503679 + 0.872398i
\(413\) −4.68098 + 8.10770i −0.230336 + 0.398954i
\(414\) 1.40989 + 0.814000i 0.0692923 + 0.0400059i
\(415\) 0.957831 0.0470181
\(416\) 4.46514 + 2.58087i 0.218922 + 0.126538i
\(417\) −3.05753 −0.149728
\(418\) 0.0548769 + 0.0316832i 0.00268412 + 0.00154968i
\(419\) 2.30096 3.98538i 0.112409 0.194699i −0.804332 0.594180i \(-0.797477\pi\)
0.916741 + 0.399482i \(0.130810\pi\)
\(420\) 0.975885 + 1.69028i 0.0476183 + 0.0824773i
\(421\) 19.2645i 0.938895i −0.882960 0.469447i \(-0.844453\pi\)
0.882960 0.469447i \(-0.155547\pi\)
\(422\) −0.858468 + 0.495637i −0.0417896 + 0.0241272i
\(423\) 29.4750 17.0174i 1.43312 0.827415i
\(424\) 0.657709i 0.0319412i
\(425\) −3.42462 5.93161i −0.166118 0.287726i
\(426\) 0.248140 0.429791i 0.0120224 0.0208234i
\(427\) 7.81574 + 4.51242i 0.378230 + 0.218371i
\(428\) −26.0587 −1.25959
\(429\) −0.662763 0.383080i −0.0319985 0.0184953i
\(430\) 0.157089 0.00757548
\(431\) −24.5649 14.1825i −1.18325 0.683149i −0.226485 0.974015i \(-0.572723\pi\)
−0.956764 + 0.290865i \(0.906057\pi\)
\(432\) −6.44973 + 11.1713i −0.310313 + 0.537477i
\(433\) −6.26014 10.8429i −0.300843 0.521076i 0.675484 0.737375i \(-0.263935\pi\)
−0.976327 + 0.216299i \(0.930601\pi\)
\(434\) 0.565421i 0.0271411i
\(435\) 6.97784 4.02866i 0.334562 0.193159i
\(436\) 17.9618 10.3702i 0.860213 0.496644i
\(437\) 7.33969i 0.351105i
\(438\) −0.0757203 0.131151i −0.00361806 0.00626666i
\(439\) 15.8637 27.4767i 0.757132 1.31139i −0.187176 0.982326i \(-0.559933\pi\)
0.944307 0.329064i \(-0.106733\pi\)
\(440\) −0.255711 0.147635i −0.0121906 0.00703822i
\(441\) 2.66094 0.126711
\(442\) −1.19754 + 0.690619i −0.0569613 + 0.0328494i
\(443\) 1.73048 0.0822177 0.0411088 0.999155i \(-0.486911\pi\)
0.0411088 + 0.999155i \(0.486911\pi\)
\(444\) −6.32376 3.65102i −0.300112 0.173270i
\(445\) −0.961355 + 1.66512i −0.0455726 + 0.0789341i
\(446\) −0.920842 1.59494i −0.0436031 0.0755228i
\(447\) 5.39965i 0.255394i
\(448\) 6.62892 3.82721i 0.313187 0.180819i
\(449\) −9.14208 + 5.27818i −0.431442 + 0.249093i −0.699961 0.714181i \(-0.746799\pi\)
0.268519 + 0.963274i \(0.413466\pi\)
\(450\) 0.688612i 0.0324615i
\(451\) 1.06237 + 1.84008i 0.0500252 + 0.0866462i
\(452\) −4.91675 + 8.51605i −0.231264 + 0.400561i
\(453\) 7.06658 + 4.07989i 0.332017 + 0.191690i
\(454\) 0.837063 0.0392853
\(455\) 3.04597 5.26980i 0.142797 0.247052i
\(456\) 0.403317 0.0188870
\(457\) −6.88399 3.97447i −0.322019 0.185918i 0.330273 0.943885i \(-0.392859\pi\)
−0.652292 + 0.757968i \(0.726193\pi\)
\(458\) −1.65025 + 2.85832i −0.0771111 + 0.133560i
\(459\) −5.25029 9.09377i −0.245062 0.424461i
\(460\) 17.0383i 0.794415i
\(461\) 9.43262 5.44592i 0.439321 0.253642i −0.263989 0.964526i \(-0.585038\pi\)
0.703309 + 0.710884i \(0.251705\pi\)
\(462\) 0.0221305 0.0127771i 0.00102960 0.000594443i
\(463\) 35.8227i 1.66482i −0.554158 0.832411i \(-0.686960\pi\)
0.554158 0.832411i \(-0.313040\pi\)
\(464\) −16.0379 27.7784i −0.744539 1.28958i
\(465\) −2.30896 + 3.99923i −0.107075 + 0.185460i
\(466\) −0.714355 0.412433i −0.0330918 0.0191056i
\(467\) −19.8983 −0.920785 −0.460393 0.887715i \(-0.652291\pi\)
−0.460393 + 0.887715i \(0.652291\pi\)
\(468\) 19.0493 + 0.00934738i 0.880554 + 0.000432083i
\(469\) −13.4759 −0.622261
\(470\) 2.25069 + 1.29944i 0.103817 + 0.0599386i
\(471\) −5.00262 + 8.66479i −0.230508 + 0.399252i
\(472\) −2.24545 3.88923i −0.103355 0.179016i
\(473\) 0.281894i 0.0129615i
\(474\) 0.418056 0.241365i 0.0192020 0.0110863i
\(475\) 2.68861 1.55227i 0.123362 0.0712231i
\(476\) 6.32495i 0.289904i
\(477\) 1.82420 + 3.15960i 0.0835243 + 0.144668i
\(478\) 1.32850 2.30102i 0.0607640 0.105246i
\(479\) 22.7680 + 13.1451i 1.04030 + 0.600615i 0.919917 0.392113i \(-0.128256\pi\)
0.120379 + 0.992728i \(0.461589\pi\)
\(480\) −1.40609 −0.0641788
\(481\) −0.0111741 + 22.7721i −0.000509496 + 1.03832i
\(482\) −1.90134 −0.0866035
\(483\) 2.56336 + 1.47996i 0.116637 + 0.0673404i
\(484\) −10.7883 + 18.6860i −0.490379 + 0.849362i
\(485\) −6.69177 11.5905i −0.303857 0.526296i
\(486\) 1.61518i 0.0732662i
\(487\) 5.52491 3.18981i 0.250358 0.144544i −0.369570 0.929203i \(-0.620495\pi\)
0.619928 + 0.784659i \(0.287162\pi\)
\(488\) −3.74918 + 2.16459i −0.169717 + 0.0979864i
\(489\) 6.86682i 0.310528i
\(490\) 0.101594 + 0.175965i 0.00458954 + 0.00794931i
\(491\) −1.48384 + 2.57008i −0.0669647 + 0.115986i −0.897564 0.440885i \(-0.854665\pi\)
0.830599 + 0.556871i \(0.187998\pi\)
\(492\) 5.83463 + 3.36862i 0.263045 + 0.151869i
\(493\) 26.1107 1.17597
\(494\) −0.313035 0.542808i −0.0140841 0.0244221i
\(495\) −1.63790 −0.0736182
\(496\) 15.9207 + 9.19184i 0.714862 + 0.412726i
\(497\) −3.54058 + 6.13246i −0.158817 + 0.275078i
\(498\) −0.0198823 0.0344371i −0.000890947 0.00154316i
\(499\) 28.1331i 1.25941i −0.776835 0.629704i \(-0.783176\pi\)
0.776835 0.629704i \(-0.216824\pi\)
\(500\) −20.7554 + 11.9831i −0.928208 + 0.535901i
\(501\) 2.17691 1.25684i 0.0972571 0.0561514i
\(502\) 2.71492i 0.121173i
\(503\) 15.7688 + 27.3124i 0.703097 + 1.21780i 0.967374 + 0.253353i \(0.0815334\pi\)
−0.264277 + 0.964447i \(0.585133\pi\)
\(504\) −0.638220 + 1.10543i −0.0284286 + 0.0492398i
\(505\) 22.7288 + 13.1225i 1.01142 + 0.583943i
\(506\) −0.223079 −0.00991706
\(507\) 3.77846 + 6.55935i 0.167807 + 0.291311i
\(508\) −16.0178 −0.710673
\(509\) 11.7731 + 6.79719i 0.521832 + 0.301280i 0.737684 0.675146i \(-0.235919\pi\)
−0.215852 + 0.976426i \(0.569253\pi\)
\(510\) 0.188448 0.326402i 0.00834462 0.0144533i
\(511\) 1.08041 + 1.87133i 0.0477947 + 0.0827828i
\(512\) 9.35193i 0.413301i
\(513\) 4.12191 2.37979i 0.181987 0.105070i
\(514\) −2.12773 + 1.22845i −0.0938502 + 0.0541844i
\(515\) 17.3850i 0.766074i
\(516\) 0.446922 + 0.774091i 0.0196746 + 0.0340775i
\(517\) −2.33183 + 4.03885i −0.102554 + 0.177628i
\(518\) −0.658329 0.380087i −0.0289253 0.0167000i
\(519\) 7.29012 0.320001
\(520\) 1.45866 + 2.52933i 0.0639664 + 0.110919i
\(521\) 8.78344 0.384810 0.192405 0.981316i \(-0.438371\pi\)
0.192405 + 0.981316i \(0.438371\pi\)
\(522\) 2.27343 + 1.31256i 0.0995053 + 0.0574494i
\(523\) −16.2849 + 28.2063i −0.712088 + 1.23337i 0.251983 + 0.967732i \(0.418917\pi\)
−0.964072 + 0.265642i \(0.914416\pi\)
\(524\) −18.7670 32.5053i −0.819838 1.42000i
\(525\) 1.25198i 0.0546411i
\(526\) −3.07912 + 1.77773i −0.134256 + 0.0775127i
\(527\) −12.9600 + 7.48246i −0.564547 + 0.325941i
\(528\) 0.830847i 0.0361580i
\(529\) −1.41953 2.45869i −0.0617185 0.106900i
\(530\) −0.139295 + 0.241265i −0.00605057 + 0.0104799i
\(531\) −21.5741 12.4558i −0.936235 0.540536i
\(532\) −2.86690 −0.124296
\(533\) 0.0103098 21.0107i 0.000446568 0.910074i
\(534\) 0.0798218 0.00345423
\(535\) −19.1878 11.0781i −0.829560 0.478947i
\(536\) 3.23218 5.59829i 0.139609 0.241809i
\(537\) 1.92021 + 3.32590i 0.0828631 + 0.143523i
\(538\) 3.36000i 0.144860i
\(539\) −0.315769 + 0.182309i −0.0136011 + 0.00785261i
\(540\) −9.56858 + 5.52442i −0.411766 + 0.237733i
\(541\) 6.94870i 0.298748i −0.988781 0.149374i \(-0.952274\pi\)
0.988781 0.149374i \(-0.0477258\pi\)
\(542\) 1.77224 + 3.06961i 0.0761243 + 0.131851i
\(543\) −3.20718 + 5.55500i −0.137633 + 0.238388i
\(544\) −3.94612 2.27830i −0.169189 0.0976811i
\(545\) 17.6344 0.755375
\(546\) −0.252694 0.000123995i −0.0108143 5.30651e-6i
\(547\) 10.9095 0.466457 0.233229 0.972422i \(-0.425071\pi\)
0.233229 + 0.972422i \(0.425071\pi\)
\(548\) −31.3388 18.0935i −1.33873 0.772915i
\(549\) −12.0073 + 20.7972i −0.512457 + 0.887602i
\(550\) 0.0471789 + 0.0817163i 0.00201172 + 0.00348440i
\(551\) 11.8352i 0.504194i
\(552\) −1.22963 + 0.709929i −0.0523367 + 0.0302166i
\(553\) −5.96502 + 3.44391i −0.253659 + 0.146450i
\(554\) 0.825493i 0.0350718i
\(555\) −3.10425 5.37672i −0.131768 0.228229i
\(556\) −5.21282 + 9.02886i −0.221073 + 0.382909i
\(557\) 29.9901 + 17.3148i 1.27072 + 0.733650i 0.975123 0.221662i \(-0.0711483\pi\)
0.295596 + 0.955313i \(0.404482\pi\)
\(558\) −1.50455 −0.0636927
\(559\) 1.39495 2.41339i 0.0590001 0.102075i
\(560\) 6.60628 0.279166
\(561\) 0.585725 + 0.338169i 0.0247293 + 0.0142775i
\(562\) −1.75088 + 3.03261i −0.0738563 + 0.127923i
\(563\) 4.56839 + 7.91269i 0.192535 + 0.333480i 0.946090 0.323905i \(-0.104996\pi\)
−0.753555 + 0.657385i \(0.771662\pi\)
\(564\) 14.7878i 0.622677i
\(565\) −7.24070 + 4.18042i −0.304618 + 0.175872i
\(566\) −1.21019 + 0.698702i −0.0508680 + 0.0293686i
\(567\) 6.06339i 0.254638i
\(568\) −1.69840 2.94172i −0.0712633 0.123432i
\(569\) 9.15000 15.8483i 0.383588 0.664394i −0.607984 0.793949i \(-0.708022\pi\)
0.991572 + 0.129555i \(0.0413549\pi\)
\(570\) 0.147947 + 0.0854175i 0.00619684 + 0.00357775i
\(571\) −10.1791 −0.425981 −0.212990 0.977054i \(-0.568320\pi\)
−0.212990 + 0.977054i \(0.568320\pi\)
\(572\) −2.26119 + 1.30402i −0.0945450 + 0.0545237i
\(573\) −3.45423 −0.144303
\(574\) 0.607409 + 0.350688i 0.0253528 + 0.0146374i
\(575\) −5.46470 + 9.46514i −0.227894 + 0.394724i
\(576\) 10.1840 + 17.6391i 0.424332 + 0.734964i
\(577\) 19.5165i 0.812482i 0.913766 + 0.406241i \(0.133161\pi\)
−0.913766 + 0.406241i \(0.866839\pi\)
\(578\) −0.714246 + 0.412370i −0.0297087 + 0.0171523i
\(579\) 2.11593 1.22163i 0.0879352 0.0507694i
\(580\) 27.4740i 1.14080i
\(581\) 0.283690 + 0.491365i 0.0117694 + 0.0203853i
\(582\) −0.277810 + 0.481182i −0.0115156 + 0.0199456i
\(583\) −0.432949 0.249963i −0.0179309 0.0103524i
\(584\) −1.03654 −0.0428923
\(585\) 14.0226 + 8.10513i 0.579763 + 0.335106i
\(586\) 2.14103 0.0884453
\(587\) −30.6486 17.6950i −1.26501 0.730351i −0.290967 0.956733i \(-0.593977\pi\)
−0.974039 + 0.226382i \(0.927310\pi\)
\(588\) −0.578074 + 1.00125i −0.0238394 + 0.0412910i
\(589\) −3.39156 5.87436i −0.139747 0.242049i
\(590\) 1.90223i 0.0783137i
\(591\) 2.91723 1.68426i 0.119999 0.0692812i
\(592\) −21.4044 + 12.3579i −0.879716 + 0.507905i
\(593\) 18.0881i 0.742790i −0.928475 0.371395i \(-0.878880\pi\)
0.928475 0.371395i \(-0.121120\pi\)
\(594\) 0.0723301 + 0.125279i 0.00296774 + 0.00514028i
\(595\) −2.68887 + 4.65725i −0.110233 + 0.190929i
\(596\) −15.9451 9.20592i −0.653138 0.377089i
\(597\) 6.96407 0.285021
\(598\) 1.90985 + 1.10390i 0.0780996 + 0.0451419i
\(599\) 9.05992 0.370178 0.185089 0.982722i \(-0.440743\pi\)
0.185089 + 0.982722i \(0.440743\pi\)
\(600\) 0.520111 + 0.300286i 0.0212334 + 0.0122591i
\(601\) −14.6440 + 25.3642i −0.597343 + 1.03463i 0.395869 + 0.918307i \(0.370444\pi\)
−0.993212 + 0.116321i \(0.962890\pi\)
\(602\) 0.0465264 + 0.0805861i 0.00189628 + 0.00328444i
\(603\) 35.8586i 1.46028i
\(604\) 24.0958 13.9117i 0.980444 0.566059i
\(605\) −15.8876 + 9.17269i −0.645922 + 0.372923i
\(606\) 1.08957i 0.0442606i
\(607\) 19.6825 + 34.0911i 0.798887 + 1.38371i 0.920341 + 0.391116i \(0.127911\pi\)
−0.121454 + 0.992597i \(0.538756\pi\)
\(608\) 1.03268 1.78865i 0.0418807 0.0725394i
\(609\) 4.13339 + 2.38641i 0.167493 + 0.0967023i
\(610\) −1.83373 −0.0742457
\(611\) 39.9498 23.0389i 1.61619 0.932053i
\(612\) −16.8303 −0.680324
\(613\) 4.79186 + 2.76658i 0.193541 + 0.111741i 0.593639 0.804731i \(-0.297691\pi\)
−0.400098 + 0.916472i \(0.631024\pi\)
\(614\) 0.546413 0.946416i 0.0220514 0.0381942i
\(615\) 2.86414 + 4.96084i 0.115493 + 0.200040i
\(616\) 0.174906i 0.00704716i
\(617\) 10.8959 6.29077i 0.438654 0.253257i −0.264373 0.964421i \(-0.585165\pi\)
0.703026 + 0.711164i \(0.251832\pi\)
\(618\) 0.625047 0.360871i 0.0251431 0.0145164i
\(619\) 22.3955i 0.900149i 0.892991 + 0.450075i \(0.148603\pi\)
−0.892991 + 0.450075i \(0.851397\pi\)
\(620\) 7.87314 + 13.6367i 0.316193 + 0.547662i
\(621\) −8.37794 + 14.5110i −0.336195 + 0.582307i
\(622\) 0.163724 + 0.0945262i 0.00656474 + 0.00379015i
\(623\) −1.13893 −0.0456305
\(624\) −4.11144 + 7.11315i −0.164589 + 0.284754i
\(625\) −9.62659 −0.385064
\(626\) −2.14965 1.24110i −0.0859175 0.0496045i
\(627\) −0.153281 + 0.265491i −0.00612145 + 0.0106027i
\(628\) 17.0580 + 29.5454i 0.680690 + 1.17899i
\(629\) 20.1194i 0.802213i
\(630\) −0.468233 + 0.270334i −0.0186548 + 0.0107704i
\(631\) 1.68778 0.974439i 0.0671894 0.0387918i −0.466029 0.884769i \(-0.654316\pi\)
0.533218 + 0.845978i \(0.320982\pi\)
\(632\) 3.30406i 0.131428i
\(633\) −2.39785 4.15320i −0.0953061 0.165075i
\(634\) 1.83811 3.18369i 0.0730005 0.126441i
\(635\) −11.7944 6.80948i −0.468045 0.270226i
\(636\) −1.58519 −0.0628569
\(637\) 3.60555 + 0.00176922i 0.142857 + 7.00992e-5i
\(638\) −0.359712 −0.0142411
\(639\) −16.3181 9.42125i −0.645533 0.372699i
\(640\) −3.19238 + 5.52937i −0.126190 + 0.218568i
\(641\) 5.21051 + 9.02487i 0.205803 + 0.356461i 0.950388 0.311066i \(-0.100686\pi\)
−0.744585 + 0.667527i \(0.767353\pi\)
\(642\) 0.919818i 0.0363023i
\(643\) 13.2247 7.63531i 0.521533 0.301107i −0.216029 0.976387i \(-0.569310\pi\)
0.737562 + 0.675280i \(0.235977\pi\)
\(644\) 8.74061 5.04639i 0.344428 0.198856i
\(645\) 0.759983i 0.0299243i
\(646\) 0.276806 + 0.479442i 0.0108908 + 0.0188634i
\(647\) 8.75328 15.1611i 0.344127 0.596045i −0.641068 0.767484i \(-0.721508\pi\)
0.985195 + 0.171439i \(0.0548417\pi\)
\(648\) −2.51891 1.45429i −0.0989520 0.0571300i
\(649\) 3.41354 0.133993
\(650\) 0.000457849 0.933064i 1.79583e−5 0.0365978i
\(651\) −2.73547 −0.107211
\(652\) −20.2777 11.7073i −0.794136 0.458494i
\(653\) 5.09169 8.81906i 0.199253 0.345117i −0.749033 0.662532i \(-0.769482\pi\)
0.948287 + 0.317416i \(0.102815\pi\)
\(654\) −0.366048 0.634014i −0.0143136 0.0247919i
\(655\) 31.9129i 1.24694i
\(656\) 19.7488 11.4020i 0.771063 0.445173i
\(657\) −4.97949 + 2.87491i −0.194268 + 0.112161i
\(658\) 1.53947i 0.0600147i
\(659\) 21.9294 + 37.9828i 0.854247 + 1.47960i 0.877342 + 0.479866i \(0.159315\pi\)
−0.0230945 + 0.999733i \(0.507352\pi\)
\(660\) 0.355825 0.616308i 0.0138505 0.0239897i
\(661\) −28.5156 16.4635i −1.10913 0.640356i −0.170526 0.985353i \(-0.554547\pi\)
−0.938604 + 0.344997i \(0.887880\pi\)
\(662\) 3.11167 0.120939
\(663\) −3.34116 5.79362i −0.129760 0.225006i
\(664\) −0.272170 −0.0105622
\(665\) −2.11098 1.21878i −0.0818604 0.0472621i
\(666\) 1.01139 1.75177i 0.0391904 0.0678798i
\(667\) −20.8326 36.0831i −0.806640 1.39714i
\(668\) 8.57120i 0.331630i
\(669\) 7.71622 4.45496i 0.298326 0.172239i
\(670\) 2.37130 1.36907i 0.0916113 0.0528918i
\(671\) 3.29062i 0.127033i
\(672\) −0.416454 0.721319i −0.0160651 0.0278255i
\(673\) 13.3423 23.1095i 0.514307 0.890806i −0.485555 0.874206i \(-0.661383\pi\)
0.999862 0.0165997i \(-0.00528409\pi\)
\(674\) 2.23015 + 1.28758i 0.0859021 + 0.0495956i
\(675\) 7.08740 0.272794
\(676\) 25.8117 + 0.0253313i 0.992756 + 0.000974280i
\(677\) 29.5328 1.13504 0.567519 0.823361i \(-0.307904\pi\)
0.567519 + 0.823361i \(0.307904\pi\)
\(678\) 0.300599 + 0.173551i 0.0115444 + 0.00666519i
\(679\) 3.96393 6.86572i 0.152122 0.263482i
\(680\) −1.28984 2.23406i −0.0494630 0.0856725i
\(681\) 4.04965i 0.155183i
\(682\) 0.178542 0.103081i 0.00683674 0.00394719i
\(683\) −15.8379 + 9.14400i −0.606019 + 0.349885i −0.771406 0.636343i \(-0.780446\pi\)
0.165387 + 0.986229i \(0.447113\pi\)
\(684\) 7.62863i 0.291688i
\(685\) −15.3838 26.6456i −0.587786 1.01807i
\(686\) −0.0601799 + 0.104235i −0.00229768 + 0.00397970i
\(687\) −13.8283 7.98378i −0.527583 0.304600i
\(688\) 3.02545 0.115344
\(689\) 2.46968 + 4.28246i 0.0940872 + 0.163149i
\(690\) −0.601417 −0.0228956
\(691\) −8.95525 5.17031i −0.340674 0.196688i 0.319896 0.947453i \(-0.396352\pi\)
−0.660570 + 0.750765i \(0.729685\pi\)
\(692\) 12.4290 21.5277i 0.472480 0.818360i
\(693\) −0.485113 0.840240i −0.0184279 0.0319181i
\(694\) 0.265855i 0.0100917i
\(695\) −7.67671 + 4.43215i −0.291194 + 0.168121i
\(696\) −1.98277 + 1.14475i −0.0751567 + 0.0433917i
\(697\) 18.5632i 0.703131i
\(698\) 0.679501 + 1.17693i 0.0257195 + 0.0445475i
\(699\) 1.99532 3.45599i 0.0754699 0.130718i
\(700\) −3.69710 2.13452i −0.139737 0.0806774i
\(701\) 41.6959 1.57483 0.787415 0.616423i \(-0.211419\pi\)
0.787415 + 0.616423i \(0.211419\pi\)
\(702\) 0.000701930 1.43048i 2.64926e−5 0.0539901i
\(703\) 9.11948 0.343948
\(704\) −2.41702 1.39547i −0.0910951 0.0525938i
\(705\) −6.28659 + 10.8887i −0.236766 + 0.410092i
\(706\) 2.14501 + 3.71527i 0.0807287 + 0.139826i
\(707\) 15.5464i 0.584684i
\(708\) 9.37371 5.41191i 0.352286 0.203392i
\(709\) 0.00947974 0.00547313i 0.000356019 0.000205548i −0.499822 0.866128i \(-0.666601\pi\)
0.500178 + 0.865923i \(0.333268\pi\)
\(710\) 1.43880i 0.0539972i
\(711\) −9.16402 15.8725i −0.343677 0.595267i
\(712\) 0.273171 0.473146i 0.0102375 0.0177319i
\(713\) 20.6804 + 11.9398i 0.774488 + 0.447151i
\(714\) 0.223258 0.00835521
\(715\) −2.21935 0.00108902i −0.0829988 4.07271e-5i
\(716\) 13.0951 0.489388
\(717\) 11.1322 + 6.42717i 0.415739 + 0.240027i
\(718\) 1.16278 2.01400i 0.0433947 0.0751618i
\(719\) −12.7330 22.0542i −0.474861 0.822484i 0.524724 0.851272i \(-0.324168\pi\)
−0.999586 + 0.0287885i \(0.990835\pi\)
\(720\) 17.5789i 0.655127i
\(721\) −8.91847 + 5.14908i −0.332141 + 0.191762i
\(722\) 1.76314 1.01795i 0.0656174 0.0378842i
\(723\) 9.19853i 0.342097i
\(724\) 10.9359 + 18.9416i 0.406430 + 0.703957i
\(725\) −8.81176 + 15.2624i −0.327261 + 0.566832i
\(726\) 0.659576 + 0.380807i 0.0244792 + 0.0141331i
\(727\) −23.5565 −0.873663 −0.436831 0.899543i \(-0.643899\pi\)
−0.436831 + 0.899543i \(0.643899\pi\)
\(728\) −0.865519 + 1.49743i −0.0320783 + 0.0554983i
\(729\) −10.3760 −0.384297
\(730\) −0.380231 0.219526i −0.0140730 0.00812503i
\(731\) −1.23141 + 2.13286i −0.0455453 + 0.0788867i
\(732\) −5.21703 9.03616i −0.192827 0.333986i
\(733\) 6.23249i 0.230202i 0.993354 + 0.115101i \(0.0367192\pi\)
−0.993354 + 0.115101i \(0.963281\pi\)
\(734\) −0.387821 + 0.223909i −0.0143147 + 0.00826461i
\(735\) −0.851308 + 0.491503i −0.0314010 + 0.0181293i
\(736\) 7.27100i 0.268013i
\(737\) 2.45679 + 4.25528i 0.0904969 + 0.156745i
\(738\) −0.933158 + 1.61628i −0.0343500 + 0.0594960i
\(739\) 1.12339 + 0.648588i 0.0413244 + 0.0238587i 0.520520 0.853850i \(-0.325738\pi\)
−0.479195 + 0.877708i \(0.659071\pi\)
\(740\) −21.1699 −0.778221
\(741\) 2.62606 1.51444i 0.0964709 0.0556344i
\(742\) −0.165025 −0.00605825
\(743\) 5.25627 + 3.03471i 0.192834 + 0.111333i 0.593309 0.804975i \(-0.297821\pi\)
−0.400475 + 0.916308i \(0.631155\pi\)
\(744\) 0.656096 1.13639i 0.0240536 0.0416621i
\(745\) −7.82725 13.5572i −0.286768 0.496697i
\(746\) 0.422796i 0.0154797i
\(747\) −1.30749 + 0.754880i −0.0478386 + 0.0276196i
\(748\) 1.99722 1.15310i 0.0730256 0.0421613i
\(749\) 13.1244i 0.479555i
\(750\) 0.422980 + 0.732622i 0.0154450 + 0.0267516i
\(751\) −18.3023 + 31.7005i −0.667860 + 1.15677i 0.310641 + 0.950527i \(0.399456\pi\)
−0.978501 + 0.206241i \(0.933877\pi\)
\(752\) 43.3473 + 25.0266i 1.58071 + 0.912625i
\(753\) 13.1346 0.478650
\(754\) 3.07961 + 1.78003i 0.112153 + 0.0648248i
\(755\) 23.6566 0.860952
\(756\) −5.66804 3.27244i −0.206144 0.119018i
\(757\) −5.83991 + 10.1150i −0.212255 + 0.367636i −0.952420 0.304789i \(-0.901414\pi\)
0.740165 + 0.672425i \(0.234747\pi\)
\(758\) −1.50548 2.60757i −0.0546815 0.0947111i
\(759\) 1.07924i 0.0391739i
\(760\) 1.01263 0.584642i 0.0367320 0.0212072i
\(761\) −34.4408 + 19.8844i −1.24848 + 0.720810i −0.970806 0.239866i \(-0.922896\pi\)
−0.277673 + 0.960676i \(0.589563\pi\)
\(762\) 0.565394i 0.0204821i
\(763\) 5.22295 + 9.04641i 0.189083 + 0.327502i
\(764\) −5.88916 + 10.2003i −0.213062 + 0.369035i
\(765\) −12.3926 7.15490i −0.448057 0.258686i
\(766\) 2.70393 0.0976970
\(767\) −29.2245 16.8919i −1.05523 0.609930i
\(768\) −8.64915 −0.312099
\(769\) −8.62507 4.97969i −0.311028 0.179572i 0.336358 0.941734i \(-0.390805\pi\)
−0.647386 + 0.762162i \(0.724138\pi\)
\(770\) 0.0370429 0.0641602i 0.00133493 0.00231217i
\(771\) −5.94313 10.2938i −0.214036 0.370722i
\(772\) 8.33112i 0.299843i
\(773\) 11.0433 6.37588i 0.397201 0.229324i −0.288074 0.957608i \(-0.593015\pi\)
0.685276 + 0.728284i \(0.259682\pi\)
\(774\) −0.214435 + 0.123804i −0.00770769 + 0.00445004i
\(775\) 10.1006i </