Properties

Label 91.2.q.a.36.4
Level $91$
Weight $2$
Character 91.36
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
Defining polynomial: \(x^{12} - 5 x^{10} - 2 x^{9} + 15 x^{8} + 2 x^{7} - 30 x^{6} + 4 x^{5} + 60 x^{4} - 16 x^{3} - 80 x^{2} + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 36.4
Root \(-1.08105 + 0.911778i\) of defining polynomial
Character \(\chi\) \(=\) 91.36
Dual form 91.2.q.a.43.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.713220 - 0.411778i) q^{2} +(-1.33015 - 2.30388i) q^{3} +(-0.660878 + 1.14467i) q^{4} -3.16209i q^{5} +(-1.89737 - 1.09545i) q^{6} +(0.866025 + 0.500000i) q^{7} +2.73565i q^{8} +(-2.03858 + 3.53092i) q^{9} +O(q^{10})\) \(q+(0.713220 - 0.411778i) q^{2} +(-1.33015 - 2.30388i) q^{3} +(-0.660878 + 1.14467i) q^{4} -3.16209i q^{5} +(-1.89737 - 1.09545i) q^{6} +(0.866025 + 0.500000i) q^{7} +2.73565i q^{8} +(-2.03858 + 3.53092i) q^{9} +(-1.30208 - 2.25527i) q^{10} +(5.14653 - 2.97135i) q^{11} +3.51626 q^{12} +(-0.0766193 + 3.60474i) q^{13} +0.823556 q^{14} +(-7.28508 + 4.20604i) q^{15} +(-0.195274 - 0.338225i) q^{16} +(-1.34982 + 2.33796i) q^{17} +3.35776i q^{18} +(1.69485 + 0.978524i) q^{19} +(3.61956 + 2.08976i) q^{20} -2.66029i q^{21} +(2.44707 - 4.23845i) q^{22} +(-1.36471 - 2.36374i) q^{23} +(6.30261 - 3.63882i) q^{24} -4.99883 q^{25} +(1.42970 + 2.60252i) q^{26} +2.86554 q^{27} +(-1.14467 + 0.660878i) q^{28} +(2.99923 + 5.19481i) q^{29} +(-3.46391 + 5.99967i) q^{30} -1.15155i q^{31} +(-5.01684 - 2.89647i) q^{32} +(-13.6913 - 7.90465i) q^{33} +2.22331i q^{34} +(1.58105 - 2.73845i) q^{35} +(-2.69450 - 4.66701i) q^{36} +(-5.63310 + 3.25227i) q^{37} +1.61174 q^{38} +(8.40680 - 4.61830i) q^{39} +8.65038 q^{40} +(-3.23351 + 1.86687i) q^{41} +(-1.09545 - 1.89737i) q^{42} +(3.49562 - 6.05460i) q^{43} +7.85479i q^{44} +(11.1651 + 6.44617i) q^{45} +(-1.94667 - 1.12391i) q^{46} +0.456071i q^{47} +(-0.519487 + 0.899778i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-3.56527 + 2.05841i) q^{50} +7.18184 q^{51} +(-4.07561 - 2.46999i) q^{52} +0.399286 q^{53} +(2.04376 - 1.17997i) q^{54} +(-9.39568 - 16.2738i) q^{55} +(-1.36783 + 2.36914i) q^{56} -5.20632i q^{57} +(4.27822 + 2.47003i) q^{58} +(4.16200 + 2.40293i) q^{59} -11.1187i q^{60} +(0.578514 - 1.00201i) q^{61} +(-0.474182 - 0.821308i) q^{62} +(-3.53092 + 2.03858i) q^{63} -3.98971 q^{64} +(11.3985 + 0.242277i) q^{65} -13.0199 q^{66} +(-5.43793 + 3.13959i) q^{67} +(-1.78413 - 3.09021i) q^{68} +(-3.63052 + 6.28825i) q^{69} -2.60416i q^{70} +(3.90335 + 2.25360i) q^{71} +(-9.65936 - 5.57684i) q^{72} +8.30575i q^{73} +(-2.67843 + 4.63917i) q^{74} +(6.64917 + 11.5167i) q^{75} +(-2.24018 + 1.29337i) q^{76} +5.94270 q^{77} +(4.09418 - 6.75560i) q^{78} -7.91410 q^{79} +(-1.06950 + 0.617476i) q^{80} +(2.30414 + 3.99089i) q^{81} +(-1.53747 + 2.66298i) q^{82} +6.19795i q^{83} +(3.04517 + 1.75813i) q^{84} +(7.39284 + 4.26826i) q^{85} -5.75769i q^{86} +(7.97882 - 13.8197i) q^{87} +(8.12857 + 14.0791i) q^{88} +(3.08423 - 1.78068i) q^{89} +10.6176 q^{90} +(-1.86872 + 3.08348i) q^{91} +3.60762 q^{92} +(-2.65303 + 1.53173i) q^{93} +(0.187800 + 0.325279i) q^{94} +(3.09418 - 5.35928i) q^{95} +15.4109i q^{96} +(-2.96831 - 1.71375i) q^{97} +(0.713220 + 0.411778i) q^{98} +24.2293i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 18q^{6} - 4q^{9} + O(q^{10}) \) \( 12q + 4q^{4} - 18q^{6} - 4q^{9} + 12q^{10} + 6q^{11} - 4q^{12} + 4q^{13} - 8q^{14} + 6q^{15} - 8q^{16} - 4q^{17} - 12q^{20} + 6q^{22} - 12q^{23} + 12q^{24} - 20q^{25} - 42q^{26} + 12q^{27} + 8q^{29} + 8q^{30} + 36q^{32} - 30q^{33} + 6q^{35} - 10q^{36} - 42q^{37} + 4q^{38} - 4q^{39} + 92q^{40} + 30q^{41} + 4q^{42} + 2q^{43} + 12q^{46} - 2q^{48} + 6q^{49} - 18q^{50} + 52q^{51} + 2q^{52} - 44q^{53} + 12q^{54} - 6q^{55} - 12q^{56} - 12q^{58} + 18q^{59} + 14q^{61} - 4q^{62} + 12q^{63} - 52q^{64} + 60q^{65} - 52q^{66} - 24q^{67} - 8q^{68} + 4q^{69} - 24q^{71} + 60q^{72} + 6q^{74} + 46q^{75} - 18q^{76} + 8q^{77} - 10q^{78} - 56q^{79} - 72q^{80} + 2q^{81} + 14q^{82} + 18q^{84} - 48q^{85} - 2q^{87} - 14q^{88} - 12q^{89} + 24q^{90} + 14q^{91} + 24q^{92} - 18q^{93} + 4q^{94} - 22q^{95} + 6q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.713220 0.411778i 0.504323 0.291171i −0.226174 0.974087i \(-0.572622\pi\)
0.730497 + 0.682916i \(0.239288\pi\)
\(3\) −1.33015 2.30388i −0.767960 1.33015i −0.938667 0.344824i \(-0.887939\pi\)
0.170707 0.985322i \(-0.445395\pi\)
\(4\) −0.660878 + 1.14467i −0.330439 + 0.572337i
\(5\) 3.16209i 1.41413i −0.707148 0.707065i \(-0.750019\pi\)
0.707148 0.707065i \(-0.249981\pi\)
\(6\) −1.89737 1.09545i −0.774600 0.447215i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 2.73565i 0.967199i
\(9\) −2.03858 + 3.53092i −0.679526 + 1.17697i
\(10\) −1.30208 2.25527i −0.411754 0.713179i
\(11\) 5.14653 2.97135i 1.55174 0.895895i 0.553735 0.832693i \(-0.313202\pi\)
0.998001 0.0632025i \(-0.0201314\pi\)
\(12\) 3.51626 1.01506
\(13\) −0.0766193 + 3.60474i −0.0212504 + 0.999774i
\(14\) 0.823556 0.220105
\(15\) −7.28508 + 4.20604i −1.88100 + 1.08600i
\(16\) −0.195274 0.338225i −0.0488186 0.0845563i
\(17\) −1.34982 + 2.33796i −0.327380 + 0.567038i −0.981991 0.188927i \(-0.939499\pi\)
0.654611 + 0.755966i \(0.272832\pi\)
\(18\) 3.35776i 0.791433i
\(19\) 1.69485 + 0.978524i 0.388826 + 0.224489i 0.681651 0.731677i \(-0.261262\pi\)
−0.292825 + 0.956166i \(0.594595\pi\)
\(20\) 3.61956 + 2.08976i 0.809359 + 0.467284i
\(21\) 2.66029i 0.580523i
\(22\) 2.44707 4.23845i 0.521717 0.903641i
\(23\) −1.36471 2.36374i −0.284561 0.492874i 0.687941 0.725766i \(-0.258515\pi\)
−0.972503 + 0.232892i \(0.925181\pi\)
\(24\) 6.30261 3.63882i 1.28652 0.742770i
\(25\) −4.99883 −0.999766
\(26\) 1.42970 + 2.60252i 0.280388 + 0.510397i
\(27\) 2.86554 0.551474
\(28\) −1.14467 + 0.660878i −0.216323 + 0.124894i
\(29\) 2.99923 + 5.19481i 0.556942 + 0.964652i 0.997750 + 0.0670505i \(0.0213589\pi\)
−0.440807 + 0.897602i \(0.645308\pi\)
\(30\) −3.46391 + 5.99967i −0.632421 + 1.09539i
\(31\) 1.15155i 0.206824i −0.994639 0.103412i \(-0.967024\pi\)
0.994639 0.103412i \(-0.0329760\pi\)
\(32\) −5.01684 2.89647i −0.886860 0.512029i
\(33\) −13.6913 7.90465i −2.38334 1.37602i
\(34\) 2.22331i 0.381294i
\(35\) 1.58105 2.73845i 0.267246 0.462883i
\(36\) −2.69450 4.66701i −0.449083 0.777835i
\(37\) −5.63310 + 3.25227i −0.926075 + 0.534670i −0.885568 0.464509i \(-0.846231\pi\)
−0.0405072 + 0.999179i \(0.512897\pi\)
\(38\) 1.61174 0.261459
\(39\) 8.40680 4.61830i 1.34617 0.739521i
\(40\) 8.65038 1.36775
\(41\) −3.23351 + 1.86687i −0.504990 + 0.291556i −0.730772 0.682622i \(-0.760840\pi\)
0.225782 + 0.974178i \(0.427506\pi\)
\(42\) −1.09545 1.89737i −0.169032 0.292771i
\(43\) 3.49562 6.05460i 0.533078 0.923318i −0.466176 0.884692i \(-0.654369\pi\)
0.999254 0.0386258i \(-0.0122980\pi\)
\(44\) 7.85479i 1.18415i
\(45\) 11.1651 + 6.44617i 1.66439 + 0.960938i
\(46\) −1.94667 1.12391i −0.287021 0.165712i
\(47\) 0.456071i 0.0665248i 0.999447 + 0.0332624i \(0.0105897\pi\)
−0.999447 + 0.0332624i \(0.989410\pi\)
\(48\) −0.519487 + 0.899778i −0.0749815 + 0.129872i
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −3.56527 + 2.05841i −0.504205 + 0.291103i
\(51\) 7.18184 1.00566
\(52\) −4.07561 2.46999i −0.565186 0.342527i
\(53\) 0.399286 0.0548462 0.0274231 0.999624i \(-0.491270\pi\)
0.0274231 + 0.999624i \(0.491270\pi\)
\(54\) 2.04376 1.17997i 0.278121 0.160573i
\(55\) −9.39568 16.2738i −1.26691 2.19436i
\(56\) −1.36783 + 2.36914i −0.182783 + 0.316590i
\(57\) 5.20632i 0.689594i
\(58\) 4.27822 + 2.47003i 0.561758 + 0.324331i
\(59\) 4.16200 + 2.40293i 0.541846 + 0.312835i 0.745827 0.666140i \(-0.232055\pi\)
−0.203981 + 0.978975i \(0.565388\pi\)
\(60\) 11.1187i 1.43542i
\(61\) 0.578514 1.00201i 0.0740711 0.128295i −0.826611 0.562774i \(-0.809734\pi\)
0.900682 + 0.434479i \(0.143067\pi\)
\(62\) −0.474182 0.821308i −0.0602212 0.104306i
\(63\) −3.53092 + 2.03858i −0.444854 + 0.256837i
\(64\) −3.98971 −0.498714
\(65\) 11.3985 + 0.242277i 1.41381 + 0.0300508i
\(66\) −13.0199 −1.60263
\(67\) −5.43793 + 3.13959i −0.664349 + 0.383562i −0.793932 0.608007i \(-0.791969\pi\)
0.129583 + 0.991569i \(0.458636\pi\)
\(68\) −1.78413 3.09021i −0.216358 0.374743i
\(69\) −3.63052 + 6.28825i −0.437063 + 0.757016i
\(70\) 2.60416i 0.311257i
\(71\) 3.90335 + 2.25360i 0.463242 + 0.267453i 0.713406 0.700751i \(-0.247151\pi\)
−0.250165 + 0.968203i \(0.580485\pi\)
\(72\) −9.65936 5.57684i −1.13837 0.657236i
\(73\) 8.30575i 0.972115i 0.873927 + 0.486057i \(0.161565\pi\)
−0.873927 + 0.486057i \(0.838435\pi\)
\(74\) −2.67843 + 4.63917i −0.311361 + 0.539293i
\(75\) 6.64917 + 11.5167i 0.767780 + 1.32983i
\(76\) −2.24018 + 1.29337i −0.256966 + 0.148360i
\(77\) 5.94270 0.677233
\(78\) 4.09418 6.75560i 0.463575 0.764921i
\(79\) −7.91410 −0.890405 −0.445203 0.895430i \(-0.646868\pi\)
−0.445203 + 0.895430i \(0.646868\pi\)
\(80\) −1.06950 + 0.617476i −0.119574 + 0.0690359i
\(81\) 2.30414 + 3.99089i 0.256016 + 0.443432i
\(82\) −1.53747 + 2.66298i −0.169785 + 0.294077i
\(83\) 6.19795i 0.680313i 0.940369 + 0.340156i \(0.110480\pi\)
−0.940369 + 0.340156i \(0.889520\pi\)
\(84\) 3.04517 + 1.75813i 0.332255 + 0.191827i
\(85\) 7.39284 + 4.26826i 0.801866 + 0.462958i
\(86\) 5.75769i 0.620867i
\(87\) 7.97882 13.8197i 0.855419 1.48163i
\(88\) 8.12857 + 14.0791i 0.866509 + 1.50084i
\(89\) 3.08423 1.78068i 0.326928 0.188752i −0.327549 0.944834i \(-0.606222\pi\)
0.654476 + 0.756083i \(0.272889\pi\)
\(90\) 10.6176 1.11919
\(91\) −1.86872 + 3.08348i −0.195895 + 0.323237i
\(92\) 3.60762 0.376120
\(93\) −2.65303 + 1.53173i −0.275106 + 0.158833i
\(94\) 0.187800 + 0.325279i 0.0193701 + 0.0335500i
\(95\) 3.09418 5.35928i 0.317457 0.549851i
\(96\) 15.4109i 1.57287i
\(97\) −2.96831 1.71375i −0.301386 0.174005i 0.341679 0.939817i \(-0.389004\pi\)
−0.643065 + 0.765811i \(0.722338\pi\)
\(98\) 0.713220 + 0.411778i 0.0720461 + 0.0415959i
\(99\) 24.2293i 2.43513i
\(100\) 3.30361 5.72203i 0.330361 0.572203i
\(101\) −6.66474 11.5437i −0.663167 1.14864i −0.979779 0.200084i \(-0.935879\pi\)
0.316612 0.948555i \(-0.397455\pi\)
\(102\) 5.12223 2.95732i 0.507177 0.292819i
\(103\) −11.6450 −1.14741 −0.573706 0.819061i \(-0.694495\pi\)
−0.573706 + 0.819061i \(0.694495\pi\)
\(104\) −9.86130 0.209604i −0.966981 0.0205533i
\(105\) −8.41209 −0.820936
\(106\) 0.284779 0.164417i 0.0276602 0.0159696i
\(107\) −1.96483 3.40318i −0.189947 0.328998i 0.755285 0.655396i \(-0.227498\pi\)
−0.945232 + 0.326398i \(0.894165\pi\)
\(108\) −1.89377 + 3.28011i −0.182228 + 0.315629i
\(109\) 11.2533i 1.07787i 0.842346 + 0.538936i \(0.181174\pi\)
−0.842346 + 0.538936i \(0.818826\pi\)
\(110\) −13.4024 7.73787i −1.27787 0.737777i
\(111\) 14.9857 + 8.65199i 1.42238 + 0.821210i
\(112\) 0.390549i 0.0369034i
\(113\) 2.88709 5.00059i 0.271595 0.470416i −0.697676 0.716414i \(-0.745782\pi\)
0.969270 + 0.245998i \(0.0791157\pi\)
\(114\) −2.14385 3.71325i −0.200790 0.347778i
\(115\) −7.47437 + 4.31533i −0.696989 + 0.402407i
\(116\) −7.92849 −0.736142
\(117\) −12.5718 7.61907i −1.16227 0.704383i
\(118\) 3.95790 0.364354
\(119\) −2.33796 + 1.34982i −0.214320 + 0.123738i
\(120\) −11.5063 19.9294i −1.05037 1.81930i
\(121\) 12.1578 21.0580i 1.10526 1.91436i
\(122\) 0.952877i 0.0862694i
\(123\) 8.60209 + 4.96642i 0.775625 + 0.447807i
\(124\) 1.31815 + 0.761033i 0.118373 + 0.0683428i
\(125\) 0.00370455i 0.000331345i
\(126\) −1.67888 + 2.90791i −0.149567 + 0.259057i
\(127\) 3.06558 + 5.30975i 0.272027 + 0.471164i 0.969381 0.245563i \(-0.0789728\pi\)
−0.697354 + 0.716727i \(0.745639\pi\)
\(128\) 7.18812 4.15007i 0.635346 0.366817i
\(129\) −18.5988 −1.63753
\(130\) 8.22942 4.52086i 0.721767 0.396506i
\(131\) 10.2217 0.893073 0.446537 0.894765i \(-0.352657\pi\)
0.446537 + 0.894765i \(0.352657\pi\)
\(132\) 18.0965 10.4480i 1.57510 0.909383i
\(133\) 0.978524 + 1.69485i 0.0848488 + 0.146962i
\(134\) −2.58563 + 4.47844i −0.223364 + 0.386878i
\(135\) 9.06111i 0.779856i
\(136\) −6.39584 3.69264i −0.548439 0.316641i
\(137\) −17.2751 9.97376i −1.47591 0.852116i −0.476278 0.879295i \(-0.658014\pi\)
−0.999631 + 0.0271788i \(0.991348\pi\)
\(138\) 5.97987i 0.509041i
\(139\) 10.1637 17.6041i 0.862077 1.49316i −0.00784365 0.999969i \(-0.502497\pi\)
0.869921 0.493192i \(-0.164170\pi\)
\(140\) 2.08976 + 3.61956i 0.176617 + 0.305909i
\(141\) 1.05073 0.606641i 0.0884877 0.0510884i
\(142\) 3.71193 0.311498
\(143\) 10.3166 + 18.7795i 0.862718 + 1.57042i
\(144\) 1.59233 0.132694
\(145\) 16.4265 9.48383i 1.36414 0.787589i
\(146\) 3.42013 + 5.92383i 0.283052 + 0.490260i
\(147\) 1.33015 2.30388i 0.109709 0.190021i
\(148\) 8.59741i 0.706703i
\(149\) −9.28046 5.35808i −0.760285 0.438951i 0.0691132 0.997609i \(-0.477983\pi\)
−0.829398 + 0.558658i \(0.811316\pi\)
\(150\) 9.48465 + 5.47597i 0.774418 + 0.447111i
\(151\) 8.74416i 0.711590i −0.934564 0.355795i \(-0.884210\pi\)
0.934564 0.355795i \(-0.115790\pi\)
\(152\) −2.67690 + 4.63653i −0.217125 + 0.376072i
\(153\) −5.50343 9.53222i −0.444926 0.770634i
\(154\) 4.23845 2.44707i 0.341544 0.197191i
\(155\) −3.64130 −0.292476
\(156\) −0.269413 + 12.6752i −0.0215703 + 1.01483i
\(157\) 6.50734 0.519342 0.259671 0.965697i \(-0.416386\pi\)
0.259671 + 0.965697i \(0.416386\pi\)
\(158\) −5.64449 + 3.25885i −0.449052 + 0.259260i
\(159\) −0.531109 0.919907i −0.0421197 0.0729534i
\(160\) −9.15891 + 15.8637i −0.724075 + 1.25414i
\(161\) 2.72941i 0.215108i
\(162\) 3.28672 + 1.89759i 0.258229 + 0.149089i
\(163\) 2.26264 + 1.30634i 0.177224 + 0.102320i 0.585988 0.810320i \(-0.300707\pi\)
−0.408764 + 0.912640i \(0.634040\pi\)
\(164\) 4.93509i 0.385366i
\(165\) −24.9952 + 43.2930i −1.94588 + 3.37036i
\(166\) 2.55218 + 4.42050i 0.198087 + 0.343097i
\(167\) −3.36558 + 1.94312i −0.260436 + 0.150363i −0.624534 0.780998i \(-0.714711\pi\)
0.364097 + 0.931361i \(0.381378\pi\)
\(168\) 7.27763 0.561482
\(169\) −12.9883 0.552385i −0.999097 0.0424911i
\(170\) 7.03030 0.539200
\(171\) −6.91018 + 3.98959i −0.528434 + 0.305092i
\(172\) 4.62036 + 8.00270i 0.352299 + 0.610200i
\(173\) 6.98838 12.1042i 0.531317 0.920267i −0.468015 0.883720i \(-0.655031\pi\)
0.999332 0.0365470i \(-0.0116358\pi\)
\(174\) 13.1420i 0.996293i
\(175\) −4.32911 2.49941i −0.327250 0.188938i
\(176\) −2.00997 1.16046i −0.151507 0.0874727i
\(177\) 12.7850i 0.960979i
\(178\) 1.46649 2.54004i 0.109918 0.190384i
\(179\) −12.6422 21.8968i −0.944919 1.63665i −0.755914 0.654671i \(-0.772807\pi\)
−0.189005 0.981976i \(-0.560526\pi\)
\(180\) −14.7575 + 8.52026i −1.09996 + 0.635063i
\(181\) −0.864474 −0.0642559 −0.0321279 0.999484i \(-0.510228\pi\)
−0.0321279 + 0.999484i \(0.510228\pi\)
\(182\) −0.0631003 + 2.96870i −0.00467730 + 0.220055i
\(183\) −3.07803 −0.227535
\(184\) 6.46638 3.73336i 0.476708 0.275227i
\(185\) 10.2840 + 17.8124i 0.756093 + 1.30959i
\(186\) −1.26146 + 2.18492i −0.0924950 + 0.160206i
\(187\) 16.0432i 1.17319i
\(188\) −0.522052 0.301407i −0.0380746 0.0219824i
\(189\) 2.48163 + 1.43277i 0.180512 + 0.104219i
\(190\) 5.09647i 0.369737i
\(191\) −7.33382 + 12.7026i −0.530657 + 0.919125i 0.468703 + 0.883356i \(0.344721\pi\)
−0.999360 + 0.0357690i \(0.988612\pi\)
\(192\) 5.30690 + 9.19182i 0.382993 + 0.663363i
\(193\) 14.2859 8.24794i 1.02832 0.593700i 0.111816 0.993729i \(-0.464333\pi\)
0.916503 + 0.400029i \(0.131000\pi\)
\(194\) −2.82275 −0.202661
\(195\) −14.6035 26.5831i −1.04578 1.90365i
\(196\) −1.32176 −0.0944111
\(197\) 9.53510 5.50509i 0.679348 0.392222i −0.120262 0.992742i \(-0.538373\pi\)
0.799609 + 0.600521i \(0.205040\pi\)
\(198\) 9.97709 + 17.2808i 0.709041 + 1.22809i
\(199\) −10.6059 + 18.3699i −0.751829 + 1.30221i 0.195106 + 0.980782i \(0.437495\pi\)
−0.946935 + 0.321425i \(0.895838\pi\)
\(200\) 13.6751i 0.966972i
\(201\) 14.4665 + 8.35223i 1.02039 + 0.589121i
\(202\) −9.50686 5.48879i −0.668901 0.386190i
\(203\) 5.99845i 0.421009i
\(204\) −4.74632 + 8.22086i −0.332309 + 0.575576i
\(205\) 5.90322 + 10.2247i 0.412299 + 0.714122i
\(206\) −8.30542 + 4.79514i −0.578666 + 0.334093i
\(207\) 11.1282 0.773466
\(208\) 1.23417 0.677998i 0.0855746 0.0470107i
\(209\) 11.6301 0.804474
\(210\) −5.99967 + 3.46391i −0.414017 + 0.239033i
\(211\) 8.96788 + 15.5328i 0.617375 + 1.06932i 0.989963 + 0.141327i \(0.0451370\pi\)
−0.372588 + 0.927997i \(0.621530\pi\)
\(212\) −0.263879 + 0.457052i −0.0181233 + 0.0313905i
\(213\) 11.9905i 0.821572i
\(214\) −2.80271 1.61815i −0.191589 0.110614i
\(215\) −19.1452 11.0535i −1.30569 0.753842i
\(216\) 7.83913i 0.533385i
\(217\) 0.575774 0.997270i 0.0390861 0.0676991i
\(218\) 4.63387 + 8.02610i 0.313845 + 0.543596i
\(219\) 19.1355 11.0479i 1.29305 0.746545i
\(220\) 24.8376 1.67455
\(221\) −8.32431 5.04488i −0.559953 0.339356i
\(222\) 14.2508 0.956451
\(223\) −13.8834 + 8.01558i −0.929700 + 0.536763i −0.886717 0.462313i \(-0.847020\pi\)
−0.0429835 + 0.999076i \(0.513686\pi\)
\(224\) −2.89647 5.01684i −0.193529 0.335201i
\(225\) 10.1905 17.6505i 0.679366 1.17670i
\(226\) 4.75536i 0.316322i
\(227\) −14.1812 8.18751i −0.941239 0.543424i −0.0508902 0.998704i \(-0.516206\pi\)
−0.890348 + 0.455280i \(0.849539\pi\)
\(228\) 5.95954 + 3.44074i 0.394680 + 0.227869i
\(229\) 27.0104i 1.78490i 0.451148 + 0.892449i \(0.351015\pi\)
−0.451148 + 0.892449i \(0.648985\pi\)
\(230\) −3.55392 + 6.15556i −0.234338 + 0.405886i
\(231\) −7.90465 13.6913i −0.520088 0.900819i
\(232\) −14.2112 + 8.20484i −0.933011 + 0.538674i
\(233\) −11.5681 −0.757853 −0.378926 0.925427i \(-0.623707\pi\)
−0.378926 + 0.925427i \(0.623707\pi\)
\(234\) −12.1039 0.257269i −0.791254 0.0168182i
\(235\) 1.44214 0.0940747
\(236\) −5.50114 + 3.17609i −0.358094 + 0.206746i
\(237\) 10.5269 + 18.2331i 0.683796 + 1.18437i
\(238\) −1.11165 + 1.92544i −0.0720578 + 0.124808i
\(239\) 14.6731i 0.949122i −0.880223 0.474561i \(-0.842607\pi\)
0.880223 0.474561i \(-0.157393\pi\)
\(240\) 2.84518 + 1.64267i 0.183656 + 0.106034i
\(241\) 12.4246 + 7.17334i 0.800338 + 0.462076i 0.843589 0.536989i \(-0.180438\pi\)
−0.0432510 + 0.999064i \(0.513772\pi\)
\(242\) 20.0253i 1.28727i
\(243\) 10.4280 18.0618i 0.668956 1.15867i
\(244\) 0.764654 + 1.32442i 0.0489519 + 0.0847872i
\(245\) 2.73845 1.58105i 0.174953 0.101009i
\(246\) 8.18025 0.521554
\(247\) −3.65718 + 6.03453i −0.232701 + 0.383968i
\(248\) 3.15024 0.200040
\(249\) 14.2793 8.24417i 0.904916 0.522453i
\(250\) −0.00152545 0.00264216i −9.64781e−5 0.000167105i
\(251\) 4.30726 7.46040i 0.271872 0.470896i −0.697469 0.716615i \(-0.745691\pi\)
0.969341 + 0.245719i \(0.0790239\pi\)
\(252\) 5.38900i 0.339475i
\(253\) −14.0470 8.11004i −0.883128 0.509874i
\(254\) 4.37287 + 2.52468i 0.274378 + 0.158412i
\(255\) 22.7096i 1.42213i
\(256\) 7.40753 12.8302i 0.462970 0.801888i
\(257\) 5.18197 + 8.97544i 0.323243 + 0.559873i 0.981155 0.193222i \(-0.0618936\pi\)
−0.657912 + 0.753094i \(0.728560\pi\)
\(258\) −13.2650 + 7.65856i −0.825844 + 0.476801i
\(259\) −6.50454 −0.404172
\(260\) −7.81035 + 12.8875i −0.484377 + 0.799247i
\(261\) −24.4566 −1.51383
\(262\) 7.29032 4.20907i 0.450397 0.260037i
\(263\) 11.0413 + 19.1241i 0.680835 + 1.17924i 0.974726 + 0.223403i \(0.0717165\pi\)
−0.293891 + 0.955839i \(0.594950\pi\)
\(264\) 21.6244 37.4545i 1.33089 2.30517i
\(265\) 1.26258i 0.0775596i
\(266\) 1.39581 + 0.805869i 0.0855824 + 0.0494110i
\(267\) −8.20495 4.73713i −0.502135 0.289908i
\(268\) 8.29954i 0.506975i
\(269\) −6.46995 + 11.2063i −0.394480 + 0.683259i −0.993035 0.117823i \(-0.962409\pi\)
0.598555 + 0.801082i \(0.295742\pi\)
\(270\) −3.73117 6.46257i −0.227072 0.393299i
\(271\) −15.3069 + 8.83745i −0.929829 + 0.536837i −0.886757 0.462235i \(-0.847048\pi\)
−0.0430712 + 0.999072i \(0.513714\pi\)
\(272\) 1.05434 0.0639289
\(273\) 9.58965 + 0.203830i 0.580392 + 0.0123363i
\(274\) −16.4279 −0.992446
\(275\) −25.7266 + 14.8533i −1.55137 + 0.895685i
\(276\) −4.79866 8.31152i −0.288845 0.500295i
\(277\) −9.00751 + 15.6015i −0.541209 + 0.937401i 0.457626 + 0.889145i \(0.348700\pi\)
−0.998835 + 0.0482562i \(0.984634\pi\)
\(278\) 16.7408i 1.00405i
\(279\) 4.06602 + 2.34752i 0.243426 + 0.140542i
\(280\) 7.49145 + 4.32519i 0.447700 + 0.258480i
\(281\) 2.44178i 0.145665i 0.997344 + 0.0728323i \(0.0232038\pi\)
−0.997344 + 0.0728323i \(0.976796\pi\)
\(282\) 0.499603 0.865337i 0.0297509 0.0515301i
\(283\) −14.3620 24.8757i −0.853732 1.47871i −0.877817 0.478996i \(-0.841001\pi\)
0.0240853 0.999710i \(-0.492333\pi\)
\(284\) −5.15927 + 2.97871i −0.306146 + 0.176754i
\(285\) −16.4629 −0.975176
\(286\) 15.0910 + 9.14580i 0.892350 + 0.540802i
\(287\) −3.73374 −0.220396
\(288\) 20.4544 11.8094i 1.20529 0.695873i
\(289\) 4.85596 + 8.41078i 0.285645 + 0.494752i
\(290\) 7.81046 13.5281i 0.458646 0.794399i
\(291\) 9.11818i 0.534517i
\(292\) −9.50738 5.48909i −0.556377 0.321225i
\(293\) 25.4013 + 14.6654i 1.48396 + 0.856763i 0.999834 0.0182359i \(-0.00580499\pi\)
0.484124 + 0.874999i \(0.339138\pi\)
\(294\) 2.19090i 0.127776i
\(295\) 7.59829 13.1606i 0.442390 0.766241i
\(296\) −8.89708 15.4102i −0.517132 0.895699i
\(297\) 14.7476 8.51453i 0.855742 0.494063i
\(298\) −8.82535 −0.511239
\(299\) 8.62523 4.73830i 0.498810 0.274023i
\(300\) −17.5772 −1.01482
\(301\) 6.05460 3.49562i 0.348981 0.201484i
\(302\) −3.60065 6.23651i −0.207194 0.358871i
\(303\) −17.7302 + 30.7096i −1.01857 + 1.76422i
\(304\) 0.764323i 0.0438369i
\(305\) −3.16846 1.82931i −0.181426 0.104746i
\(306\) −7.85032 4.53238i −0.448773 0.259099i
\(307\) 7.06910i 0.403455i −0.979442 0.201728i \(-0.935344\pi\)
0.979442 0.201728i \(-0.0646555\pi\)
\(308\) −3.92740 + 6.80245i −0.223784 + 0.387606i
\(309\) 15.4895 + 26.8286i 0.881166 + 1.52623i
\(310\) −2.59705 + 1.49941i −0.147503 + 0.0851607i
\(311\) 22.2686 1.26274 0.631368 0.775483i \(-0.282494\pi\)
0.631368 + 0.775483i \(0.282494\pi\)
\(312\) 12.6341 + 22.9981i 0.715264 + 1.30201i
\(313\) −28.0840 −1.58740 −0.793700 0.608309i \(-0.791848\pi\)
−0.793700 + 0.608309i \(0.791848\pi\)
\(314\) 4.64117 2.67958i 0.261916 0.151217i
\(315\) 6.44617 + 11.1651i 0.363200 + 0.629082i
\(316\) 5.23025 9.05906i 0.294225 0.509612i
\(317\) 19.5155i 1.09610i −0.836446 0.548049i \(-0.815371\pi\)
0.836446 0.548049i \(-0.184629\pi\)
\(318\) −0.757595 0.437398i −0.0424838 0.0245281i
\(319\) 30.8712 + 17.8235i 1.72845 + 0.997924i
\(320\) 12.6158i 0.705247i
\(321\) −5.22702 + 9.05346i −0.291744 + 0.505315i
\(322\) −1.12391 1.94667i −0.0626332 0.108484i
\(323\) −4.57550 + 2.64167i −0.254588 + 0.146986i
\(324\) −6.09102 −0.338390
\(325\) 0.383007 18.0195i 0.0212454 0.999540i
\(326\) 2.15168 0.119171
\(327\) 25.9263 14.9686i 1.43373 0.827764i
\(328\) −5.10711 8.84577i −0.281993 0.488426i
\(329\) −0.228035 + 0.394969i −0.0125720 + 0.0217753i
\(330\) 41.1700i 2.26633i
\(331\) 13.5367 + 7.81539i 0.744042 + 0.429573i 0.823537 0.567263i \(-0.191998\pi\)
−0.0794953 + 0.996835i \(0.525331\pi\)
\(332\) −7.09463 4.09609i −0.389368 0.224802i
\(333\) 26.5200i 1.45329i
\(334\) −1.60027 + 2.77174i −0.0875627 + 0.151663i
\(335\) 9.92767 + 17.1952i 0.542407 + 0.939476i
\(336\) −0.899778 + 0.519487i −0.0490869 + 0.0283403i
\(337\) 21.7501 1.18480 0.592401 0.805643i \(-0.298180\pi\)
0.592401 + 0.805643i \(0.298180\pi\)
\(338\) −9.49095 + 4.95431i −0.516240 + 0.269479i
\(339\) −15.3610 −0.834295
\(340\) −9.77153 + 5.64160i −0.529936 + 0.305959i
\(341\) −3.42165 5.92647i −0.185293 0.320937i
\(342\) −3.28565 + 5.69092i −0.177668 + 0.307730i
\(343\) 1.00000i 0.0539949i
\(344\) 16.5633 + 9.56281i 0.893032 + 0.515592i
\(345\) 19.8840 + 11.4800i 1.07052 + 0.618065i
\(346\) 11.5106i 0.618816i
\(347\) 7.97952 13.8209i 0.428363 0.741946i −0.568365 0.822777i \(-0.692424\pi\)
0.996728 + 0.0808303i \(0.0257572\pi\)
\(348\) 10.5460 + 18.2663i 0.565327 + 0.979176i
\(349\) 5.90375 3.40853i 0.316021 0.182455i −0.333597 0.942716i \(-0.608262\pi\)
0.649617 + 0.760261i \(0.274929\pi\)
\(350\) −4.11682 −0.220053
\(351\) −0.219556 + 10.3295i −0.0117190 + 0.551349i
\(352\) −34.4257 −1.83490
\(353\) 12.1272 7.00163i 0.645465 0.372659i −0.141252 0.989974i \(-0.545113\pi\)
0.786716 + 0.617314i \(0.211779\pi\)
\(354\) −5.26458 9.11852i −0.279809 0.484644i
\(355\) 7.12608 12.3427i 0.378213 0.655085i
\(356\) 4.70725i 0.249484i
\(357\) 6.21965 + 3.59092i 0.329179 + 0.190052i
\(358\) −18.0333 10.4115i −0.953088 0.550266i
\(359\) 5.41494i 0.285789i 0.989738 + 0.142895i \(0.0456410\pi\)
−0.989738 + 0.142895i \(0.954359\pi\)
\(360\) −17.6345 + 30.5438i −0.929418 + 1.60980i
\(361\) −7.58498 13.1376i −0.399210 0.691451i
\(362\) −0.616561 + 0.355972i −0.0324057 + 0.0187094i
\(363\) −64.6867 −3.39517
\(364\) −2.29459 4.17688i −0.120269 0.218928i
\(365\) 26.2636 1.37470
\(366\) −2.19531 + 1.26747i −0.114751 + 0.0662515i
\(367\) −15.0159 26.0083i −0.783822 1.35762i −0.929700 0.368317i \(-0.879934\pi\)
0.145878 0.989303i \(-0.453399\pi\)
\(368\) −0.532985 + 0.923157i −0.0277838 + 0.0481229i
\(369\) 15.2230i 0.792480i
\(370\) 14.6695 + 8.46943i 0.762630 + 0.440305i
\(371\) 0.345792 + 0.199643i 0.0179526 + 0.0103649i
\(372\) 4.04914i 0.209938i
\(373\) −10.7049 + 18.5414i −0.554278 + 0.960037i 0.443682 + 0.896184i \(0.353672\pi\)
−0.997959 + 0.0638526i \(0.979661\pi\)
\(374\) 6.60622 + 11.4423i 0.341599 + 0.591668i
\(375\) −0.00853484 + 0.00492759i −0.000440737 + 0.000254460i
\(376\) −1.24765 −0.0643427
\(377\) −18.9557 + 10.4134i −0.976270 + 0.536317i
\(378\) 2.35994 0.121382
\(379\) −8.20693 + 4.73827i −0.421562 + 0.243389i −0.695745 0.718289i \(-0.744926\pi\)
0.274184 + 0.961677i \(0.411592\pi\)
\(380\) 4.08975 + 7.08366i 0.209800 + 0.363384i
\(381\) 8.15535 14.1255i 0.417811 0.723670i
\(382\) 12.0796i 0.618048i
\(383\) −4.70304 2.71530i −0.240314 0.138746i 0.375007 0.927022i \(-0.377640\pi\)
−0.615321 + 0.788277i \(0.710974\pi\)
\(384\) −19.1225 11.0404i −0.975842 0.563402i
\(385\) 18.7914i 0.957696i
\(386\) 6.79264 11.7652i 0.345736 0.598833i
\(387\) 14.2522 + 24.6855i 0.724480 + 1.25484i
\(388\) 3.92338 2.26516i 0.199179 0.114996i
\(389\) 10.6422 0.539580 0.269790 0.962919i \(-0.413046\pi\)
0.269790 + 0.962919i \(0.413046\pi\)
\(390\) −21.3618 12.9462i −1.08170 0.655556i
\(391\) 7.36845 0.372638
\(392\) −2.36914 + 1.36783i −0.119660 + 0.0690856i
\(393\) −13.5963 23.5495i −0.685845 1.18792i
\(394\) 4.53375 7.85269i 0.228407 0.395613i
\(395\) 25.0251i 1.25915i
\(396\) −27.7346 16.0126i −1.39372 0.804663i
\(397\) 32.2035 + 18.5927i 1.61625 + 0.933140i 0.987879 + 0.155223i \(0.0496097\pi\)
0.628367 + 0.777917i \(0.283724\pi\)
\(398\) 17.4690i 0.875644i
\(399\) 2.60316 4.50880i 0.130321 0.225723i
\(400\) 0.976143 + 1.69073i 0.0488072 + 0.0845365i
\(401\) −0.776487 + 0.448305i −0.0387759 + 0.0223873i −0.519263 0.854615i \(-0.673793\pi\)
0.480487 + 0.877002i \(0.340460\pi\)
\(402\) 13.7571 0.686139
\(403\) 4.15103 + 0.0882308i 0.206777 + 0.00439509i
\(404\) 17.6183 0.876545
\(405\) 12.6196 7.28590i 0.627071 0.362039i
\(406\) 2.47003 + 4.27822i 0.122586 + 0.212324i
\(407\) −19.3273 + 33.4758i −0.958016 + 1.65933i
\(408\) 19.6470i 0.972672i
\(409\) 21.2846 + 12.2886i 1.05245 + 0.607635i 0.923335 0.383995i \(-0.125452\pi\)
0.129119 + 0.991629i \(0.458785\pi\)
\(410\) 8.42059 + 4.86163i 0.415863 + 0.240099i
\(411\) 53.0662i 2.61756i
\(412\) 7.69589 13.3297i 0.379149 0.656706i
\(413\) 2.40293 + 4.16200i 0.118241 + 0.204799i
\(414\) 7.93689 4.58237i 0.390077 0.225211i
\(415\) 19.5985 0.962052
\(416\) 10.8254 17.8624i 0.530759 0.875778i
\(417\) −54.0770 −2.64816
\(418\) 8.29486 4.78904i 0.405715 0.234239i
\(419\) 3.82279 + 6.62126i 0.186755 + 0.323470i 0.944167 0.329468i \(-0.106869\pi\)
−0.757411 + 0.652938i \(0.773536\pi\)
\(420\) 5.55936 9.62910i 0.271269 0.469852i
\(421\) 25.0780i 1.22223i 0.791544 + 0.611113i \(0.209278\pi\)
−0.791544 + 0.611113i \(0.790722\pi\)
\(422\) 12.7922 + 7.38555i 0.622712 + 0.359523i
\(423\) −1.61035 0.929736i −0.0782979 0.0452053i
\(424\) 1.09231i 0.0530471i
\(425\) 6.74753 11.6871i 0.327303 0.566906i
\(426\) −4.93741 8.55184i −0.239218 0.414338i
\(427\) 1.00201 0.578514i 0.0484909 0.0279962i
\(428\) 5.19405 0.251064
\(429\) 29.5432 48.7478i 1.42636 2.35356i
\(430\) −18.2063 −0.877987
\(431\) 6.71520 3.87702i 0.323460 0.186750i −0.329474 0.944165i \(-0.606871\pi\)
0.652934 + 0.757415i \(0.273538\pi\)
\(432\) −0.559567 0.969199i −0.0269222 0.0466306i
\(433\) 17.9880 31.1561i 0.864448 1.49727i −0.00314644 0.999995i \(-0.501002\pi\)
0.867594 0.497273i \(-0.165665\pi\)
\(434\) 0.948365i 0.0455230i
\(435\) −43.6992 25.2298i −2.09522 1.20967i
\(436\) −12.8814 7.43707i −0.616907 0.356171i
\(437\) 5.34160i 0.255523i
\(438\) 9.09853 15.7591i 0.434745 0.753000i
\(439\) −14.1175 24.4523i −0.673792 1.16704i −0.976820 0.214061i \(-0.931331\pi\)
0.303028 0.952982i \(-0.402002\pi\)
\(440\) 44.5194 25.7033i 2.12238 1.22536i
\(441\) −4.07715 −0.194150
\(442\) −8.01444 0.170348i −0.381208 0.00810264i
\(443\) 28.7918 1.36794 0.683970 0.729511i \(-0.260252\pi\)
0.683970 + 0.729511i \(0.260252\pi\)
\(444\) −19.8074 + 11.4358i −0.940018 + 0.542720i
\(445\) −5.63068 9.75262i −0.266920 0.462319i
\(446\) −6.60128 + 11.4337i −0.312579 + 0.541404i
\(447\) 28.5081i 1.34839i
\(448\) −3.45519 1.99486i −0.163243 0.0942481i
\(449\) −25.2795 14.5951i −1.19301 0.688785i −0.234023 0.972231i \(-0.575189\pi\)
−0.958988 + 0.283446i \(0.908522\pi\)
\(450\) 16.7849i 0.791247i
\(451\) −11.0942 + 19.2158i −0.522408 + 0.904836i
\(452\) 3.81603 + 6.60955i 0.179491 + 0.310887i
\(453\) −20.1455 + 11.6310i −0.946518 + 0.546473i
\(454\) −13.4858 −0.632918
\(455\) 9.75026 + 5.90907i 0.457099 + 0.277022i
\(456\) 14.2427 0.666974
\(457\) −27.4399 + 15.8424i −1.28358 + 0.741077i −0.977501 0.210929i \(-0.932351\pi\)
−0.306081 + 0.952006i \(0.599018\pi\)
\(458\) 11.1223 + 19.2644i 0.519711 + 0.900165i
\(459\) −3.86797 + 6.69952i −0.180541 + 0.312707i
\(460\) 11.4076i 0.531883i
\(461\) −19.1407 11.0509i −0.891471 0.514691i −0.0170480 0.999855i \(-0.505427\pi\)
−0.874424 + 0.485163i \(0.838760\pi\)
\(462\) −11.2755 6.50993i −0.524585 0.302869i
\(463\) 38.8811i 1.80696i −0.428632 0.903479i \(-0.641004\pi\)
0.428632 0.903479i \(-0.358996\pi\)
\(464\) 1.17134 2.02883i 0.0543783 0.0941860i
\(465\) 4.84346 + 8.38913i 0.224610 + 0.389036i
\(466\) −8.25062 + 4.76350i −0.382202 + 0.220665i
\(467\) −13.2823 −0.614632 −0.307316 0.951607i \(-0.599431\pi\)
−0.307316 + 0.951607i \(0.599431\pi\)
\(468\) 17.0298 9.35538i 0.787203 0.432453i
\(469\) −6.27918 −0.289946
\(470\) 1.02856 0.593841i 0.0474440 0.0273918i
\(471\) −8.65571 14.9921i −0.398834 0.690801i
\(472\) −6.57358 + 11.3858i −0.302574 + 0.524073i
\(473\) 41.5469i 1.91033i
\(474\) 15.0160 + 8.66949i 0.689708 + 0.398203i
\(475\) −8.47228 4.89147i −0.388735 0.224436i
\(476\) 3.56827i 0.163551i
\(477\) −0.813975 + 1.40985i −0.0372694 + 0.0645524i
\(478\) −6.04205 10.4651i −0.276357 0.478664i
\(479\) 5.74618 3.31756i 0.262550 0.151583i −0.362947 0.931810i \(-0.618230\pi\)
0.625497 + 0.780226i \(0.284896\pi\)
\(480\) 48.7307 2.22424
\(481\) −11.2920 20.5550i −0.514870 0.937228i
\(482\) 11.8153 0.538172
\(483\) −6.28825 + 3.63052i −0.286125 + 0.165194i
\(484\) 16.0697 + 27.8335i 0.730439 + 1.26516i
\(485\) −5.41905 + 9.38607i −0.246066 + 0.426200i
\(486\) 17.1761i 0.779123i
\(487\) 28.9860 + 16.7351i 1.31348 + 0.758338i 0.982671 0.185359i \(-0.0593449\pi\)
0.330809 + 0.943698i \(0.392678\pi\)
\(488\) 2.74116 + 1.58261i 0.124087 + 0.0716415i
\(489\) 6.95047i 0.314311i
\(490\) 1.30208 2.25527i 0.0588220 0.101883i
\(491\) −18.6643 32.3276i −0.842310 1.45892i −0.887937 0.459966i \(-0.847862\pi\)
0.0456264 0.998959i \(-0.485472\pi\)
\(492\) −11.3699 + 6.56439i −0.512593 + 0.295946i
\(493\) −16.1937 −0.729327
\(494\) −0.123490 + 5.80989i −0.00555609 + 0.261399i
\(495\) 76.6152 3.44360
\(496\) −0.389483 + 0.224868i −0.0174883 + 0.0100969i
\(497\) 2.25360 + 3.90335i 0.101088 + 0.175089i
\(498\) 6.78954 11.7598i 0.304246 0.526970i
\(499\) 34.1327i 1.52799i −0.645223 0.763994i \(-0.723236\pi\)
0.645223 0.763994i \(-0.276764\pi\)
\(500\) 0.00424050 + 0.00244826i 0.000189641 + 0.000109489i
\(501\) 8.95342 + 5.16926i 0.400009 + 0.230946i
\(502\) 7.09454i 0.316645i
\(503\) −7.65447 + 13.2579i −0.341296 + 0.591142i −0.984674 0.174407i \(-0.944199\pi\)
0.643378 + 0.765549i \(0.277533\pi\)
\(504\) −5.57684 9.65936i −0.248412 0.430262i
\(505\) −36.5022 + 21.0745i −1.62433 + 0.937805i
\(506\) −13.3581 −0.593842
\(507\) 16.0037 + 30.6581i 0.710747 + 1.36158i
\(508\) −8.10390 −0.359553
\(509\) −16.0189 + 9.24851i −0.710025 + 0.409933i −0.811070 0.584949i \(-0.801115\pi\)
0.101046 + 0.994882i \(0.467781\pi\)
\(510\) −9.35133 16.1970i −0.414084 0.717214i
\(511\) −4.15288 + 7.19299i −0.183712 + 0.318199i
\(512\) 4.39924i 0.194421i
\(513\) 4.85668 + 2.80400i 0.214427 + 0.123800i
\(514\) 7.39178 + 4.26765i 0.326037 + 0.188238i
\(515\) 36.8224i 1.62259i
\(516\) 12.2915 21.2895i 0.541104 0.937219i
\(517\) 1.35515 + 2.34718i 0.0595992 + 0.103229i
\(518\) −4.63917 + 2.67843i −0.203833 + 0.117683i
\(519\) −37.1823 −1.63212
\(520\) −0.662786 + 31.1824i −0.0290651 + 1.36744i
\(521\) 23.5865 1.03334 0.516671 0.856184i \(-0.327171\pi\)
0.516671 + 0.856184i \(0.327171\pi\)
\(522\) −17.4430 + 10.0707i −0.763457 + 0.440782i
\(523\) −6.15294 10.6572i −0.269049 0.466007i 0.699567 0.714567i \(-0.253376\pi\)
−0.968617 + 0.248560i \(0.920043\pi\)
\(524\) −6.75529 + 11.7005i −0.295106 + 0.511139i
\(525\) 13.2983i 0.580387i
\(526\) 15.7498 + 9.09312i 0.686722 + 0.396479i
\(527\) 2.69227 + 1.55438i 0.117277 + 0.0677101i
\(528\) 6.17431i 0.268702i
\(529\) 7.77515 13.4670i 0.338050 0.585520i
\(530\) −0.519902 0.900497i −0.0225831 0.0391151i
\(531\) −16.9691 + 9.79712i −0.736397 + 0.425159i
\(532\) −2.58674 −0.112149
\(533\) −6.48183 11.7990i −0.280759 0.511072i
\(534\) −7.80259 −0.337651
\(535\) −10.7612 + 6.21297i −0.465246 + 0.268610i
\(536\) −8.58883 14.8763i −0.370981 0.642558i
\(537\) −33.6318 + 58.2520i −1.45132 + 2.51376i
\(538\) 10.6567i 0.459444i
\(539\) 5.14653 + 2.97135i 0.221677 + 0.127985i
\(540\) 10.3720 + 5.98829i 0.446341 + 0.257695i
\(541\) 19.4411i 0.835838i 0.908484 + 0.417919i \(0.137240\pi\)
−0.908484 + 0.417919i \(0.862760\pi\)
\(542\) −7.27813 + 12.6061i −0.312623 + 0.541478i
\(543\) 1.14988 + 1.99165i 0.0493460 + 0.0854697i
\(544\) 13.5437 7.81944i 0.580680 0.335256i
\(545\) 35.5841 1.52425
\(546\) 6.92347 3.80343i 0.296297 0.162772i
\(547\) 40.2163 1.71953 0.859763 0.510693i \(-0.170611\pi\)
0.859763 + 0.510693i \(0.170611\pi\)
\(548\) 22.8334 13.1829i 0.975395 0.563145i
\(549\) 2.35869 + 4.08537i 0.100666 + 0.174359i
\(550\) −12.2325 + 21.1873i −0.521595 + 0.903429i
\(551\) 11.7393i 0.500109i
\(552\) −17.2024 9.93184i −0.732185 0.422727i
\(553\) −6.85381 3.95705i −0.291454 0.168271i
\(554\) 14.8364i 0.630337i
\(555\) 27.3584 47.3861i 1.16130 2.01143i
\(556\) 13.4340 + 23.2683i 0.569727 + 0.986797i
\(557\) 6.89702 3.98199i 0.292236 0.168722i −0.346714 0.937971i \(-0.612703\pi\)
0.638950 + 0.769248i \(0.279369\pi\)
\(558\) 3.86663 0.163687
\(559\) 21.5574 + 13.0647i 0.911781 + 0.552578i
\(560\) −1.23495 −0.0521862
\(561\) 36.9615 21.3397i 1.56052 0.900965i
\(562\) 1.00547 + 1.74153i 0.0424133 + 0.0734620i
\(563\) −0.711981 + 1.23319i −0.0300064 + 0.0519726i −0.880639 0.473789i \(-0.842886\pi\)
0.850632 + 0.525761i \(0.176219\pi\)
\(564\) 1.60366i 0.0675263i
\(565\) −15.8123 9.12924i −0.665229 0.384070i
\(566\) −20.4865 11.8279i −0.861113 0.497164i
\(567\) 4.60828i 0.193530i
\(568\) −6.16506 + 10.6782i −0.258680 + 0.448047i
\(569\) −9.25946 16.0379i −0.388177 0.672342i 0.604028 0.796963i \(-0.293562\pi\)
−0.992204 + 0.124622i \(0.960228\pi\)
\(570\) −11.7417 + 6.77904i −0.491804 + 0.283943i
\(571\) −4.35766 −0.182362 −0.0911812 0.995834i \(-0.529064\pi\)
−0.0911812 + 0.995834i \(0.529064\pi\)
\(572\) −28.3145 0.601828i −1.18389 0.0251637i
\(573\) 39.0202 1.63009
\(574\) −2.66298 + 1.53747i −0.111151 + 0.0641729i
\(575\) 6.82194 + 11.8159i 0.284494 + 0.492759i
\(576\) 8.13334 14.0874i 0.338889 0.586973i
\(577\) 9.56416i 0.398161i 0.979983 + 0.199081i \(0.0637955\pi\)
−0.979983 + 0.199081i \(0.936204\pi\)
\(578\) 6.92674 + 3.99916i 0.288115 + 0.166343i
\(579\) −38.0046 21.9419i −1.57942 0.911876i
\(580\) 25.0706i 1.04100i
\(581\) −3.09897 + 5.36758i −0.128567 + 0.222685i
\(582\) 3.75466 + 6.50327i 0.155636 + 0.269569i
\(583\) 2.05494 1.18642i 0.0851068 0.0491364i
\(584\) −22.7216 −0.940228
\(585\) −24.0922 + 39.7533i −0.996090 + 1.64360i
\(586\) 24.1556 0.997859
\(587\) −2.04428 + 1.18027i −0.0843765 + 0.0487148i −0.541595 0.840640i \(-0.682179\pi\)
0.457218 + 0.889355i \(0.348846\pi\)
\(588\) 1.75813 + 3.04517i 0.0725040 + 0.125581i
\(589\) 1.12682 1.95171i 0.0464297 0.0804186i
\(590\) 12.5152i 0.515244i
\(591\) −25.3661 14.6452i −1.04342 0.602421i
\(592\) 2.20000 + 1.27017i 0.0904194 + 0.0522037i
\(593\) 40.4292i 1.66023i 0.557594 + 0.830114i \(0.311725\pi\)
−0.557594 + 0.830114i \(0.688275\pi\)
\(594\) 7.01219 12.1455i 0.287714 0.498335i
\(595\) 4.26826 + 7.39284i 0.174982 + 0.303077i
\(596\) 12.2665 7.08207i 0.502455 0.290093i
\(597\) 56.4294 2.30950
\(598\) 4.20056 6.93114i 0.171774 0.283435i
\(599\) −38.5873 −1.57663 −0.788316 0.615270i \(-0.789047\pi\)
−0.788316 + 0.615270i \(0.789047\pi\)
\(600\) −31.5057 + 18.1898i −1.28621 + 0.742596i
\(601\) −4.08115 7.06877i −0.166474 0.288341i 0.770704 0.637193i \(-0.219905\pi\)
−0.937178 + 0.348852i \(0.886571\pi\)
\(602\) 2.87884 4.98630i 0.117333 0.203226i
\(603\) 25.6012i 1.04256i
\(604\) 10.0092 + 5.77882i 0.407269 + 0.235137i
\(605\) −66.5872 38.4442i −2.70716 1.56298i
\(606\) 29.2036i 1.18631i
\(607\) −3.79263 + 6.56902i −0.153938 + 0.266628i −0.932672 0.360726i \(-0.882529\pi\)
0.778734 + 0.627354i \(0.215862\pi\)
\(608\) −5.66853 9.81819i −0.229889 0.398180i
\(609\) 13.8197 7.97882i 0.560003 0.323318i
\(610\) −3.01308 −0.121996
\(611\) −1.64402 0.0349438i −0.0665098 0.00141368i
\(612\) 14.5484 0.588083
\(613\) −13.4908 + 7.78892i −0.544889 + 0.314592i −0.747058 0.664759i \(-0.768534\pi\)
0.202169 + 0.979351i \(0.435201\pi\)
\(614\) −2.91090 5.04183i −0.117474 0.203472i
\(615\) 15.7043 27.2006i 0.633258 1.09683i
\(616\) 16.2571i 0.655019i
\(617\) 20.6709 + 11.9343i 0.832177 + 0.480458i 0.854598 0.519291i \(-0.173804\pi\)
−0.0224202 + 0.999749i \(0.507137\pi\)
\(618\) 22.0948 + 12.7565i 0.888785 + 0.513140i
\(619\) 19.4963i 0.783622i −0.920046 0.391811i \(-0.871849\pi\)
0.920046 0.391811i \(-0.128151\pi\)
\(620\) 2.40646 4.16810i 0.0966456 0.167395i
\(621\) −3.91063 6.77341i −0.156928 0.271807i
\(622\) 15.8824 9.16972i 0.636827 0.367672i
\(623\) 3.56136 0.142683
\(624\) −3.20366 1.94155i −0.128249 0.0777244i
\(625\) −25.0059 −1.00023
\(626\) −20.0301 + 11.5644i −0.800562 + 0.462205i
\(627\) −15.4698 26.7945i −0.617804 1.07007i
\(628\) −4.30055 + 7.44878i −0.171611 + 0.297239i
\(629\) 17.5599i 0.700161i
\(630\) 9.19508 + 5.30878i 0.366341 + 0.211507i
\(631\) −22.2239 12.8309i −0.884718 0.510792i −0.0125066 0.999922i \(-0.503981\pi\)
−0.872211 + 0.489130i \(0.837314\pi\)
\(632\) 21.6502i 0.861199i
\(633\) 23.8572 41.3219i 0.948238 1.64240i
\(634\) −8.03604 13.9188i −0.319152 0.552788i
\(635\) 16.7899 9.69366i 0.666287 0.384681i
\(636\) 1.40399 0.0556719
\(637\) −3.16010 + 1.73601i −0.125208 + 0.0687834i
\(638\) 29.3573 1.16227
\(639\) −15.9145 + 9.18826i −0.629569 + 0.363482i
\(640\) −13.1229 22.7295i −0.518728 0.898463i
\(641\) −0.553020 + 0.957859i −0.0218430 + 0.0378332i −0.876740 0.480964i \(-0.840287\pi\)
0.854897 + 0.518797i \(0.173620\pi\)
\(642\) 8.60949i 0.339789i
\(643\) 10.9437 + 6.31833i 0.431576 + 0.249171i 0.700018 0.714125i \(-0.253175\pi\)
−0.268442 + 0.963296i \(0.586509\pi\)
\(644\) 3.12429 + 1.80381i 0.123114 + 0.0710801i
\(645\) 58.8110i 2.31568i
\(646\) −2.17556 + 3.76818i −0.0855962 + 0.148257i
\(647\) 12.8574 + 22.2697i 0.505477 + 0.875512i 0.999980 + 0.00633579i \(0.00201676\pi\)
−0.494503 + 0.869176i \(0.664650\pi\)
\(648\) −10.9177 + 6.30332i −0.428887 + 0.247618i
\(649\) 28.5598 1.12107
\(650\) −7.14685 13.0096i −0.280323 0.510277i
\(651\) −3.06345 −0.120066
\(652\) −2.99066 + 1.72666i −0.117123 + 0.0676211i
\(653\) −12.6303 21.8764i −0.494263 0.856089i 0.505715 0.862701i \(-0.331229\pi\)
−0.999978 + 0.00661158i \(0.997895\pi\)
\(654\) 12.3275 21.3518i 0.482041 0.834920i
\(655\) 32.3219i 1.26292i
\(656\) 1.26285 + 0.729104i 0.0493058 + 0.0284667i
\(657\) −29.3269 16.9319i −1.14415 0.660577i
\(658\) 0.375600i 0.0146424i
\(659\) −11.4882 + 19.8982i −0.447517 + 0.775123i −0.998224 0.0595764i \(-0.981025\pi\)
0.550707 + 0.834699i \(0.314358\pi\)
\(660\) −33.0376 57.2228i −1.28599 2.22739i
\(661\) 26.3554 15.2163i 1.02511 0.591845i 0.109528 0.993984i \(-0.465066\pi\)
0.915579 + 0.402138i \(0.131733\pi\)
\(662\) 12.8728 0.500316
\(663\) −0.550267 + 25.8886i −0.0213706 + 1.00543i
\(664\) −16.9554 −0.657998
\(665\) 5.35928 3.09418i 0.207824 0.119987i
\(666\) −10.9204 18.9146i −0.423155 0.732926i
\(667\) 8.18613 14.1788i 0.316968 0.549005i
\(668\) 5.13665i 0.198743i
\(669\) 36.9339 + 21.3238i 1.42795 + 0.824425i
\(670\) 14.1612 + 8.17600i 0.547096 + 0.315866i
\(671\) 6.87586i 0.265440i
\(672\) −7.70546 + 13.3462i −0.297245 + 0.514843i
\(673\) 5.41933 + 9.38656i 0.208900 + 0.361825i 0.951368 0.308056i \(-0.0996784\pi\)
−0.742468 + 0.669881i \(0.766345\pi\)
\(674\) 15.5126 8.95620i 0.597523 0.344980i
\(675\) −14.3244 −0.551345
\(676\) 9.21595 14.5023i 0.354460 0.557779i
\(677\) −18.1209 −0.696442 −0.348221 0.937412i \(-0.613214\pi\)
−0.348221 + 0.937412i \(0.613214\pi\)
\(678\) −10.9558 + 6.32532i −0.420754 + 0.242923i
\(679\) −1.71375 2.96831i −0.0657679 0.113913i
\(680\) −11.6765 + 20.2242i −0.447772 + 0.775564i
\(681\) 43.5624i 1.66931i
\(682\) −4.88078 2.81792i −0.186895 0.107904i
\(683\) 32.7662 + 18.9176i 1.25376 + 0.723861i 0.971855 0.235580i \(-0.0756990\pi\)
0.281909 + 0.959441i \(0.409032\pi\)
\(684\) 10.5465i 0.403257i
\(685\) −31.5380 + 54.6254i −1.20500 + 2.08713i
\(686\) 0.411778 + 0.713220i 0.0157218 + 0.0272309i
\(687\) 62.2288 35.9278i 2.37418 1.37073i
\(688\) −2.73042 −0.104096
\(689\) −0.0305930 + 1.43932i −0.00116550 + 0.0548338i
\(690\) 18.9089 0.719850
\(691\) 26.0034 15.0131i 0.989216 0.571124i 0.0841761 0.996451i \(-0.473174\pi\)
0.905040 + 0.425327i \(0.139841\pi\)
\(692\) 9.23693 + 15.9988i 0.351135 + 0.608184i
\(693\) −12.1146 + 20.9832i −0.460197 + 0.797085i
\(694\) 13.1432i 0.498907i
\(695\) −55.6658 32.1387i −2.11152 1.21909i
\(696\) 37.8059 + 21.8273i 1.43303 + 0.827360i
\(697\) 10.0798i 0.381798i
\(698\) 2.80712 4.86207i 0.106251 0.184032i
\(699\) 15.3873 + 26.6516i 0.582001 + 1.00805i
\(700\) 5.72203 3.30361i 0.216272 0.124865i
\(701\) 0.116177 0.00438796 0.00219398 0.999998i \(-0.499302\pi\)
0.00219398 + 0.999998i \(0.499302\pi\)
\(702\) 4.09688 + 7.45764i 0.154627 + 0.281470i
\(703\) −12.7297 −0.480110
\(704\) −20.5332 + 11.8548i −0.773873 + 0.446796i
\(705\) −1.91825 3.32251i −0.0722456 0.125133i
\(706\) 5.76624 9.98741i 0.217015 0.375881i
\(707\) 13.3295i 0.501307i
\(708\) 14.6347 + 8.44932i 0.550004 + 0.317545i
\(709\) 5.82829 + 3.36497i 0.218886 + 0.126374i 0.605434 0.795895i \(-0.292999\pi\)
−0.386548 + 0.922269i \(0.626333\pi\)
\(710\) 11.7375i 0.440499i
\(711\) 16.1335 27.9440i 0.605053 1.04798i
\(712\) 4.87132 + 8.43738i 0.182561 + 0.316204i
\(713\) −2.72196 + 1.57153i −0.101938 + 0.0588541i
\(714\) 5.91465 0.221350
\(715\) 59.3826 32.6221i 2.22078 1.22000i
\(716\) 33.4197 1.24895
\(717\) −33.8050 + 19.5173i −1.26247 + 0.728888i
\(718\) 2.22975 + 3.86204i 0.0832136 + 0.144130i
\(719\) 23.4039 40.5367i 0.872818 1.51177i 0.0137492 0.999905i \(-0.495623\pi\)
0.859069 0.511860i \(-0.171043\pi\)
\(720\) 5.03509i 0.187647i
\(721\) −10.0848 5.82248i −0.375579 0.216840i
\(722\) −10.8195 6.24666i −0.402661 0.232476i
\(723\) 38.1664i 1.41942i
\(724\) 0.571312 0.989541i 0.0212326 0.0367760i
\(725\) −14.9926 25.9680i −0.556812 0.964426i
\(726\) −46.1359 + 26.6366i −1.71226 + 0.988576i
\(727\) 13.3362 0.494611 0.247305 0.968938i \(-0.420455\pi\)
0.247305 + 0.968938i \(0.420455\pi\)
\(728\) −8.43534 5.11217i −0.312634 0.189470i
\(729\) −41.6582 −1.54290
\(730\) 18.7317 10.8148i 0.693291 0.400272i
\(731\) 9.43694 + 16.3453i 0.349038 + 0.604551i
\(732\) 2.03420 3.52334i 0.0751863 0.130226i
\(733\) 29.4612i 1.08817i 0.839029 + 0.544087i \(0.183124\pi\)
−0.839029 + 0.544087i \(0.816876\pi\)
\(734\) −21.4193 12.3664i −0.790599 0.456453i
\(735\) −7.28508 4.20604i −0.268714 0.155142i
\(736\) 15.8113i 0.582814i
\(737\) −18.6576 + 32.3160i −0.687263 + 1.19037i
\(738\) −6.26851 10.8574i −0.230747 0.399666i
\(739\) −10.4184 + 6.01509i −0.383249 + 0.221269i −0.679231 0.733925i \(-0.737686\pi\)
0.295982 + 0.955193i \(0.404353\pi\)
\(740\) −27.1858 −0.999370
\(741\) 18.7674 + 0.398904i 0.689438 + 0.0146541i
\(742\) 0.328834 0.0120719
\(743\) −18.9509 + 10.9413i −0.695242 + 0.401398i −0.805573 0.592497i \(-0.798142\pi\)
0.110331 + 0.993895i \(0.464809\pi\)
\(744\) −4.19027 7.25777i −0.153623 0.266083i
\(745\) −16.9427 + 29.3457i −0.620734 + 1.07514i
\(746\) 17.6321i 0.645558i
\(747\) −21.8844 12.6350i −0.800710 0.462290i
\(748\) −18.3642 10.6026i −0.671461 0.387668i
\(749\) 3.92966i 0.143587i
\(750\) −0.00405815 + 0.00702892i −0.000148183 + 0.000256660i
\(751\) 17.3746 + 30.0937i 0.634008 + 1.09813i 0.986724 + 0.162403i \(0.0519245\pi\)
−0.352717 + 0.935730i \(0.614742\pi\)
\(752\) 0.154255 0.0890590i 0.00562509 0.00324765i
\(753\) −22.9172 −0.835147
\(754\) −9.23160 + 15.2326i −0.336195 + 0.554739i
\(755\) −27.6498 −1.00628
\(756\) −3.28011 + 1.89377i −0.119297 + 0.0688759i
\(757\) −21.9632 38.0413i −0.798265 1.38264i −0.920745 0.390164i \(-0.872418\pi\)
0.122481 0.992471i \(-0.460915\pi\)
\(758\) −3.90223 + 6.75887i −0.141736 + 0.245493i
\(759\) 43.1502i 1.56625i
\(760\) 14.6611 + 8.46461i 0.531815 + 0.307044i
\(761\) 0.122449 + 0.0706957i 0.00443876 + 0.00256272i 0.502218 0.864741i \(-0.332518\pi\)
−0.497779 + 0.867304i \(0.665851\pi\)
\(762\) 13.4328i 0.486618i
\(763\) −5.62666 + 9.74566i −0.203699 + 0.352817i
\(764\) −9.69352 16.7897i −0.350699 0.607429i
\(765\) −30.1418 + 17.4024i −1.08978 + 0.629183i
\(766\) −4.47241 −0.161595
\(767\) −8.98082 + 14.8188i −0.324279 + 0.535076i
\(768\) −39.4124 −1.42217
\(769\) 11.8200 6.82429i 0.426241 0.246090i −0.271503 0.962438i \(-0.587521\pi\)
0.697744 + 0.716347i \(0.254187\pi\)
\(770\) −7.73787 13.4024i −0.278853 0.482988i
\(771\) 13.7856 23.8773i 0.496475 0.859920i
\(772\) 21.8035i 0.784726i
\(773\) 15.2328 + 8.79469i 0.547887 + 0.316323i 0.748269 0.663395i \(-0.230885\pi\)
−0.200382 + 0.979718i \(0.564218\pi\)
\(774\) 20.3299 + 11.7375i 0.730744 + 0.421895i
\(775\) 5.75639i 0.206776i
\(776\) 4.68824 8.12026i