Properties

Label 91.2.k.b.23.6
Level $91$
Weight $2$
Character 91.23
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.6
Root \(1.32725 + 0.488273i\) of defining polynomial
Character \(\chi\) \(=\) 91.23
Dual form 91.2.k.b.4.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.58860i q^{2} +(-0.259233 + 0.449005i) q^{3} -4.70085 q^{4} +(-1.39608 - 0.806027i) q^{5} +(-1.16229 - 0.671051i) q^{6} +(1.06153 + 2.42346i) q^{7} -6.99143i q^{8} +(1.36560 + 2.36528i) q^{9} +O(q^{10})\) \(q+2.58860i q^{2} +(-0.259233 + 0.449005i) q^{3} -4.70085 q^{4} +(-1.39608 - 0.806027i) q^{5} +(-1.16229 - 0.671051i) q^{6} +(1.06153 + 2.42346i) q^{7} -6.99143i q^{8} +(1.36560 + 2.36528i) q^{9} +(2.08648 - 3.61389i) q^{10} +(2.34256 + 1.35248i) q^{11} +(1.21862 - 2.11070i) q^{12} +(2.36840 - 2.71858i) q^{13} +(-6.27337 + 2.74787i) q^{14} +(0.723819 - 0.417897i) q^{15} +8.69632 q^{16} -3.12661 q^{17} +(-6.12277 + 3.53498i) q^{18} +(3.18828 - 1.84075i) q^{19} +(6.56276 + 3.78901i) q^{20} +(-1.36333 - 0.151611i) q^{21} +(-3.50103 + 6.06396i) q^{22} -1.98604 q^{23} +(3.13918 + 1.81241i) q^{24} +(-1.20064 - 2.07957i) q^{25} +(7.03732 + 6.13084i) q^{26} -2.97143 q^{27} +(-4.99008 - 11.3923i) q^{28} +(2.68636 + 4.65290i) q^{29} +(1.08177 + 1.87368i) q^{30} +(9.07425 - 5.23902i) q^{31} +8.52843i q^{32} +(-1.21454 + 0.701214i) q^{33} -8.09354i q^{34} +(0.471400 - 4.23896i) q^{35} +(-6.41947 - 11.1188i) q^{36} -5.95346i q^{37} +(4.76497 + 8.25317i) q^{38} +(0.606687 + 1.76817i) q^{39} +(-5.63528 + 9.76059i) q^{40} +(-6.66970 + 3.85075i) q^{41} +(0.392460 - 3.52911i) q^{42} +(-1.67800 + 2.90638i) q^{43} +(-11.0120 - 6.35780i) q^{44} -4.40283i q^{45} -5.14106i q^{46} +(0.913730 + 0.527542i) q^{47} +(-2.25437 + 3.90469i) q^{48} +(-4.74633 + 5.14513i) q^{49} +(5.38318 - 3.10798i) q^{50} +(0.810520 - 1.40386i) q^{51} +(-11.1335 + 12.7796i) q^{52} +(-3.63284 - 6.29226i) q^{53} -7.69184i q^{54} +(-2.18027 - 3.77633i) q^{55} +(16.9435 - 7.42158i) q^{56} +1.90873i q^{57} +(-12.0445 + 6.95390i) q^{58} -11.4241i q^{59} +(-3.40257 + 1.96447i) q^{60} +(1.46254 + 2.53319i) q^{61} +(13.5617 + 23.4896i) q^{62} +(-4.28255 + 5.82028i) q^{63} -4.68406 q^{64} +(-5.49772 + 1.88636i) q^{65} +(-1.81516 - 3.14395i) q^{66} +(11.7622 + 6.79091i) q^{67} +14.6977 q^{68} +(0.514846 - 0.891740i) q^{69} +(10.9730 + 1.22027i) q^{70} +(1.17009 + 0.675554i) q^{71} +(16.5367 - 9.54747i) q^{72} +(-7.88374 + 4.55168i) q^{73} +15.4111 q^{74} +1.24498 q^{75} +(-14.9876 + 8.65311i) q^{76} +(-0.790989 + 7.11280i) q^{77} +(-4.57708 + 1.57047i) q^{78} +(3.10289 - 5.37436i) q^{79} +(-12.1407 - 7.00946i) q^{80} +(-3.32650 + 5.76166i) q^{81} +(-9.96806 - 17.2652i) q^{82} -2.69672i q^{83} +(6.40880 + 0.712700i) q^{84} +(4.36499 + 2.52013i) q^{85} +(-7.52346 - 4.34367i) q^{86} -2.78557 q^{87} +(9.45576 - 16.3779i) q^{88} -1.75988i q^{89} +11.3972 q^{90} +(9.10249 + 2.85388i) q^{91} +9.33607 q^{92} +5.43251i q^{93} +(-1.36560 + 2.36528i) q^{94} -5.93478 q^{95} +(-3.82930 - 2.21085i) q^{96} +(-13.4078 - 7.74102i) q^{97} +(-13.3187 - 12.2863i) q^{98} +7.38776i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + O(q^{10}) \) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + 12q^{10} + 12q^{11} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} + 16q^{16} - 34q^{17} + 3q^{18} + 9q^{19} - 3q^{20} + 21q^{21} - 15q^{22} - 6q^{23} + 15q^{24} - 5q^{25} - 6q^{26} + 12q^{27} - 9q^{28} - q^{29} + 11q^{30} + 18q^{31} - 6q^{33} - 6q^{35} - 13q^{36} + 19q^{38} - 4q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} - 33q^{44} - 15q^{47} + 19q^{48} - 3q^{49} + 18q^{50} + 4q^{51} - 7q^{52} - 8q^{53} - 15q^{55} + 27q^{56} - 24q^{58} - 30q^{60} + 5q^{61} + 41q^{62} - 30q^{63} + 2q^{64} + 21q^{65} - 34q^{66} + 15q^{67} + 22q^{68} + 7q^{69} + 3q^{70} + 30q^{71} + 57q^{72} + 42q^{73} + 66q^{74} - 2q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 63q^{80} + 14q^{81} + 5q^{82} - 12q^{84} - 21q^{85} - 57q^{86} - 20q^{87} - 14q^{88} - 7q^{91} - 66q^{92} + q^{94} - 4q^{95} + 21q^{96} - 3q^{97} - 18q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58860i 1.83042i 0.402981 + 0.915209i \(0.367974\pi\)
−0.402981 + 0.915209i \(0.632026\pi\)
\(3\) −0.259233 + 0.449005i −0.149668 + 0.259233i −0.931105 0.364752i \(-0.881154\pi\)
0.781437 + 0.623985i \(0.214487\pi\)
\(4\) −4.70085 −2.35043
\(5\) −1.39608 0.806027i −0.624346 0.360466i 0.154213 0.988038i \(-0.450716\pi\)
−0.778559 + 0.627571i \(0.784049\pi\)
\(6\) −1.16229 0.671051i −0.474504 0.273955i
\(7\) 1.06153 + 2.42346i 0.401219 + 0.915982i
\(8\) 6.99143i 2.47184i
\(9\) 1.36560 + 2.36528i 0.455199 + 0.788428i
\(10\) 2.08648 3.61389i 0.659803 1.14281i
\(11\) 2.34256 + 1.35248i 0.706309 + 0.407788i 0.809693 0.586854i \(-0.199634\pi\)
−0.103384 + 0.994642i \(0.532967\pi\)
\(12\) 1.21862 2.11070i 0.351784 0.609308i
\(13\) 2.36840 2.71858i 0.656876 0.753998i
\(14\) −6.27337 + 2.74787i −1.67663 + 0.734398i
\(15\) 0.723819 0.417897i 0.186889 0.107901i
\(16\) 8.69632 2.17408
\(17\) −3.12661 −0.758314 −0.379157 0.925332i \(-0.623786\pi\)
−0.379157 + 0.925332i \(0.623786\pi\)
\(18\) −6.12277 + 3.53498i −1.44315 + 0.833204i
\(19\) 3.18828 1.84075i 0.731441 0.422297i −0.0875083 0.996164i \(-0.527890\pi\)
0.818949 + 0.573866i \(0.194557\pi\)
\(20\) 6.56276 + 3.78901i 1.46748 + 0.847249i
\(21\) −1.36333 0.151611i −0.297502 0.0330842i
\(22\) −3.50103 + 6.06396i −0.746421 + 1.29284i
\(23\) −1.98604 −0.414117 −0.207059 0.978329i \(-0.566389\pi\)
−0.207059 + 0.978329i \(0.566389\pi\)
\(24\) 3.13918 + 1.81241i 0.640783 + 0.369956i
\(25\) −1.20064 2.07957i −0.240128 0.415914i
\(26\) 7.03732 + 6.13084i 1.38013 + 1.20236i
\(27\) −2.97143 −0.571852
\(28\) −4.99008 11.3923i −0.943036 2.15295i
\(29\) 2.68636 + 4.65290i 0.498844 + 0.864023i 0.999999 0.00133469i \(-0.000424845\pi\)
−0.501155 + 0.865357i \(0.667092\pi\)
\(30\) 1.08177 + 1.87368i 0.197503 + 0.342086i
\(31\) 9.07425 5.23902i 1.62978 0.940956i 0.645627 0.763653i \(-0.276596\pi\)
0.984156 0.177303i \(-0.0567372\pi\)
\(32\) 8.52843i 1.50763i
\(33\) −1.21454 + 0.701214i −0.211424 + 0.122066i
\(34\) 8.09354i 1.38803i
\(35\) 0.471400 4.23896i 0.0796811 0.716515i
\(36\) −6.41947 11.1188i −1.06991 1.85314i
\(37\) 5.95346i 0.978743i −0.872075 0.489371i \(-0.837226\pi\)
0.872075 0.489371i \(-0.162774\pi\)
\(38\) 4.76497 + 8.25317i 0.772981 + 1.33884i
\(39\) 0.606687 + 1.76817i 0.0971477 + 0.283134i
\(40\) −5.63528 + 9.76059i −0.891016 + 1.54329i
\(41\) −6.66970 + 3.85075i −1.04163 + 0.601386i −0.920295 0.391225i \(-0.872051\pi\)
−0.121337 + 0.992611i \(0.538718\pi\)
\(42\) 0.392460 3.52911i 0.0605579 0.544554i
\(43\) −1.67800 + 2.90638i −0.255892 + 0.443219i −0.965138 0.261743i \(-0.915703\pi\)
0.709245 + 0.704962i \(0.249036\pi\)
\(44\) −11.0120 6.35780i −1.66013 0.958475i
\(45\) 4.40283i 0.656335i
\(46\) 5.14106i 0.758008i
\(47\) 0.913730 + 0.527542i 0.133281 + 0.0769500i 0.565158 0.824983i \(-0.308815\pi\)
−0.431877 + 0.901933i \(0.642148\pi\)
\(48\) −2.25437 + 3.90469i −0.325390 + 0.563593i
\(49\) −4.74633 + 5.14513i −0.678046 + 0.735019i
\(50\) 5.38318 3.10798i 0.761297 0.439535i
\(51\) 0.810520 1.40386i 0.113495 0.196580i
\(52\) −11.1335 + 12.7796i −1.54394 + 1.77222i
\(53\) −3.63284 6.29226i −0.499009 0.864308i 0.500991 0.865453i \(-0.332969\pi\)
−0.999999 + 0.00114437i \(0.999636\pi\)
\(54\) 7.69184i 1.04673i
\(55\) −2.18027 3.77633i −0.293987 0.509201i
\(56\) 16.9435 7.42158i 2.26416 0.991751i
\(57\) 1.90873i 0.252818i
\(58\) −12.0445 + 6.95390i −1.58152 + 0.913092i
\(59\) 11.4241i 1.48729i −0.668577 0.743643i \(-0.733096\pi\)
0.668577 0.743643i \(-0.266904\pi\)
\(60\) −3.40257 + 1.96447i −0.439270 + 0.253613i
\(61\) 1.46254 + 2.53319i 0.187259 + 0.324341i 0.944335 0.328985i \(-0.106706\pi\)
−0.757077 + 0.653326i \(0.773373\pi\)
\(62\) 13.5617 + 23.4896i 1.72234 + 2.98318i
\(63\) −4.28255 + 5.82028i −0.539551 + 0.733286i
\(64\) −4.68406 −0.585507
\(65\) −5.49772 + 1.88636i −0.681909 + 0.233974i
\(66\) −1.81516 3.14395i −0.223431 0.386994i
\(67\) 11.7622 + 6.79091i 1.43698 + 0.829642i 0.997639 0.0686778i \(-0.0218780\pi\)
0.439343 + 0.898320i \(0.355211\pi\)
\(68\) 14.6977 1.78236
\(69\) 0.514846 0.891740i 0.0619802 0.107353i
\(70\) 10.9730 + 1.22027i 1.31152 + 0.145850i
\(71\) 1.17009 + 0.675554i 0.138865 + 0.0801736i 0.567823 0.823151i \(-0.307786\pi\)
−0.428958 + 0.903324i \(0.641119\pi\)
\(72\) 16.5367 9.54747i 1.94887 1.12518i
\(73\) −7.88374 + 4.55168i −0.922721 + 0.532733i −0.884502 0.466536i \(-0.845502\pi\)
−0.0382192 + 0.999269i \(0.512169\pi\)
\(74\) 15.4111 1.79151
\(75\) 1.24498 0.143758
\(76\) −14.9876 + 8.65311i −1.71920 + 0.992579i
\(77\) −0.790989 + 7.11280i −0.0901416 + 0.810578i
\(78\) −4.57708 + 1.57047i −0.518252 + 0.177821i
\(79\) 3.10289 5.37436i 0.349102 0.604663i −0.636988 0.770874i \(-0.719820\pi\)
0.986090 + 0.166211i \(0.0531532\pi\)
\(80\) −12.1407 7.00946i −1.35738 0.783682i
\(81\) −3.32650 + 5.76166i −0.369611 + 0.640185i
\(82\) −9.96806 17.2652i −1.10079 1.90662i
\(83\) 2.69672i 0.296003i −0.988987 0.148002i \(-0.952716\pi\)
0.988987 0.148002i \(-0.0472841\pi\)
\(84\) 6.40880 + 0.712700i 0.699258 + 0.0777620i
\(85\) 4.36499 + 2.52013i 0.473450 + 0.273346i
\(86\) −7.52346 4.34367i −0.811275 0.468390i
\(87\) −2.78557 −0.298644
\(88\) 9.45576 16.3779i 1.00799 1.74589i
\(89\) 1.75988i 0.186546i −0.995641 0.0932732i \(-0.970267\pi\)
0.995641 0.0932732i \(-0.0297330\pi\)
\(90\) 11.3972 1.20137
\(91\) 9.10249 + 2.85388i 0.954200 + 0.299168i
\(92\) 9.33607 0.973353
\(93\) 5.43251i 0.563325i
\(94\) −1.36560 + 2.36528i −0.140851 + 0.243960i
\(95\) −5.93478 −0.608896
\(96\) −3.82930 2.21085i −0.390827 0.225644i
\(97\) −13.4078 7.74102i −1.36136 0.785981i −0.371555 0.928411i \(-0.621175\pi\)
−0.989805 + 0.142430i \(0.954509\pi\)
\(98\) −13.3187 12.2863i −1.34539 1.24111i
\(99\) 7.38776i 0.742498i
\(100\) 5.64404 + 9.77576i 0.564404 + 0.977576i
\(101\) −0.639651 + 1.10791i −0.0636477 + 0.110241i −0.896093 0.443866i \(-0.853607\pi\)
0.832446 + 0.554107i \(0.186940\pi\)
\(102\) 3.63404 + 2.09811i 0.359823 + 0.207744i
\(103\) −5.73367 + 9.93101i −0.564956 + 0.978532i 0.432098 + 0.901827i \(0.357773\pi\)
−0.997054 + 0.0767054i \(0.975560\pi\)
\(104\) −19.0068 16.5585i −1.86377 1.62370i
\(105\) 1.78111 + 1.31054i 0.173819 + 0.127896i
\(106\) 16.2881 9.40397i 1.58204 0.913394i
\(107\) −5.13525 −0.496444 −0.248222 0.968703i \(-0.579846\pi\)
−0.248222 + 0.968703i \(0.579846\pi\)
\(108\) 13.9682 1.34410
\(109\) 1.49635 0.863916i 0.143324 0.0827481i −0.426623 0.904429i \(-0.640297\pi\)
0.569947 + 0.821681i \(0.306964\pi\)
\(110\) 9.77542 5.64384i 0.932050 0.538119i
\(111\) 2.67313 + 1.54333i 0.253722 + 0.146487i
\(112\) 9.23136 + 21.0752i 0.872282 + 1.99142i
\(113\) 4.29556 7.44014i 0.404093 0.699909i −0.590123 0.807314i \(-0.700921\pi\)
0.994215 + 0.107404i \(0.0342540\pi\)
\(114\) −4.94095 −0.462762
\(115\) 2.77267 + 1.60080i 0.258552 + 0.149275i
\(116\) −12.6282 21.8726i −1.17250 2.03082i
\(117\) 9.66449 + 1.88945i 0.893482 + 0.174680i
\(118\) 29.5723 2.72235
\(119\) −3.31897 7.57721i −0.304250 0.694602i
\(120\) −2.92170 5.06053i −0.266714 0.461961i
\(121\) −1.84160 3.18975i −0.167419 0.289977i
\(122\) −6.55741 + 3.78592i −0.593680 + 0.342761i
\(123\) 3.99297i 0.360034i
\(124\) −42.6567 + 24.6279i −3.83069 + 2.21165i
\(125\) 11.9313i 1.06716i
\(126\) −15.0664 11.0858i −1.34222 0.987603i
\(127\) −1.56206 2.70556i −0.138610 0.240080i 0.788361 0.615214i \(-0.210930\pi\)
−0.926971 + 0.375133i \(0.877597\pi\)
\(128\) 4.93170i 0.435904i
\(129\) −0.869985 1.50686i −0.0765979 0.132671i
\(130\) −4.88303 14.2314i −0.428270 1.24818i
\(131\) −5.10460 + 8.84142i −0.445991 + 0.772479i −0.998121 0.0612793i \(-0.980482\pi\)
0.552130 + 0.833758i \(0.313815\pi\)
\(132\) 5.70937 3.29630i 0.496936 0.286906i
\(133\) 7.84543 + 5.77266i 0.680285 + 0.500553i
\(134\) −17.5790 + 30.4476i −1.51859 + 2.63028i
\(135\) 4.14835 + 2.39505i 0.357033 + 0.206133i
\(136\) 21.8595i 1.87443i
\(137\) 9.99261i 0.853726i 0.904316 + 0.426863i \(0.140381\pi\)
−0.904316 + 0.426863i \(0.859619\pi\)
\(138\) 2.30836 + 1.33273i 0.196501 + 0.113450i
\(139\) 0.832100 1.44124i 0.0705778 0.122244i −0.828577 0.559875i \(-0.810849\pi\)
0.899155 + 0.437631i \(0.144182\pi\)
\(140\) −2.21598 + 19.9267i −0.187285 + 1.68412i
\(141\) −0.473738 + 0.273513i −0.0398959 + 0.0230339i
\(142\) −1.74874 + 3.02891i −0.146751 + 0.254180i
\(143\) 9.22495 3.16523i 0.771429 0.264690i
\(144\) 11.8757 + 20.5692i 0.989638 + 1.71410i
\(145\) 8.66110i 0.719265i
\(146\) −11.7825 20.4078i −0.975124 1.68897i
\(147\) −1.07978 3.46491i −0.0890591 0.285781i
\(148\) 27.9863i 2.30046i
\(149\) 17.1456 9.89902i 1.40462 0.810959i 0.409760 0.912193i \(-0.365613\pi\)
0.994863 + 0.101234i \(0.0322792\pi\)
\(150\) 3.22276i 0.263138i
\(151\) −6.52544 + 3.76746i −0.531033 + 0.306592i −0.741437 0.671023i \(-0.765855\pi\)
0.210404 + 0.977614i \(0.432522\pi\)
\(152\) −12.8695 22.2906i −1.04385 1.80801i
\(153\) −4.26968 7.39531i −0.345183 0.597875i
\(154\) −18.4122 2.04755i −1.48370 0.164997i
\(155\) −16.8912 −1.35673
\(156\) −2.85195 8.31190i −0.228339 0.665485i
\(157\) −7.00223 12.1282i −0.558839 0.967938i −0.997594 0.0693309i \(-0.977914\pi\)
0.438755 0.898607i \(-0.355420\pi\)
\(158\) 13.9121 + 8.03214i 1.10679 + 0.639003i
\(159\) 3.76700 0.298743
\(160\) 6.87414 11.9064i 0.543448 0.941280i
\(161\) −2.10823 4.81308i −0.166152 0.379324i
\(162\) −14.9146 8.61097i −1.17181 0.676542i
\(163\) 6.20936 3.58498i 0.486355 0.280797i −0.236706 0.971581i \(-0.576068\pi\)
0.723061 + 0.690784i \(0.242735\pi\)
\(164\) 31.3533 18.1018i 2.44828 1.41351i
\(165\) 2.26079 0.176002
\(166\) 6.98072 0.541809
\(167\) 15.5716 8.99027i 1.20497 0.695688i 0.243312 0.969948i \(-0.421766\pi\)
0.961656 + 0.274260i \(0.0884328\pi\)
\(168\) −1.05998 + 9.53161i −0.0817790 + 0.735380i
\(169\) −1.78135 12.8774i −0.137027 0.990567i
\(170\) −6.52361 + 11.2992i −0.500338 + 0.866611i
\(171\) 8.70780 + 5.02745i 0.665902 + 0.384459i
\(172\) 7.88803 13.6625i 0.601456 1.04175i
\(173\) −6.40579 11.0952i −0.487023 0.843549i 0.512865 0.858469i \(-0.328584\pi\)
−0.999889 + 0.0149198i \(0.995251\pi\)
\(174\) 7.21072i 0.546643i
\(175\) 3.76525 5.11723i 0.284626 0.386826i
\(176\) 20.3717 + 11.7616i 1.53557 + 0.886562i
\(177\) 5.12945 + 2.96149i 0.385553 + 0.222599i
\(178\) 4.55561 0.341458
\(179\) 0.920110 1.59368i 0.0687723 0.119117i −0.829589 0.558375i \(-0.811425\pi\)
0.898361 + 0.439258i \(0.144758\pi\)
\(180\) 20.6971i 1.54267i
\(181\) −3.29928 −0.245234 −0.122617 0.992454i \(-0.539129\pi\)
−0.122617 + 0.992454i \(0.539129\pi\)
\(182\) −7.38757 + 23.5627i −0.547603 + 1.74658i
\(183\) −1.51655 −0.112107
\(184\) 13.8852i 1.02363i
\(185\) −4.79865 + 8.31150i −0.352804 + 0.611074i
\(186\) −14.0626 −1.03112
\(187\) −7.32427 4.22867i −0.535604 0.309231i
\(188\) −4.29531 2.47990i −0.313268 0.180865i
\(189\) −3.15425 7.20114i −0.229438 0.523806i
\(190\) 15.3628i 1.11453i
\(191\) −2.44807 4.24018i −0.177136 0.306809i 0.763762 0.645498i \(-0.223350\pi\)
−0.940898 + 0.338689i \(0.890017\pi\)
\(192\) 1.21426 2.10316i 0.0876318 0.151783i
\(193\) 2.61462 + 1.50955i 0.188204 + 0.108660i 0.591142 0.806568i \(-0.298677\pi\)
−0.402937 + 0.915228i \(0.632011\pi\)
\(194\) 20.0384 34.7075i 1.43867 2.49186i
\(195\) 0.578207 2.95751i 0.0414063 0.211792i
\(196\) 22.3118 24.1865i 1.59370 1.72761i
\(197\) 4.02694 2.32496i 0.286908 0.165646i −0.349639 0.936885i \(-0.613696\pi\)
0.636546 + 0.771238i \(0.280362\pi\)
\(198\) −19.1240 −1.35908
\(199\) −0.410721 −0.0291152 −0.0145576 0.999894i \(-0.504634\pi\)
−0.0145576 + 0.999894i \(0.504634\pi\)
\(200\) −14.5392 + 8.39420i −1.02808 + 0.593560i
\(201\) −6.09830 + 3.52085i −0.430141 + 0.248342i
\(202\) −2.86793 1.65580i −0.201787 0.116502i
\(203\) −8.42450 + 11.4495i −0.591284 + 0.803594i
\(204\) −3.81013 + 6.59934i −0.266763 + 0.462047i
\(205\) 12.4152 0.867118
\(206\) −25.7074 14.8422i −1.79112 1.03410i
\(207\) −2.71213 4.69754i −0.188506 0.326502i
\(208\) 20.5964 23.6416i 1.42810 1.63925i
\(209\) 9.95831 0.688831
\(210\) −3.39246 + 4.61059i −0.234102 + 0.318161i
\(211\) 3.75800 + 6.50905i 0.258711 + 0.448101i 0.965897 0.258927i \(-0.0833688\pi\)
−0.707186 + 0.707028i \(0.750035\pi\)
\(212\) 17.0774 + 29.5790i 1.17288 + 2.03149i
\(213\) −0.606654 + 0.350252i −0.0415672 + 0.0239989i
\(214\) 13.2931i 0.908699i
\(215\) 4.68524 2.70502i 0.319531 0.184481i
\(216\) 20.7745i 1.41353i
\(217\) 22.3291 + 16.4297i 1.51580 + 1.11532i
\(218\) 2.23633 + 3.87344i 0.151464 + 0.262343i
\(219\) 4.71978i 0.318933i
\(220\) 10.2491 + 17.7520i 0.690996 + 1.19684i
\(221\) −7.40506 + 8.49993i −0.498118 + 0.571767i
\(222\) −3.99507 + 6.91967i −0.268132 + 0.464418i
\(223\) −19.5544 + 11.2897i −1.30946 + 0.756016i −0.982006 0.188852i \(-0.939523\pi\)
−0.327452 + 0.944868i \(0.606190\pi\)
\(224\) −20.6683 + 9.05315i −1.38096 + 0.604889i
\(225\) 3.27918 5.67971i 0.218612 0.378648i
\(226\) 19.2595 + 11.1195i 1.28113 + 0.739658i
\(227\) 13.6717i 0.907424i 0.891148 + 0.453712i \(0.149901\pi\)
−0.891148 + 0.453712i \(0.850099\pi\)
\(228\) 8.97268i 0.594230i
\(229\) 6.86832 + 3.96543i 0.453872 + 0.262043i 0.709464 0.704742i \(-0.248937\pi\)
−0.255592 + 0.966785i \(0.582270\pi\)
\(230\) −4.14383 + 7.17733i −0.273236 + 0.473259i
\(231\) −2.98863 2.19903i −0.196637 0.144685i
\(232\) 32.5305 18.7815i 2.13573 1.23306i
\(233\) −3.28585 + 5.69127i −0.215263 + 0.372847i −0.953354 0.301854i \(-0.902394\pi\)
0.738091 + 0.674702i \(0.235728\pi\)
\(234\) −4.89104 + 25.0175i −0.319738 + 1.63545i
\(235\) −0.850427 1.47298i −0.0554757 0.0960868i
\(236\) 53.7028i 3.49576i
\(237\) 1.60874 + 2.78642i 0.104499 + 0.180998i
\(238\) 19.6144 8.59150i 1.27141 0.556904i
\(239\) 9.39284i 0.607572i −0.952740 0.303786i \(-0.901749\pi\)
0.952740 0.303786i \(-0.0982508\pi\)
\(240\) 6.29456 3.63417i 0.406312 0.234584i
\(241\) 10.0858i 0.649686i 0.945768 + 0.324843i \(0.105311\pi\)
−0.945768 + 0.324843i \(0.894689\pi\)
\(242\) 8.25699 4.76718i 0.530780 0.306446i
\(243\) −6.18182 10.7072i −0.396564 0.686869i
\(244\) −6.87517 11.9081i −0.440137 0.762340i
\(245\) 10.7734 3.35735i 0.688285 0.214493i
\(246\) 10.3362 0.659012
\(247\) 2.54689 13.0272i 0.162054 0.828902i
\(248\) −36.6282 63.4420i −2.32590 4.02857i
\(249\) 1.21084 + 0.699078i 0.0767337 + 0.0443022i
\(250\) −30.8853 −1.95336
\(251\) −5.17427 + 8.96209i −0.326597 + 0.565682i −0.981834 0.189741i \(-0.939235\pi\)
0.655237 + 0.755423i \(0.272569\pi\)
\(252\) 20.1317 27.3603i 1.26818 1.72354i
\(253\) −4.65242 2.68607i −0.292495 0.168872i
\(254\) 7.00363 4.04355i 0.439447 0.253715i
\(255\) −2.26310 + 1.30660i −0.141721 + 0.0818225i
\(256\) −22.1343 −1.38339
\(257\) −7.98658 −0.498189 −0.249095 0.968479i \(-0.580133\pi\)
−0.249095 + 0.968479i \(0.580133\pi\)
\(258\) 3.90065 2.25204i 0.242844 0.140206i
\(259\) 14.4280 6.31975i 0.896511 0.392690i
\(260\) 25.8440 8.86749i 1.60278 0.549939i
\(261\) −7.33696 + 12.7080i −0.454146 + 0.786604i
\(262\) −22.8869 13.2138i −1.41396 0.816349i
\(263\) −2.52967 + 4.38152i −0.155986 + 0.270176i −0.933418 0.358792i \(-0.883189\pi\)
0.777431 + 0.628968i \(0.216522\pi\)
\(264\) 4.90249 + 8.49136i 0.301727 + 0.522607i
\(265\) 11.7127i 0.719503i
\(266\) −14.9431 + 20.3087i −0.916220 + 1.24521i
\(267\) 0.790192 + 0.456218i 0.0483590 + 0.0279201i
\(268\) −55.2924 31.9231i −3.37752 1.95001i
\(269\) 13.8902 0.846902 0.423451 0.905919i \(-0.360819\pi\)
0.423451 + 0.905919i \(0.360819\pi\)
\(270\) −6.19983 + 10.7384i −0.377310 + 0.653519i
\(271\) 8.32721i 0.505842i 0.967487 + 0.252921i \(0.0813913\pi\)
−0.967487 + 0.252921i \(0.918609\pi\)
\(272\) −27.1900 −1.64863
\(273\) −3.64107 + 3.34724i −0.220368 + 0.202584i
\(274\) −25.8669 −1.56267
\(275\) 6.49537i 0.391685i
\(276\) −2.42022 + 4.19194i −0.145680 + 0.252325i
\(277\) 23.2116 1.39465 0.697325 0.716755i \(-0.254374\pi\)
0.697325 + 0.716755i \(0.254374\pi\)
\(278\) 3.73080 + 2.15398i 0.223758 + 0.129187i
\(279\) 24.7835 + 14.3088i 1.48375 + 0.856644i
\(280\) −29.6364 3.29576i −1.77111 0.196959i
\(281\) 27.1595i 1.62020i −0.586292 0.810100i \(-0.699413\pi\)
0.586292 0.810100i \(-0.300587\pi\)
\(282\) −0.708015 1.22632i −0.0421617 0.0730262i
\(283\) −8.07563 + 13.9874i −0.480046 + 0.831464i −0.999738 0.0228894i \(-0.992713\pi\)
0.519692 + 0.854354i \(0.326047\pi\)
\(284\) −5.50044 3.17568i −0.326391 0.188442i
\(285\) 1.53849 2.66474i 0.0911323 0.157846i
\(286\) 8.19351 + 23.8797i 0.484493 + 1.41204i
\(287\) −16.4122 12.0761i −0.968782 0.712828i
\(288\) −20.1721 + 11.6464i −1.18865 + 0.686270i
\(289\) −7.22433 −0.424960
\(290\) 22.4201 1.31656
\(291\) 6.95151 4.01345i 0.407504 0.235273i
\(292\) 37.0603 21.3968i 2.16879 1.25215i
\(293\) −12.6831 7.32260i −0.740956 0.427791i 0.0814609 0.996677i \(-0.474041\pi\)
−0.822417 + 0.568885i \(0.807375\pi\)
\(294\) 8.96927 2.79513i 0.523098 0.163015i
\(295\) −9.20810 + 15.9489i −0.536116 + 0.928580i
\(296\) −41.6232 −2.41930
\(297\) −6.96075 4.01879i −0.403904 0.233194i
\(298\) 25.6246 + 44.3831i 1.48439 + 2.57104i
\(299\) −4.70373 + 5.39920i −0.272024 + 0.312244i
\(300\) −5.85248 −0.337893
\(301\) −8.82474 0.981368i −0.508649 0.0565651i
\(302\) −9.75246 16.8918i −0.561191 0.972011i
\(303\) −0.331637 0.574412i −0.0190521 0.0329991i
\(304\) 27.7263 16.0078i 1.59021 0.918108i
\(305\) 4.71537i 0.270001i
\(306\) 19.1435 11.0525i 1.09436 0.631830i
\(307\) 8.97844i 0.512427i 0.966620 + 0.256213i \(0.0824750\pi\)
−0.966620 + 0.256213i \(0.917525\pi\)
\(308\) 3.71832 33.4362i 0.211871 1.90521i
\(309\) −2.97271 5.14889i −0.169112 0.292910i
\(310\) 43.7245i 2.48338i
\(311\) 6.09080 + 10.5496i 0.345378 + 0.598212i 0.985422 0.170126i \(-0.0544175\pi\)
−0.640045 + 0.768338i \(0.721084\pi\)
\(312\) 12.3620 4.24161i 0.699862 0.240134i
\(313\) −6.56198 + 11.3657i −0.370905 + 0.642427i −0.989705 0.143122i \(-0.954286\pi\)
0.618800 + 0.785549i \(0.287619\pi\)
\(314\) 31.3951 18.1260i 1.77173 1.02291i
\(315\) 10.6701 4.67372i 0.601191 0.263334i
\(316\) −14.5862 + 25.2641i −0.820540 + 1.42122i
\(317\) 14.4761 + 8.35775i 0.813056 + 0.469418i 0.848016 0.529971i \(-0.177797\pi\)
−0.0349599 + 0.999389i \(0.511130\pi\)
\(318\) 9.75127i 0.546824i
\(319\) 14.5330i 0.813689i
\(320\) 6.53932 + 3.77548i 0.365559 + 0.211056i
\(321\) 1.33123 2.30575i 0.0743018 0.128695i
\(322\) 12.4592 5.45737i 0.694321 0.304127i
\(323\) −9.96849 + 5.75531i −0.554661 + 0.320234i
\(324\) 15.6374 27.0847i 0.868743 1.50471i
\(325\) −8.49708 1.66122i −0.471333 0.0921480i
\(326\) 9.28007 + 16.0736i 0.513976 + 0.890232i
\(327\) 0.895821i 0.0495390i
\(328\) 26.9223 + 46.6307i 1.48653 + 2.57475i
\(329\) −0.308530 + 2.77439i −0.0170098 + 0.152957i
\(330\) 5.85228i 0.322157i
\(331\) −3.43522 + 1.98332i −0.188817 + 0.109013i −0.591428 0.806357i \(-0.701436\pi\)
0.402612 + 0.915371i \(0.368102\pi\)
\(332\) 12.6769i 0.695733i
\(333\) 14.0816 8.13002i 0.771668 0.445523i
\(334\) 23.2722 + 40.3087i 1.27340 + 2.20559i
\(335\) −10.9473 18.9613i −0.598116 1.03597i
\(336\) −11.8559 1.31846i −0.646794 0.0719276i
\(337\) −13.7032 −0.746461 −0.373230 0.927739i \(-0.621750\pi\)
−0.373230 + 0.927739i \(0.621750\pi\)
\(338\) 33.3344 4.61121i 1.81315 0.250817i
\(339\) 2.22710 + 3.85746i 0.120960 + 0.209508i
\(340\) −20.5192 11.8468i −1.11281 0.642481i
\(341\) 28.3426 1.53484
\(342\) −13.0141 + 22.5410i −0.703720 + 1.21888i
\(343\) −17.5074 6.04084i −0.945309 0.326175i
\(344\) 20.3197 + 11.7316i 1.09557 + 0.632526i
\(345\) −1.43753 + 0.829960i −0.0773942 + 0.0446835i
\(346\) 28.7209 16.5820i 1.54405 0.891456i
\(347\) −26.3979 −1.41711 −0.708556 0.705655i \(-0.750653\pi\)
−0.708556 + 0.705655i \(0.750653\pi\)
\(348\) 13.0945 0.701941
\(349\) −4.23507 + 2.44512i −0.226698 + 0.130884i −0.609048 0.793133i \(-0.708448\pi\)
0.382350 + 0.924018i \(0.375115\pi\)
\(350\) 13.2465 + 9.74673i 0.708053 + 0.520984i
\(351\) −7.03753 + 8.07806i −0.375636 + 0.431175i
\(352\) −11.5345 + 19.9784i −0.614792 + 1.06485i
\(353\) −11.7413 6.77886i −0.624928 0.360802i 0.153857 0.988093i \(-0.450830\pi\)
−0.778785 + 0.627291i \(0.784164\pi\)
\(354\) −7.66612 + 13.2781i −0.407450 + 0.705724i
\(355\) −1.08903 1.88626i −0.0577997 0.100112i
\(356\) 8.27291i 0.438464i
\(357\) 4.26259 + 0.474028i 0.225600 + 0.0250882i
\(358\) 4.12540 + 2.38180i 0.218034 + 0.125882i
\(359\) 7.43541 + 4.29284i 0.392426 + 0.226567i 0.683211 0.730221i \(-0.260583\pi\)
−0.290785 + 0.956789i \(0.593916\pi\)
\(360\) −30.7821 −1.62236
\(361\) −2.72326 + 4.71683i −0.143330 + 0.248254i
\(362\) 8.54053i 0.448880i
\(363\) 1.90962 0.100229
\(364\) −42.7895 13.4157i −2.24278 0.703173i
\(365\) 14.6751 0.768130
\(366\) 3.92574i 0.205202i
\(367\) 0.831612 1.44039i 0.0434098 0.0751880i −0.843504 0.537123i \(-0.819511\pi\)
0.886914 + 0.461935i \(0.152845\pi\)
\(368\) −17.2712 −0.900324
\(369\) −18.2162 10.5171i −0.948299 0.547501i
\(370\) −21.5152 12.4218i −1.11852 0.645778i
\(371\) 11.3927 15.4834i 0.591479 0.803860i
\(372\) 25.5374i 1.32405i
\(373\) −6.98174 12.0927i −0.361501 0.626138i 0.626707 0.779255i \(-0.284402\pi\)
−0.988208 + 0.153117i \(0.951069\pi\)
\(374\) 10.9463 18.9596i 0.566022 0.980378i
\(375\) −5.35719 3.09298i −0.276644 0.159721i
\(376\) 3.68828 6.38828i 0.190208 0.329450i
\(377\) 19.0117 + 3.71687i 0.979150 + 0.191429i
\(378\) 18.6409 8.16509i 0.958783 0.419967i
\(379\) −27.3454 + 15.7879i −1.40464 + 0.810969i −0.994864 0.101218i \(-0.967726\pi\)
−0.409775 + 0.912187i \(0.634393\pi\)
\(380\) 27.8985 1.43116
\(381\) 1.61975 0.0829822
\(382\) 10.9761 6.33707i 0.561588 0.324233i
\(383\) −27.6333 + 15.9541i −1.41200 + 0.815217i −0.995576 0.0939554i \(-0.970049\pi\)
−0.416420 + 0.909172i \(0.636716\pi\)
\(384\) −2.21435 1.27846i −0.113001 0.0652410i
\(385\) 6.83739 9.29247i 0.348466 0.473588i
\(386\) −3.90762 + 6.76820i −0.198893 + 0.344492i
\(387\) −9.16588 −0.465928
\(388\) 63.0283 + 36.3894i 3.19978 + 1.84739i
\(389\) −12.7075 22.0100i −0.644296 1.11595i −0.984464 0.175589i \(-0.943817\pi\)
0.340168 0.940365i \(-0.389516\pi\)
\(390\) 7.65581 + 1.49675i 0.387667 + 0.0757908i
\(391\) 6.20956 0.314031
\(392\) 35.9718 + 33.1836i 1.81685 + 1.67603i
\(393\) −2.64656 4.58398i −0.133501 0.231231i
\(394\) 6.01838 + 10.4241i 0.303202 + 0.525161i
\(395\) −8.66376 + 5.00203i −0.435921 + 0.251679i
\(396\) 34.7288i 1.74519i
\(397\) −3.60178 + 2.07949i −0.180768 + 0.104366i −0.587653 0.809113i \(-0.699948\pi\)
0.406885 + 0.913479i \(0.366615\pi\)
\(398\) 1.06319i 0.0532930i
\(399\) −4.62574 + 2.02617i −0.231577 + 0.101435i
\(400\) −10.4412 18.0846i −0.522058 0.904231i
\(401\) 19.6013i 0.978844i 0.872047 + 0.489422i \(0.162792\pi\)
−0.872047 + 0.489422i \(0.837208\pi\)
\(402\) −9.11409 15.7861i −0.454569 0.787337i
\(403\) 7.24877 37.0772i 0.361087 1.84695i
\(404\) 3.00691 5.20811i 0.149599 0.259113i
\(405\) 9.28811 5.36249i 0.461530 0.266464i
\(406\) −29.6381 21.8077i −1.47091 1.08230i
\(407\) 8.05193 13.9463i 0.399119 0.691295i
\(408\) −9.81500 5.66669i −0.485915 0.280543i
\(409\) 17.6337i 0.871930i −0.899964 0.435965i \(-0.856407\pi\)
0.899964 0.435965i \(-0.143593\pi\)
\(410\) 32.1381i 1.58719i
\(411\) −4.48673 2.59041i −0.221314 0.127776i
\(412\) 26.9532 46.6842i 1.32789 2.29997i
\(413\) 27.6858 12.1269i 1.36233 0.596727i
\(414\) 12.1601 7.02061i 0.597634 0.345044i
\(415\) −2.17363 + 3.76483i −0.106699 + 0.184808i
\(416\) 23.1852 + 20.1987i 1.13675 + 0.990324i
\(417\) 0.431416 + 0.747234i 0.0211265 + 0.0365922i
\(418\) 25.7781i 1.26085i
\(419\) −14.9455 25.8864i −0.730137 1.26463i −0.956824 0.290666i \(-0.906123\pi\)
0.226688 0.973968i \(-0.427210\pi\)
\(420\) −8.37274 6.16065i −0.408548 0.300609i
\(421\) 12.8528i 0.626407i −0.949686 0.313203i \(-0.898598\pi\)
0.949686 0.313203i \(-0.101402\pi\)
\(422\) −16.8493 + 9.72796i −0.820212 + 0.473550i
\(423\) 2.88164i 0.140110i
\(424\) −43.9919 + 25.3987i −2.13644 + 1.23347i
\(425\) 3.75393 + 6.50200i 0.182093 + 0.315394i
\(426\) −0.906662 1.57038i −0.0439279 0.0760854i
\(427\) −4.58656 + 6.23344i −0.221959 + 0.301657i
\(428\) 24.1401 1.16685
\(429\) −0.970207 + 4.96257i −0.0468421 + 0.239595i
\(430\) 7.00223 + 12.1282i 0.337677 + 0.584874i
\(431\) 7.76876 + 4.48530i 0.374208 + 0.216049i 0.675295 0.737547i \(-0.264016\pi\)
−0.301087 + 0.953597i \(0.597350\pi\)
\(432\) −25.8405 −1.24325
\(433\) −1.72531 + 2.98833i −0.0829132 + 0.143610i −0.904500 0.426473i \(-0.859756\pi\)
0.821587 + 0.570083i \(0.193089\pi\)
\(434\) −42.5300 + 57.8012i −2.04151 + 2.77454i
\(435\) 3.88887 + 2.24524i 0.186457 + 0.107651i
\(436\) −7.03410 + 4.06114i −0.336872 + 0.194493i
\(437\) −6.33204 + 3.65580i −0.302902 + 0.174881i
\(438\) 12.2176 0.583780
\(439\) 38.5144 1.83819 0.919096 0.394034i \(-0.128921\pi\)
0.919096 + 0.394034i \(0.128921\pi\)
\(440\) −26.4020 + 15.2432i −1.25867 + 0.726691i
\(441\) −18.6513 4.20023i −0.888155 0.200011i
\(442\) −22.0029 19.1687i −1.04657 0.911764i
\(443\) 7.51997 13.0250i 0.357284 0.618835i −0.630222 0.776415i \(-0.717036\pi\)
0.987506 + 0.157580i \(0.0503693\pi\)
\(444\) −12.5660 7.25498i −0.596356 0.344306i
\(445\) −1.41851 + 2.45693i −0.0672437 + 0.116469i
\(446\) −29.2246 50.6185i −1.38382 2.39685i
\(447\) 10.2646i 0.485499i
\(448\) −4.97225 11.3516i −0.234917 0.536314i
\(449\) 33.7087 + 19.4617i 1.59081 + 0.918456i 0.993168 + 0.116696i \(0.0372304\pi\)
0.597646 + 0.801760i \(0.296103\pi\)
\(450\) 14.7025 + 8.48850i 0.693083 + 0.400152i
\(451\) −20.8322 −0.980952
\(452\) −20.1928 + 34.9750i −0.949790 + 1.64509i
\(453\) 3.90660i 0.183548i
\(454\) −35.3906 −1.66097
\(455\) −10.4075 11.3211i −0.487911 0.530741i
\(456\) 13.3448 0.624927
\(457\) 13.9396i 0.652069i 0.945358 + 0.326034i \(0.105713\pi\)
−0.945358 + 0.326034i \(0.894287\pi\)
\(458\) −10.2649 + 17.7793i −0.479648 + 0.830774i
\(459\) 9.29049 0.433643
\(460\) −13.0339 7.52512i −0.607709 0.350861i
\(461\) 32.4443 + 18.7317i 1.51108 + 0.872424i 0.999916 + 0.0129430i \(0.00412001\pi\)
0.511167 + 0.859481i \(0.329213\pi\)
\(462\) 5.69241 7.73637i 0.264835 0.359928i
\(463\) 6.75275i 0.313827i 0.987612 + 0.156913i \(0.0501544\pi\)
−0.987612 + 0.156913i \(0.949846\pi\)
\(464\) 23.3614 + 40.4631i 1.08453 + 1.87845i
\(465\) 4.37875 7.58421i 0.203059 0.351709i
\(466\) −14.7324 8.50576i −0.682466 0.394022i
\(467\) 2.52516 4.37371i 0.116851 0.202391i −0.801667 0.597770i \(-0.796053\pi\)
0.918518 + 0.395379i \(0.129387\pi\)
\(468\) −45.4314 8.88205i −2.10006 0.410573i
\(469\) −3.97162 + 35.7140i −0.183393 + 1.64912i
\(470\) 3.81296 2.20141i 0.175879 0.101544i
\(471\) 7.26084 0.334562
\(472\) −79.8705 −3.67634
\(473\) −7.86163 + 4.53892i −0.361478 + 0.208700i
\(474\) −7.21294 + 4.16439i −0.331301 + 0.191277i
\(475\) −7.65595 4.42017i −0.351279 0.202811i
\(476\) 15.6020 + 35.6194i 0.715117 + 1.63261i
\(477\) 9.92198 17.1854i 0.454296 0.786864i
\(478\) 24.3143 1.11211
\(479\) 8.18670 + 4.72659i 0.374060 + 0.215964i 0.675231 0.737607i \(-0.264044\pi\)
−0.301171 + 0.953570i \(0.597377\pi\)
\(480\) 3.56401 + 6.17304i 0.162674 + 0.281759i
\(481\) −16.1850 14.1002i −0.737971 0.642913i
\(482\) −26.1082 −1.18920
\(483\) 2.70762 + 0.301105i 0.123201 + 0.0137007i
\(484\) 8.65711 + 14.9946i 0.393505 + 0.681571i
\(485\) 12.4789 + 21.6142i 0.566639 + 0.981448i
\(486\) 27.7167 16.0023i 1.25726 0.725877i
\(487\) 39.9996i 1.81255i 0.422684 + 0.906277i \(0.361088\pi\)
−0.422684 + 0.906277i \(0.638912\pi\)
\(488\) 17.7106 10.2252i 0.801721 0.462874i
\(489\) 3.71737i 0.168105i
\(490\) 8.69084 + 27.8879i 0.392612 + 1.25985i
\(491\) −3.38049 5.85517i −0.152559 0.264240i 0.779608 0.626267i \(-0.215418\pi\)
−0.932168 + 0.362027i \(0.882085\pi\)
\(492\) 18.7704i 0.846233i
\(493\) −8.39918 14.5478i −0.378280 0.655200i
\(494\) 33.7223 + 6.59287i 1.51724 + 0.296627i
\(495\) 5.95473 10.3139i 0.267645 0.463575i
\(496\) 78.9125 45.5602i 3.54328 2.04571i
\(497\) −0.395094 + 3.55280i −0.0177224 + 0.159365i
\(498\) −1.80963 + 3.13438i −0.0810916 + 0.140455i
\(499\) −9.83591 5.67877i −0.440316 0.254217i 0.263416 0.964682i \(-0.415151\pi\)
−0.703732 + 0.710466i \(0.748484\pi\)
\(500\) 56.0871i 2.50829i
\(501\) 9.32230i 0.416490i
\(502\) −23.1993 13.3941i −1.03543 0.597808i
\(503\) 6.96423 12.0624i 0.310520 0.537836i −0.667955 0.744202i \(-0.732830\pi\)
0.978475 + 0.206365i \(0.0661635\pi\)
\(504\) 40.6921 + 29.9412i 1.81257 + 1.33369i
\(505\) 1.78601 1.03115i 0.0794763 0.0458857i
\(506\) 6.95317 12.0432i 0.309106 0.535388i
\(507\) 6.24379 + 2.53840i 0.277296 + 0.112734i
\(508\) 7.34301 + 12.7185i 0.325793 + 0.564290i
\(509\) 19.8149i 0.878281i −0.898418 0.439141i \(-0.855283\pi\)
0.898418 0.439141i \(-0.144717\pi\)
\(510\) −3.38227 5.85826i −0.149769 0.259408i
\(511\) −19.3996 14.2742i −0.858188 0.631453i
\(512\) 47.4335i 2.09628i
\(513\) −9.47373 + 5.46966i −0.418276 + 0.241491i
\(514\) 20.6741i 0.911894i
\(515\) 16.0093 9.24299i 0.705455 0.407295i
\(516\) 4.08967 + 7.08352i 0.180038 + 0.311835i
\(517\) 1.42698 + 2.47160i 0.0627585 + 0.108701i
\(518\) 16.3593 + 37.3483i 0.718787 + 1.64099i
\(519\) 6.64237 0.291568
\(520\) 13.1883 + 38.4370i 0.578347 + 1.68557i
\(521\) 15.5476 + 26.9292i 0.681151 + 1.17979i 0.974630 + 0.223823i \(0.0718537\pi\)
−0.293479 + 0.955966i \(0.594813\pi\)
\(522\) −32.8959 18.9924i −1.43981 0.831277i
\(523\) 22.7202 0.993485 0.496742 0.867898i \(-0.334529\pi\)
0.496742 + 0.867898i \(0.334529\pi\)
\(524\) 23.9960 41.5622i 1.04827 1.81565i
\(525\) 1.32158 + 3.01717i 0.0576786 + 0.131680i
\(526\) −11.3420 6.54831i −0.494535 0.285520i
\(527\) −28.3716 + 16.3804i −1.23589 + 0.713540i
\(528\) −10.5620 + 6.09798i −0.459652 + 0.265380i
\(529\) −19.0557 −0.828507
\(530\) −30.3194 −1.31699
\(531\) 27.0211 15.6007i 1.17262 0.677011i
\(532\) −36.8802 27.1364i −1.59896 1.17651i
\(533\) −5.32794 + 27.2522i −0.230779 + 1.18043i
\(534\) −1.18097 + 2.04549i −0.0511054 + 0.0885171i
\(535\) 7.16922 + 4.13915i 0.309952 + 0.178951i
\(536\) 47.4782 82.2346i 2.05074 3.55199i
\(537\) 0.477046 + 0.826267i 0.0205860 + 0.0356561i
\(538\) 35.9563i 1.55018i
\(539\) −18.0772 + 5.63349i −0.778642 + 0.242651i
\(540\) −19.5008 11.2588i −0.839180 0.484501i
\(541\) 1.81754 + 1.04936i 0.0781423 + 0.0451155i 0.538562 0.842586i \(-0.318968\pi\)
−0.460420 + 0.887701i \(0.652301\pi\)
\(542\) −21.5558 −0.925902
\(543\) 0.855283 1.48139i 0.0367037 0.0635727i
\(544\) 26.6650i 1.14325i
\(545\) −2.78536 −0.119312
\(546\) −8.66467 9.42528i −0.370813 0.403365i
\(547\) 25.3770 1.08504 0.542521 0.840042i \(-0.317470\pi\)
0.542521 + 0.840042i \(0.317470\pi\)
\(548\) 46.9738i 2.00662i
\(549\) −3.99447 + 6.91862i −0.170480 + 0.295280i
\(550\) 16.8139 0.716948
\(551\) 17.1297 + 9.88983i 0.729749 + 0.421321i
\(552\) −6.23454 3.59951i −0.265360 0.153205i
\(553\) 16.3184 + 1.81471i 0.693927 + 0.0771692i
\(554\) 60.0855i 2.55279i
\(555\) −2.48794 4.30923i −0.105607 0.182917i
\(556\) −3.91158 + 6.77506i −0.165888 + 0.287327i
\(557\) −38.3219 22.1252i −1.62375 0.937473i −0.985904 0.167309i \(-0.946492\pi\)
−0.637846 0.770164i \(-0.720174\pi\)
\(558\) −37.0397 + 64.1547i −1.56802 + 2.71588i
\(559\) 3.92705 + 11.4452i 0.166097 + 0.484082i
\(560\) 4.09944 36.8634i 0.173233 1.55776i
\(561\) 3.79738 2.19242i 0.160326 0.0925641i
\(562\) 70.3051 2.96564
\(563\) 38.8907 1.63905 0.819523 0.573046i \(-0.194238\pi\)
0.819523 + 0.573046i \(0.194238\pi\)
\(564\) 2.22697 1.28574i 0.0937725 0.0541396i
\(565\) −11.9939 + 6.92468i −0.504587 + 0.291324i
\(566\) −36.2078 20.9046i −1.52193 0.878685i
\(567\) −17.4943 1.94548i −0.734693 0.0817026i
\(568\) 4.72309 8.18063i 0.198177 0.343252i
\(569\) −46.1579 −1.93504 −0.967520 0.252796i \(-0.918650\pi\)
−0.967520 + 0.252796i \(0.918650\pi\)
\(570\) 6.89796 + 3.98254i 0.288924 + 0.166810i
\(571\) 10.5684 + 18.3050i 0.442274 + 0.766041i 0.997858 0.0654194i \(-0.0208385\pi\)
−0.555584 + 0.831461i \(0.687505\pi\)
\(572\) −43.3651 + 14.8793i −1.81319 + 0.622134i
\(573\) 2.53848 0.106047
\(574\) 31.2601 42.4846i 1.30477 1.77327i
\(575\) 2.38452 + 4.13011i 0.0994413 + 0.172237i
\(576\) −6.39653 11.0791i −0.266522 0.461630i
\(577\) 21.9368 12.6652i 0.913239 0.527259i 0.0317671 0.999495i \(-0.489887\pi\)
0.881472 + 0.472237i \(0.156553\pi\)
\(578\) 18.7009i 0.777855i
\(579\) −1.35559 + 0.782650i −0.0563364 + 0.0325258i
\(580\) 40.7146i 1.69058i
\(581\) 6.53539 2.86263i 0.271133 0.118762i
\(582\) 10.3892 + 17.9947i 0.430647 + 0.745903i
\(583\) 19.6533i 0.813958i
\(584\) 31.8227 + 55.1186i 1.31683 + 2.28082i
\(585\) −11.9694 10.4277i −0.494876 0.431131i
\(586\) 18.9553 32.8315i 0.783036 1.35626i
\(587\) 3.08554 1.78144i 0.127354 0.0735278i −0.434970 0.900445i \(-0.643241\pi\)
0.562324 + 0.826917i \(0.309908\pi\)
\(588\) 5.07591 + 16.2880i 0.209327 + 0.671707i
\(589\) 19.2875 33.4069i 0.794727 1.37651i
\(590\) −41.2853 23.8361i −1.69969 0.981316i
\(591\) 2.41082i 0.0991679i
\(592\) 51.7732i 2.12786i
\(593\) 21.9568 + 12.6768i 0.901659 + 0.520573i 0.877738 0.479141i \(-0.159052\pi\)
0.0239212 + 0.999714i \(0.492385\pi\)
\(594\) 10.4030 18.0186i 0.426842 0.739312i
\(595\) −1.47388 + 13.2536i −0.0604233 + 0.543343i
\(596\) −80.5990 + 46.5338i −3.30146 + 1.90610i
\(597\) 0.106472 0.184415i 0.00435762 0.00754762i
\(598\) −13.9764 12.1761i −0.571537 0.497917i
\(599\) −5.46078 9.45835i −0.223122 0.386458i 0.732633 0.680624i \(-0.238291\pi\)
−0.955754 + 0.294166i \(0.904958\pi\)
\(600\) 8.70421i 0.355348i
\(601\) −12.1282 21.0067i −0.494720 0.856880i 0.505262 0.862966i \(-0.331396\pi\)
−0.999981 + 0.00608649i \(0.998063\pi\)
\(602\) 2.54037 22.8437i 0.103538 0.931040i
\(603\) 37.0946i 1.51061i
\(604\) 30.6751 17.7103i 1.24815 0.720621i
\(605\) 5.93753i 0.241395i
\(606\) 1.48692 0.858476i 0.0604022 0.0348732i
\(607\) 4.92724 + 8.53422i 0.199990 + 0.346393i 0.948525 0.316702i \(-0.102576\pi\)
−0.748535 + 0.663096i \(0.769242\pi\)
\(608\) 15.6987 + 27.1910i 0.636667 + 1.10274i
\(609\) −2.95695 6.75071i −0.119822 0.273553i
\(610\) 12.2062 0.494215
\(611\) 3.59825 1.23462i 0.145569 0.0499472i
\(612\) 20.0712 + 34.7643i 0.811328 + 1.40526i
\(613\) −3.18428 1.83844i −0.128612 0.0742540i 0.434314 0.900762i \(-0.356991\pi\)
−0.562926 + 0.826508i \(0.690324\pi\)
\(614\) −23.2416 −0.937955
\(615\) −3.21844 + 5.57450i −0.129780 + 0.224785i
\(616\) 49.7286 + 5.53015i 2.00362 + 0.222816i
\(617\) 16.2352 + 9.37341i 0.653605 + 0.377359i 0.789836 0.613318i \(-0.210166\pi\)
−0.136231 + 0.990677i \(0.543499\pi\)
\(618\) 13.3284 7.69517i 0.536148 0.309545i
\(619\) 13.7650 7.94725i 0.553264 0.319427i −0.197174 0.980369i \(-0.563176\pi\)
0.750437 + 0.660942i \(0.229843\pi\)
\(620\) 79.4029 3.18890
\(621\) 5.90137 0.236814
\(622\) −27.3086 + 15.7667i −1.09498 + 0.632185i
\(623\) 4.26499 1.86815i 0.170873 0.0748460i
\(624\) 5.27594 + 15.3765i 0.211207 + 0.615555i
\(625\) 3.61371 6.25913i 0.144549 0.250365i
\(626\) −29.4212 16.9864i −1.17591 0.678911i
\(627\) −2.58152 + 4.47133i −0.103096 + 0.178568i
\(628\) 32.9165 + 57.0130i 1.31351 + 2.27507i
\(629\) 18.6141i 0.742194i
\(630\) 12.0984 + 27.6206i 0.482011 + 1.10043i
\(631\) −17.0998 9.87255i −0.680731 0.393020i 0.119400 0.992846i \(-0.461903\pi\)
−0.800130 + 0.599826i \(0.795236\pi\)
\(632\) −37.5745 21.6936i −1.49463 0.862927i
\(633\) −3.89679 −0.154883
\(634\) −21.6349 + 37.4727i −0.859231 + 1.48823i
\(635\) 5.03624i 0.199857i
\(636\) −17.7081 −0.702173
\(637\) 2.74625 + 25.0890i 0.108811 + 0.994063i
\(638\) −37.6200 −1.48939
\(639\) 3.69014i 0.145980i
\(640\) 3.97508 6.88504i 0.157129 0.272155i
\(641\) 29.7786 1.17618 0.588092 0.808794i \(-0.299879\pi\)
0.588092 + 0.808794i \(0.299879\pi\)
\(642\) 5.96867 + 3.44601i 0.235565 + 0.136003i
\(643\) 10.0220 + 5.78623i 0.395231 + 0.228187i 0.684424 0.729084i \(-0.260054\pi\)
−0.289193 + 0.957271i \(0.593387\pi\)
\(644\) 9.91048 + 22.6256i 0.390528 + 0.891574i
\(645\) 2.80493i 0.110444i
\(646\) −14.8982 25.8044i −0.586162 1.01526i
\(647\) 12.7533 22.0893i 0.501382 0.868420i −0.498616 0.866823i \(-0.666158\pi\)
0.999999 0.00159698i \(-0.000508335\pi\)
\(648\) 40.2823 + 23.2570i 1.58244 + 0.913620i
\(649\) 15.4508 26.7616i 0.606497 1.05048i
\(650\) 4.30024 21.9956i 0.168669 0.862737i
\(651\) −13.1655 + 5.76675i −0.515995 + 0.226017i
\(652\) −29.1893 + 16.8524i −1.14314 + 0.659993i
\(653\) −44.8293 −1.75430 −0.877152 0.480212i \(-0.840560\pi\)
−0.877152 + 0.480212i \(0.840560\pi\)
\(654\) −2.31892 −0.0906771
\(655\) 14.2529 8.22889i 0.556905 0.321529i
\(656\) −58.0018 + 33.4874i −2.26459 + 1.30746i
\(657\) −21.5320 12.4315i −0.840043 0.484999i
\(658\) −7.18179 0.798661i −0.279975 0.0311350i
\(659\) −20.5867 + 35.6572i −0.801944 + 1.38901i 0.116390 + 0.993204i \(0.462868\pi\)
−0.918335 + 0.395805i \(0.870466\pi\)
\(660\) −10.6276 −0.413680
\(661\) −18.9606 10.9469i −0.737481 0.425785i 0.0836719 0.996493i \(-0.473335\pi\)
−0.821153 + 0.570709i \(0.806669\pi\)
\(662\) −5.13404 8.89241i −0.199540 0.345613i
\(663\) −1.89687 5.52837i −0.0736684 0.214704i
\(664\) −18.8539 −0.731673
\(665\) −6.29993 14.3827i −0.244301 0.557738i
\(666\) 21.0454 + 36.4517i 0.815492 + 1.41247i
\(667\) −5.33520 9.24084i −0.206580 0.357807i
\(668\) −73.1999 + 42.2620i −2.83219 + 1.63516i
\(669\) 11.7067i 0.452606i
\(670\) 49.0832 28.3382i 1.89625 1.09480i
\(671\) 7.91219i 0.305447i
\(672\) 1.29300 11.6270i 0.0498786 0.448523i
\(673\) 17.8344 + 30.8901i 0.687466 + 1.19073i 0.972655 + 0.232254i \(0.0746102\pi\)
−0.285189 + 0.958471i \(0.592056\pi\)
\(674\) 35.4721i 1.36633i
\(675\) 3.56762 + 6.17930i 0.137318 + 0.237841i
\(676\) 8.37388 + 60.5347i 0.322072 + 2.32826i
\(677\) −1.27766 + 2.21297i −0.0491044 + 0.0850514i −0.889533 0.456871i \(-0.848970\pi\)
0.840428 + 0.541923i \(0.182303\pi\)
\(678\) −9.98541 + 5.76508i −0.383488 + 0.221407i
\(679\) 4.52729 40.7107i 0.173741 1.56233i
\(680\) 17.6193 30.5175i 0.675670 1.17029i
\(681\) −6.13867 3.54416i −0.235234 0.135813i
\(682\) 73.3678i 2.80940i
\(683\) 35.7399i 1.36755i −0.729693 0.683775i \(-0.760337\pi\)
0.729693 0.683775i \(-0.239663\pi\)
\(684\) −40.9341 23.6333i −1.56515 0.903642i
\(685\) 8.05431 13.9505i 0.307739 0.533020i
\(686\) 15.6373 45.3196i 0.597036 1.73031i
\(687\) −3.56099 + 2.05594i −0.135860 + 0.0784390i
\(688\) −14.5924 + 25.2748i −0.556330 + 0.963592i
\(689\) −25.7100 5.02643i −0.979474 0.191492i
\(690\) −2.14843 3.72120i −0.0817895 0.141664i
\(691\) 26.0292i 0.990197i −0.868837 0.495099i \(-0.835132\pi\)
0.868837 0.495099i \(-0.164868\pi\)
\(692\) 30.1127 + 52.1567i 1.14471 + 1.98270i
\(693\) −17.9039 + 7.84230i −0.680115 + 0.297904i
\(694\) 68.3335i 2.59391i
\(695\) −2.32336 + 1.34139i −0.0881299 + 0.0508818i
\(696\) 19.4751i 0.738202i
\(697\) 20.8535 12.0398i 0.789884 0.456040i
\(698\) −6.32944 10.9629i −0.239573 0.414952i
\(699\) −1.70360 2.95073i −0.0644362 0.111607i
\(700\) −17.6999 + 24.0553i −0.668993 + 0.909206i
\(701\) −1.12731 −0.0425779 −0.0212890 0.999773i \(-0.506777\pi\)
−0.0212890 + 0.999773i \(0.506777\pi\)
\(702\) −20.9109 18.2174i −0.789230 0.687570i
\(703\) −10.9588 18.9813i −0.413321 0.715892i
\(704\) −10.9727 6.33509i −0.413549 0.238763i
\(705\) 0.881834 0.0332118
\(706\) 17.5478 30.3936i 0.660419 1.14388i
\(707\) −3.36398 0.374096i −0.126515 0.0140693i
\(708\) −24.1128 13.9215i −0.906215 0.523203i
\(709\) −5.23972 + 3.02515i −0.196782 + 0.113612i −0.595153 0.803612i \(-0.702909\pi\)
0.398372 + 0.917224i \(0.369575\pi\)
\(710\) 4.88276 2.81906i 0.183247 0.105798i
\(711\) 16.9492 0.635644
\(712\) −12.3040 −0.461114
\(713\) −18.0218 + 10.4049i −0.674922 + 0.389666i
\(714\) −1.22707 + 11.0341i −0.0459219 + 0.412942i
\(715\) −15.4300 3.01664i −0.577050 0.112816i
\(716\) −4.32530 + 7.49164i −0.161644 + 0.279976i
\(717\) 4.21743 + 2.43493i 0.157503 + 0.0909342i
\(718\) −11.1124 + 19.2473i −0.414713 + 0.718304i
\(719\) 23.5589 + 40.8052i 0.878597 + 1.52178i 0.852880 + 0.522106i \(0.174854\pi\)
0.0257170 + 0.999669i \(0.491813\pi\)
\(720\) 38.2884i 1.42692i
\(721\) −30.1539 3.35331i −1.12299 0.124884i
\(722\) −12.2100 7.04944i −0.454409 0.262353i
\(723\) −4.52859 2.61458i −0.168420 0.0972374i
\(724\) 15.5095 0.576404
\(725\) 6.45070 11.1729i 0.239573 0.414953i
\(726\) 4.94324i 0.183461i
\(727\) 17.9215 0.664671 0.332335 0.943161i \(-0.392163\pi\)
0.332335 + 0.943161i \(0.392163\pi\)
\(728\) 19.9527 63.6394i 0.739498 2.35863i
\(729\) −13.5489 −0.501810
\(730\) 37.9880i 1.40600i
\(731\) 5.24644 9.08711i 0.194047 0.336099i
\(732\) 7.12908 0.263498
\(733\) −39.2037 22.6343i −1.44802 0.836016i −0.449658 0.893201i \(-0.648454\pi\)
−0.998364 + 0.0571848i \(0.981788\pi\)
\(734\) 3.72861 + 2.15271i 0.137625 + 0.0794581i
\(735\) −1.28535 + 5.70762i −0.0474107 + 0.210529i
\(736\) 16.9378i 0.624335i
\(737\) 18.3691 + 31.8163i 0.676635 + 1.17197i
\(738\) 27.2247 47.1546i 1.00215 1.73578i
\(739\) 16.6808 + 9.63066i 0.613613 + 0.354270i 0.774378 0.632723i \(-0.218063\pi\)
−0.160765 + 0.986993i \(0.551396\pi\)
\(740\) 22.5577 39.0712i 0.829239 1.43628i
\(741\) 5.18905 + 4.52065i 0.190624 + 0.166070i
\(742\) 40.0804 + 29.4911i 1.47140 + 1.08265i
\(743\) 30.2115 17.4426i 1.10835 0.639908i 0.169951 0.985453i \(-0.445639\pi\)
0.938402 + 0.345545i \(0.112306\pi\)
\(744\) 37.9810 1.39245
\(745\) −31.9155 −1.16929
\(746\) 31.3032 18.0729i 1.14609 0.661697i
\(747\) 6.37850 3.68263i 0.233377 0.134740i
\(748\) 34.4303 + 19.8784i 1.25890 + 0.726825i
\(749\) −5.45120 12.4451i −0.199183 0.454733i
\(750\) 8.00648 13.8676i 0.292355 0.506374i
\(751\) 24.9668 0.911051 0.455526 0.890223i \(-0.349451\pi\)
0.455526 + 0.890223i \(0.349451\pi\)
\(752\) 7.94609 + 4.58767i 0.289764 + 0.167295i
\(753\) −2.68268 4.64654i −0.0977623 0.169329i
\(754\) −9.62150 + 49.2136i −0.350394 + 1.79225i
\(755\) 12.1467 0.442064
\(756\) 14.8277 + 33.8515i 0.539277 + 1.23117i
\(757\) 5.30243 + 9.18408i 0.192720 + 0.333801i 0.946151 0.323726i \(-0.104936\pi\)
−0.753431 + 0.657527i \(0.771602\pi\)
\(758\) −40.8685 70.7863i −1.48441 2.57108i
\(759\) 2.41212 1.39264i 0.0875543 0.0505495i
\(760\) 41.4926i 1.50510i
\(761\) 28.2660 16.3194i 1.02464 0.591578i 0.109198 0.994020i \(-0.465172\pi\)
0.915446 + 0.402442i \(0.131838\pi\)
\(762\) 4.19288i 0.151892i
\(763\) 3.68208 + 2.70927i 0.133300 + 0.0980820i
\(764\) 11.5080 + 19.9325i 0.416345 + 0.721131i
\(765\) 13.7659i 0.497708i
\(766\) −41.2988 71.5316i −1.49219 2.58454i
\(767\) −31.0572 27.0568i −1.12141 0.976963i
\(768\) 5.73794 9.93841i 0.207050 0.358621i
\(769\) −45.1851 + 26.0876i −1.62942 + 0.940744i −0.645148 + 0.764057i \(0.723204\pi\)
−0.984267 + 0.176686i \(0.943462\pi\)
\(770\) 24.0545 + 17.6993i 0.866864 + 0.637837i
\(771\) 2.07039 3.58601i 0.0745631 0.129147i
\(772\) −12.2909 7.09618i −0.442360 0.255397i
\(773\) 35.7057i 1.28425i −0.766602 0.642123i \(-0.778054\pi\)
0.766602 0.642123i \(-0.221946\pi\)
\(774\) 23.7268i 0.852842i
\(775\) −21.7898