Properties

Label 91.2.k.b.23.5
Level $91$
Weight $2$
Character 91.23
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.5
Root \(-1.38488 + 0.286553i\) of defining polynomial
Character \(\chi\) \(=\) 91.23
Dual form 91.2.k.b.4.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.37905i q^{2} +(-1.44060 + 2.49520i) q^{3} +0.0982074 q^{4} +(-0.697972 - 0.402974i) q^{5} +(-3.44101 - 1.98667i) q^{6} +(0.0699870 - 2.64483i) q^{7} +2.89354i q^{8} +(-2.65067 - 4.59109i) q^{9} +O(q^{10})\) \(q+1.37905i q^{2} +(-1.44060 + 2.49520i) q^{3} +0.0982074 q^{4} +(-0.697972 - 0.402974i) q^{5} +(-3.44101 - 1.98667i) q^{6} +(0.0699870 - 2.64483i) q^{7} +2.89354i q^{8} +(-2.65067 - 4.59109i) q^{9} +(0.555723 - 0.962541i) q^{10} +(4.56532 + 2.63579i) q^{11} +(-0.141478 + 0.245047i) q^{12} +(-2.36581 + 2.72084i) q^{13} +(3.64736 + 0.0965159i) q^{14} +(2.01100 - 1.16105i) q^{15} -3.79394 q^{16} +0.560102 q^{17} +(6.33136 - 3.65541i) q^{18} +(5.06165 - 2.92234i) q^{19} +(-0.0685460 - 0.0395750i) q^{20} +(6.49853 + 3.98477i) q^{21} +(-3.63490 + 6.29583i) q^{22} +1.60488 q^{23} +(-7.21995 - 4.16844i) q^{24} +(-2.17522 - 3.76760i) q^{25} +(-3.75219 - 3.26258i) q^{26} +6.63060 q^{27} +(0.00687324 - 0.259741i) q^{28} +(-1.14008 - 1.97467i) q^{29} +(1.60115 + 2.77328i) q^{30} +(3.01022 - 1.73795i) q^{31} +0.555034i q^{32} +(-13.1536 + 7.59424i) q^{33} +0.772411i q^{34} +(-1.11465 + 1.81781i) q^{35} +(-0.260315 - 0.450879i) q^{36} -1.24196i q^{37} +(4.03007 + 6.98029i) q^{38} +(-3.38084 - 9.82279i) q^{39} +(1.16602 - 2.01961i) q^{40} +(0.803413 - 0.463851i) q^{41} +(-5.49522 + 8.96183i) q^{42} +(2.22356 - 3.85131i) q^{43} +(0.448348 + 0.258854i) q^{44} +4.27260i q^{45} +2.21321i q^{46} +(-3.32915 - 1.92209i) q^{47} +(5.46556 - 9.46662i) q^{48} +(-6.99020 - 0.370207i) q^{49} +(5.19572 - 2.99975i) q^{50} +(-0.806883 + 1.39756i) q^{51} +(-0.232340 + 0.267207i) q^{52} +(-2.72727 - 4.72377i) q^{53} +9.14396i q^{54} +(-2.12431 - 3.67941i) q^{55} +(7.65292 + 0.202510i) q^{56} +16.8397i q^{57} +(2.72318 - 1.57223i) q^{58} +10.9940i q^{59} +(0.197495 - 0.114024i) q^{60} +(-3.65107 - 6.32385i) q^{61} +(2.39673 + 4.15126i) q^{62} +(-12.3281 + 6.68923i) q^{63} -8.35330 q^{64} +(2.74769 - 0.945710i) q^{65} +(-10.4729 - 18.1396i) q^{66} +(6.36144 + 3.67278i) q^{67} +0.0550061 q^{68} +(-2.31199 + 4.00448i) q^{69} +(-2.50686 - 1.53716i) q^{70} +(-8.06668 - 4.65730i) q^{71} +(13.2845 - 7.66982i) q^{72} +(4.33139 - 2.50073i) q^{73} +1.71273 q^{74} +12.5345 q^{75} +(0.497091 - 0.286996i) q^{76} +(7.29072 - 11.8900i) q^{77} +(13.5462 - 4.66237i) q^{78} +(-5.68437 + 9.84562i) q^{79} +(2.64806 + 1.52886i) q^{80} +(-1.60006 + 2.77138i) q^{81} +(0.639676 + 1.10795i) q^{82} -5.81962i q^{83} +(0.638204 + 0.391334i) q^{84} +(-0.390935 - 0.225707i) q^{85} +(5.31117 + 3.06641i) q^{86} +6.56959 q^{87} +(-7.62677 + 13.2100i) q^{88} -5.00946i q^{89} -5.89215 q^{90} +(7.03057 + 6.44756i) q^{91} +0.157611 q^{92} +10.0148i q^{93} +(2.65067 - 4.59109i) q^{94} -4.71051 q^{95} +(-1.38492 - 0.799583i) q^{96} +(9.22171 + 5.32416i) q^{97} +(0.510535 - 9.63988i) q^{98} -27.9464i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + O(q^{10}) \) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + 12q^{10} + 12q^{11} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} + 16q^{16} - 34q^{17} + 3q^{18} + 9q^{19} - 3q^{20} + 21q^{21} - 15q^{22} - 6q^{23} + 15q^{24} - 5q^{25} - 6q^{26} + 12q^{27} - 9q^{28} - q^{29} + 11q^{30} + 18q^{31} - 6q^{33} - 6q^{35} - 13q^{36} + 19q^{38} - 4q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} - 33q^{44} - 15q^{47} + 19q^{48} - 3q^{49} + 18q^{50} + 4q^{51} - 7q^{52} - 8q^{53} - 15q^{55} + 27q^{56} - 24q^{58} - 30q^{60} + 5q^{61} + 41q^{62} - 30q^{63} + 2q^{64} + 21q^{65} - 34q^{66} + 15q^{67} + 22q^{68} + 7q^{69} + 3q^{70} + 30q^{71} + 57q^{72} + 42q^{73} + 66q^{74} - 2q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 63q^{80} + 14q^{81} + 5q^{82} - 12q^{84} - 21q^{85} - 57q^{86} - 20q^{87} - 14q^{88} - 7q^{91} - 66q^{92} + q^{94} - 4q^{95} + 21q^{96} - 3q^{97} - 18q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37905i 0.975139i 0.873084 + 0.487570i \(0.162116\pi\)
−0.873084 + 0.487570i \(0.837884\pi\)
\(3\) −1.44060 + 2.49520i −0.831732 + 1.44060i 0.0649323 + 0.997890i \(0.479317\pi\)
−0.896664 + 0.442712i \(0.854016\pi\)
\(4\) 0.0982074 0.0491037
\(5\) −0.697972 0.402974i −0.312142 0.180216i 0.335742 0.941954i \(-0.391013\pi\)
−0.647885 + 0.761738i \(0.724346\pi\)
\(6\) −3.44101 1.98667i −1.40479 0.811054i
\(7\) 0.0699870 2.64483i 0.0264526 0.999650i
\(8\) 2.89354i 1.02302i
\(9\) −2.65067 4.59109i −0.883555 1.53036i
\(10\) 0.555723 0.962541i 0.175735 0.304382i
\(11\) 4.56532 + 2.63579i 1.37650 + 0.794720i 0.991736 0.128296i \(-0.0409508\pi\)
0.384760 + 0.923017i \(0.374284\pi\)
\(12\) −0.141478 + 0.245047i −0.0408411 + 0.0707389i
\(13\) −2.36581 + 2.72084i −0.656156 + 0.754625i
\(14\) 3.64736 + 0.0965159i 0.974798 + 0.0257950i
\(15\) 2.01100 1.16105i 0.519237 0.299782i
\(16\) −3.79394 −0.948485
\(17\) 0.560102 0.135845 0.0679223 0.997691i \(-0.478363\pi\)
0.0679223 + 0.997691i \(0.478363\pi\)
\(18\) 6.33136 3.65541i 1.49232 0.861589i
\(19\) 5.06165 2.92234i 1.16122 0.670431i 0.209625 0.977782i \(-0.432776\pi\)
0.951596 + 0.307351i \(0.0994424\pi\)
\(20\) −0.0685460 0.0395750i −0.0153273 0.00884925i
\(21\) 6.49853 + 3.98477i 1.41810 + 0.869548i
\(22\) −3.63490 + 6.29583i −0.774963 + 1.34228i
\(23\) 1.60488 0.334640 0.167320 0.985903i \(-0.446489\pi\)
0.167320 + 0.985903i \(0.446489\pi\)
\(24\) −7.21995 4.16844i −1.47377 0.850880i
\(25\) −2.17522 3.76760i −0.435045 0.753520i
\(26\) −3.75219 3.26258i −0.735864 0.639844i
\(27\) 6.63060 1.27606
\(28\) 0.00687324 0.259741i 0.00129892 0.0490865i
\(29\) −1.14008 1.97467i −0.211707 0.366687i 0.740542 0.672010i \(-0.234569\pi\)
−0.952249 + 0.305323i \(0.901236\pi\)
\(30\) 1.60115 + 2.77328i 0.292329 + 0.506329i
\(31\) 3.01022 1.73795i 0.540651 0.312145i −0.204692 0.978827i \(-0.565619\pi\)
0.745343 + 0.666681i \(0.232286\pi\)
\(32\) 0.555034i 0.0981171i
\(33\) −13.1536 + 7.59424i −2.28975 + 1.32199i
\(34\) 0.772411i 0.132467i
\(35\) −1.11465 + 1.81781i −0.188409 + 0.307266i
\(36\) −0.260315 0.450879i −0.0433858 0.0751464i
\(37\) 1.24196i 0.204177i −0.994775 0.102088i \(-0.967448\pi\)
0.994775 0.102088i \(-0.0325524\pi\)
\(38\) 4.03007 + 6.98029i 0.653764 + 1.13235i
\(39\) −3.38084 9.82279i −0.541368 1.57291i
\(40\) 1.16602 2.01961i 0.184364 0.319329i
\(41\) 0.803413 0.463851i 0.125472 0.0724413i −0.435950 0.899971i \(-0.643588\pi\)
0.561422 + 0.827529i \(0.310254\pi\)
\(42\) −5.49522 + 8.96183i −0.847931 + 1.38284i
\(43\) 2.22356 3.85131i 0.339089 0.587320i −0.645172 0.764037i \(-0.723214\pi\)
0.984262 + 0.176717i \(0.0565478\pi\)
\(44\) 0.448348 + 0.258854i 0.0675910 + 0.0390237i
\(45\) 4.27260i 0.636921i
\(46\) 2.21321i 0.326320i
\(47\) −3.32915 1.92209i −0.485607 0.280365i 0.237143 0.971475i \(-0.423789\pi\)
−0.722750 + 0.691109i \(0.757122\pi\)
\(48\) 5.46556 9.46662i 0.788885 1.36639i
\(49\) −6.99020 0.370207i −0.998601 0.0528867i
\(50\) 5.19572 2.99975i 0.734786 0.424229i
\(51\) −0.806883 + 1.39756i −0.112986 + 0.195698i
\(52\) −0.232340 + 0.267207i −0.0322197 + 0.0370549i
\(53\) −2.72727 4.72377i −0.374620 0.648860i 0.615650 0.788019i \(-0.288893\pi\)
−0.990270 + 0.139159i \(0.955560\pi\)
\(54\) 9.14396i 1.24434i
\(55\) −2.12431 3.67941i −0.286442 0.496132i
\(56\) 7.65292 + 0.202510i 1.02266 + 0.0270616i
\(57\) 16.8397i 2.23048i
\(58\) 2.72318 1.57223i 0.357571 0.206444i
\(59\) 10.9940i 1.43129i 0.698463 + 0.715646i \(0.253868\pi\)
−0.698463 + 0.715646i \(0.746132\pi\)
\(60\) 0.197495 0.114024i 0.0254965 0.0147204i
\(61\) −3.65107 6.32385i −0.467472 0.809686i 0.531837 0.846847i \(-0.321502\pi\)
−0.999309 + 0.0371610i \(0.988169\pi\)
\(62\) 2.39673 + 4.15126i 0.304385 + 0.527210i
\(63\) −12.3281 + 6.68923i −1.55320 + 0.842764i
\(64\) −8.35330 −1.04416
\(65\) 2.74769 0.945710i 0.340809 0.117301i
\(66\) −10.4729 18.1396i −1.28912 2.23283i
\(67\) 6.36144 + 3.67278i 0.777174 + 0.448701i 0.835428 0.549600i \(-0.185220\pi\)
−0.0582541 + 0.998302i \(0.518553\pi\)
\(68\) 0.0550061 0.00667047
\(69\) −2.31199 + 4.00448i −0.278330 + 0.482083i
\(70\) −2.50686 1.53716i −0.299627 0.183725i
\(71\) −8.06668 4.65730i −0.957339 0.552720i −0.0619857 0.998077i \(-0.519743\pi\)
−0.895353 + 0.445357i \(0.853077\pi\)
\(72\) 13.2845 7.66982i 1.56559 0.903896i
\(73\) 4.33139 2.50073i 0.506951 0.292688i −0.224629 0.974444i \(-0.572117\pi\)
0.731579 + 0.681756i \(0.238784\pi\)
\(74\) 1.71273 0.199101
\(75\) 12.5345 1.44736
\(76\) 0.497091 0.286996i 0.0570202 0.0329207i
\(77\) 7.29072 11.8900i 0.830854 1.35499i
\(78\) 13.5462 4.66237i 1.53380 0.527909i
\(79\) −5.68437 + 9.84562i −0.639542 + 1.10772i 0.345992 + 0.938238i \(0.387543\pi\)
−0.985533 + 0.169481i \(0.945791\pi\)
\(80\) 2.64806 + 1.52886i 0.296062 + 0.170932i
\(81\) −1.60006 + 2.77138i −0.177784 + 0.307931i
\(82\) 0.639676 + 1.10795i 0.0706404 + 0.122353i
\(83\) 5.81962i 0.638786i −0.947622 0.319393i \(-0.896521\pi\)
0.947622 0.319393i \(-0.103479\pi\)
\(84\) 0.638204 + 0.391334i 0.0696337 + 0.0426980i
\(85\) −0.390935 0.225707i −0.0424029 0.0244813i
\(86\) 5.31117 + 3.06641i 0.572719 + 0.330659i
\(87\) 6.56959 0.704334
\(88\) −7.62677 + 13.2100i −0.813016 + 1.40819i
\(89\) 5.00946i 0.531001i −0.964111 0.265501i \(-0.914463\pi\)
0.964111 0.265501i \(-0.0855373\pi\)
\(90\) −5.89215 −0.621087
\(91\) 7.03057 + 6.44756i 0.737004 + 0.675888i
\(92\) 0.157611 0.0164320
\(93\) 10.0148i 1.03848i
\(94\) 2.65067 4.59109i 0.273395 0.473534i
\(95\) −4.71051 −0.483289
\(96\) −1.38492 0.799583i −0.141348 0.0816071i
\(97\) 9.22171 + 5.32416i 0.936323 + 0.540586i 0.888806 0.458284i \(-0.151536\pi\)
0.0475172 + 0.998870i \(0.484869\pi\)
\(98\) 0.510535 9.63988i 0.0515719 0.973774i
\(99\) 27.9464i 2.80872i
\(100\) −0.213623 0.370006i −0.0213623 0.0370006i
\(101\) 1.95777 3.39096i 0.194805 0.337413i −0.752031 0.659127i \(-0.770926\pi\)
0.946837 + 0.321715i \(0.104259\pi\)
\(102\) −1.92732 1.11274i −0.190833 0.110177i
\(103\) 4.22690 7.32120i 0.416488 0.721379i −0.579095 0.815260i \(-0.696594\pi\)
0.995583 + 0.0938810i \(0.0299273\pi\)
\(104\) −7.87287 6.84556i −0.771998 0.671262i
\(105\) −2.93003 5.40000i −0.285942 0.526986i
\(106\) 6.51434 3.76106i 0.632729 0.365306i
\(107\) −9.67522 −0.935339 −0.467670 0.883903i \(-0.654906\pi\)
−0.467670 + 0.883903i \(0.654906\pi\)
\(108\) 0.651174 0.0626592
\(109\) −12.6126 + 7.28189i −1.20807 + 0.697478i −0.962337 0.271860i \(-0.912361\pi\)
−0.245731 + 0.969338i \(0.579028\pi\)
\(110\) 5.07411 2.92954i 0.483798 0.279321i
\(111\) 3.09893 + 1.78917i 0.294137 + 0.169820i
\(112\) −0.265526 + 10.0343i −0.0250899 + 0.948153i
\(113\) −9.75572 + 16.8974i −0.917741 + 1.58957i −0.114903 + 0.993377i \(0.536656\pi\)
−0.802838 + 0.596197i \(0.796678\pi\)
\(114\) −23.2229 −2.17502
\(115\) −1.12016 0.646723i −0.104455 0.0603073i
\(116\) −0.111964 0.193927i −0.0103956 0.0180057i
\(117\) 18.7626 + 3.64958i 1.73460 + 0.337404i
\(118\) −15.1613 −1.39571
\(119\) 0.0391998 1.48137i 0.00359344 0.135797i
\(120\) 3.35955 + 5.81891i 0.306683 + 0.531191i
\(121\) 8.39477 + 14.5402i 0.763161 + 1.32183i
\(122\) 8.72093 5.03503i 0.789556 0.455850i
\(123\) 2.67290i 0.241007i
\(124\) 0.295626 0.170680i 0.0265480 0.0153275i
\(125\) 7.53598i 0.674038i
\(126\) −9.22482 17.0012i −0.821812 1.51459i
\(127\) −0.958656 1.66044i −0.0850670 0.147340i 0.820353 0.571858i \(-0.193777\pi\)
−0.905420 + 0.424517i \(0.860444\pi\)
\(128\) 10.4096i 0.920087i
\(129\) 6.40652 + 11.0964i 0.564063 + 0.976985i
\(130\) 1.30419 + 3.78922i 0.114385 + 0.332337i
\(131\) −7.79078 + 13.4940i −0.680684 + 1.17898i 0.294089 + 0.955778i \(0.404984\pi\)
−0.974772 + 0.223201i \(0.928349\pi\)
\(132\) −1.29178 + 0.745811i −0.112435 + 0.0649145i
\(133\) −7.37484 13.5917i −0.639479 1.17855i
\(134\) −5.06496 + 8.77278i −0.437546 + 0.757852i
\(135\) −4.62797 2.67196i −0.398312 0.229966i
\(136\) 1.62068i 0.138972i
\(137\) 7.85105i 0.670761i 0.942083 + 0.335380i \(0.108865\pi\)
−0.942083 + 0.335380i \(0.891135\pi\)
\(138\) −5.52240 3.18836i −0.470098 0.271411i
\(139\) −4.96241 + 8.59514i −0.420906 + 0.729030i −0.996028 0.0890370i \(-0.971621\pi\)
0.575122 + 0.818067i \(0.304954\pi\)
\(140\) −0.109466 + 0.178522i −0.00925160 + 0.0150879i
\(141\) 9.59197 5.53793i 0.807790 0.466378i
\(142\) 6.42267 11.1244i 0.538979 0.933538i
\(143\) −17.9722 + 6.18574i −1.50291 + 0.517278i
\(144\) 10.0565 + 17.4183i 0.838039 + 1.45153i
\(145\) 1.83769i 0.152612i
\(146\) 3.44864 + 5.97322i 0.285412 + 0.494347i
\(147\) 10.9938 16.9086i 0.906756 1.39460i
\(148\) 0.121969i 0.0100258i
\(149\) 6.85827 3.95962i 0.561851 0.324385i −0.192037 0.981388i \(-0.561509\pi\)
0.753888 + 0.657003i \(0.228176\pi\)
\(150\) 17.2858i 1.41138i
\(151\) 1.30005 0.750582i 0.105796 0.0610815i −0.446168 0.894949i \(-0.647212\pi\)
0.551965 + 0.833868i \(0.313878\pi\)
\(152\) 8.45592 + 14.6461i 0.685866 + 1.18795i
\(153\) −1.48464 2.57148i −0.120026 0.207892i
\(154\) 16.3970 + 10.0543i 1.32131 + 0.810198i
\(155\) −2.80140 −0.225014
\(156\) −0.332024 0.964671i −0.0265832 0.0772355i
\(157\) −1.92846 3.34019i −0.153908 0.266576i 0.778753 0.627331i \(-0.215853\pi\)
−0.932661 + 0.360754i \(0.882519\pi\)
\(158\) −13.5777 7.83906i −1.08018 0.623642i
\(159\) 15.7156 1.24633
\(160\) 0.223664 0.387398i 0.0176822 0.0306265i
\(161\) 0.112320 4.24462i 0.00885209 0.334523i
\(162\) −3.82189 2.20657i −0.300276 0.173364i
\(163\) 12.4369 7.18042i 0.974130 0.562414i 0.0736372 0.997285i \(-0.476539\pi\)
0.900493 + 0.434871i \(0.143206\pi\)
\(164\) 0.0789011 0.0455536i 0.00616114 0.00355714i
\(165\) 12.2411 0.952971
\(166\) 8.02557 0.622905
\(167\) −3.91563 + 2.26069i −0.303000 + 0.174937i −0.643790 0.765202i \(-0.722639\pi\)
0.340790 + 0.940140i \(0.389306\pi\)
\(168\) −11.5301 + 18.8038i −0.889567 + 1.45074i
\(169\) −1.80593 12.8740i −0.138918 0.990304i
\(170\) 0.311262 0.539121i 0.0238727 0.0413487i
\(171\) −26.8335 15.4923i −2.05201 1.18473i
\(172\) 0.218370 0.378227i 0.0166505 0.0288396i
\(173\) −9.75896 16.9030i −0.741960 1.28511i −0.951602 0.307334i \(-0.900563\pi\)
0.209642 0.977778i \(-0.432770\pi\)
\(174\) 9.05982i 0.686823i
\(175\) −10.1169 + 5.48940i −0.764764 + 0.414960i
\(176\) −17.3206 10.0000i −1.30559 0.753780i
\(177\) −27.4321 15.8379i −2.06192 1.19045i
\(178\) 6.90832 0.517800
\(179\) 10.4098 18.0303i 0.778065 1.34765i −0.154990 0.987916i \(-0.549535\pi\)
0.933055 0.359733i \(-0.117132\pi\)
\(180\) 0.419601i 0.0312752i
\(181\) 16.5522 1.23031 0.615157 0.788405i \(-0.289093\pi\)
0.615157 + 0.788405i \(0.289093\pi\)
\(182\) −8.89155 + 9.69554i −0.659085 + 0.718681i
\(183\) 21.0390 1.55525
\(184\) 4.64378i 0.342344i
\(185\) −0.500477 + 0.866851i −0.0367958 + 0.0637322i
\(186\) −13.8109 −1.01267
\(187\) 2.55704 + 1.47631i 0.186990 + 0.107958i
\(188\) −0.326948 0.188763i −0.0238451 0.0137670i
\(189\) 0.464056 17.5368i 0.0337551 1.27561i
\(190\) 6.49606i 0.471274i
\(191\) 2.12504 + 3.68068i 0.153762 + 0.266324i 0.932608 0.360892i \(-0.117528\pi\)
−0.778845 + 0.627216i \(0.784194\pi\)
\(192\) 12.0338 20.8431i 0.868463 1.50422i
\(193\) −10.0435 5.79861i −0.722946 0.417393i 0.0928898 0.995676i \(-0.470390\pi\)
−0.815836 + 0.578283i \(0.803723\pi\)
\(194\) −7.34231 + 12.7172i −0.527147 + 0.913045i
\(195\) −1.59860 + 8.21842i −0.114478 + 0.588533i
\(196\) −0.686490 0.0363570i −0.0490350 0.00259693i
\(197\) −12.4892 + 7.21066i −0.889821 + 0.513738i −0.873884 0.486135i \(-0.838406\pi\)
−0.0159371 + 0.999873i \(0.505073\pi\)
\(198\) 38.5396 2.73889
\(199\) −7.05924 −0.500416 −0.250208 0.968192i \(-0.580499\pi\)
−0.250208 + 0.968192i \(0.580499\pi\)
\(200\) 10.9017 6.29410i 0.770867 0.445060i
\(201\) −18.3286 + 10.5820i −1.29280 + 0.746398i
\(202\) 4.67632 + 2.69987i 0.329024 + 0.189962i
\(203\) −5.30245 + 2.87710i −0.372159 + 0.201933i
\(204\) −0.0792419 + 0.137251i −0.00554804 + 0.00960949i
\(205\) −0.747680 −0.0522202
\(206\) 10.0963 + 5.82912i 0.703445 + 0.406134i
\(207\) −4.25399 7.36812i −0.295673 0.512120i
\(208\) 8.97572 10.3227i 0.622354 0.715751i
\(209\) 30.8107 2.13122
\(210\) 7.44689 4.04067i 0.513884 0.278833i
\(211\) 13.2113 + 22.8827i 0.909505 + 1.57531i 0.814754 + 0.579807i \(0.196872\pi\)
0.0947513 + 0.995501i \(0.469794\pi\)
\(212\) −0.267838 0.463909i −0.0183952 0.0318614i
\(213\) 23.2417 13.4186i 1.59250 0.919429i
\(214\) 13.3427i 0.912086i
\(215\) −3.10396 + 1.79207i −0.211688 + 0.122218i
\(216\) 19.1859i 1.30544i
\(217\) −4.38590 8.08314i −0.297734 0.548719i
\(218\) −10.0421 17.3935i −0.680138 1.17803i
\(219\) 14.4102i 0.973752i
\(220\) −0.208623 0.361345i −0.0140654 0.0243619i
\(221\) −1.32509 + 1.52395i −0.0891353 + 0.102512i
\(222\) −2.46736 + 4.27359i −0.165598 + 0.286825i
\(223\) 19.9191 11.5003i 1.33388 0.770115i 0.347987 0.937499i \(-0.386865\pi\)
0.985892 + 0.167384i \(0.0535321\pi\)
\(224\) 1.46797 + 0.0388452i 0.0980828 + 0.00259545i
\(225\) −11.5316 + 19.9733i −0.768772 + 1.33155i
\(226\) −23.3024 13.4537i −1.55006 0.894925i
\(227\) 0.453367i 0.0300911i −0.999887 0.0150455i \(-0.995211\pi\)
0.999887 0.0150455i \(-0.00478932\pi\)
\(228\) 1.65379i 0.109525i
\(229\) 15.0112 + 8.66674i 0.991970 + 0.572714i 0.905863 0.423571i \(-0.139224\pi\)
0.0861077 + 0.996286i \(0.472557\pi\)
\(230\) 0.891867 1.54476i 0.0588080 0.101858i
\(231\) 19.1649 + 35.3205i 1.26096 + 2.32392i
\(232\) 5.71380 3.29886i 0.375129 0.216581i
\(233\) 3.90756 6.76809i 0.255992 0.443392i −0.709172 0.705035i \(-0.750931\pi\)
0.965165 + 0.261643i \(0.0842644\pi\)
\(234\) −5.03298 + 25.8746i −0.329016 + 1.69148i
\(235\) 1.54910 + 2.68313i 0.101052 + 0.175028i
\(236\) 1.07969i 0.0702818i
\(237\) −16.3778 28.3672i −1.06385 1.84265i
\(238\) 2.04289 + 0.0540587i 0.132421 + 0.00350411i
\(239\) 13.5314i 0.875276i −0.899151 0.437638i \(-0.855815\pi\)
0.899151 0.437638i \(-0.144185\pi\)
\(240\) −7.62961 + 4.40496i −0.492489 + 0.284339i
\(241\) 22.5592i 1.45317i −0.687078 0.726583i \(-0.741107\pi\)
0.687078 0.726583i \(-0.258893\pi\)
\(242\) −20.0517 + 11.5768i −1.28897 + 0.744188i
\(243\) 5.33581 + 9.24189i 0.342292 + 0.592868i
\(244\) −0.358563 0.621049i −0.0229546 0.0397586i
\(245\) 4.72978 + 3.07526i 0.302175 + 0.196471i
\(246\) −3.68607 −0.235015
\(247\) −4.02364 + 20.6856i −0.256018 + 1.31619i
\(248\) 5.02884 + 8.71020i 0.319331 + 0.553098i
\(249\) 14.5211 + 8.38375i 0.920236 + 0.531299i
\(250\) −10.3925 −0.657281
\(251\) −3.36618 + 5.83039i −0.212471 + 0.368011i −0.952487 0.304578i \(-0.901485\pi\)
0.740016 + 0.672589i \(0.234818\pi\)
\(252\) −1.21071 + 0.656932i −0.0762678 + 0.0413828i
\(253\) 7.32677 + 4.23011i 0.460630 + 0.265945i
\(254\) 2.28984 1.32204i 0.143677 0.0829521i
\(255\) 1.12636 0.650306i 0.0705356 0.0407238i
\(256\) −2.35120 −0.146950
\(257\) −16.5381 −1.03162 −0.515811 0.856703i \(-0.672509\pi\)
−0.515811 + 0.856703i \(0.672509\pi\)
\(258\) −15.3026 + 8.83494i −0.952696 + 0.550039i
\(259\) −3.28476 0.0869209i −0.204105 0.00540100i
\(260\) 0.269844 0.0928757i 0.0167350 0.00575991i
\(261\) −6.04392 + 10.4684i −0.374110 + 0.647977i
\(262\) −18.6090 10.7439i −1.14967 0.663761i
\(263\) 5.01137 8.67994i 0.309014 0.535228i −0.669133 0.743143i \(-0.733334\pi\)
0.978147 + 0.207915i \(0.0666676\pi\)
\(264\) −21.9743 38.0606i −1.35242 2.34247i
\(265\) 4.39608i 0.270049i
\(266\) 18.7437 10.1703i 1.14925 0.623581i
\(267\) 12.4996 + 7.21663i 0.764962 + 0.441651i
\(268\) 0.624740 + 0.360694i 0.0381621 + 0.0220329i
\(269\) −15.7230 −0.958647 −0.479323 0.877638i \(-0.659118\pi\)
−0.479323 + 0.877638i \(0.659118\pi\)
\(270\) 3.68478 6.38223i 0.224249 0.388410i
\(271\) 5.21618i 0.316860i 0.987370 + 0.158430i \(0.0506433\pi\)
−0.987370 + 0.158430i \(0.949357\pi\)
\(272\) −2.12499 −0.128847
\(273\) −26.2162 + 8.25427i −1.58668 + 0.499571i
\(274\) −10.8270 −0.654085
\(275\) 22.9337i 1.38296i
\(276\) −0.227054 + 0.393269i −0.0136671 + 0.0236720i
\(277\) 19.2724 1.15797 0.578983 0.815340i \(-0.303450\pi\)
0.578983 + 0.815340i \(0.303450\pi\)
\(278\) −11.8532 6.84343i −0.710906 0.410442i
\(279\) −15.9582 9.21345i −0.955390 0.551595i
\(280\) −5.25991 3.22527i −0.314340 0.192747i
\(281\) 2.14283i 0.127831i −0.997955 0.0639153i \(-0.979641\pi\)
0.997955 0.0639153i \(-0.0203588\pi\)
\(282\) 7.63711 + 13.2279i 0.454783 + 0.787707i
\(283\) −7.87512 + 13.6401i −0.468127 + 0.810820i −0.999337 0.0364203i \(-0.988405\pi\)
0.531209 + 0.847241i \(0.321738\pi\)
\(284\) −0.792207 0.457381i −0.0470089 0.0271406i
\(285\) 6.78597 11.7537i 0.401966 0.696226i
\(286\) −8.53048 24.7847i −0.504418 1.46555i
\(287\) −1.17058 2.15735i −0.0690969 0.127344i
\(288\) 2.54821 1.47121i 0.150155 0.0866919i
\(289\) −16.6863 −0.981546
\(290\) −2.53427 −0.148817
\(291\) −26.5696 + 15.3400i −1.55754 + 0.899246i
\(292\) 0.425374 0.245590i 0.0248932 0.0143721i
\(293\) −20.0474 11.5744i −1.17118 0.676182i −0.217223 0.976122i \(-0.569700\pi\)
−0.953958 + 0.299940i \(0.903033\pi\)
\(294\) 23.3179 + 15.1611i 1.35993 + 0.884214i
\(295\) 4.43029 7.67348i 0.257941 0.446767i
\(296\) 3.59366 0.208877
\(297\) 30.2708 + 17.4769i 1.75649 + 1.01411i
\(298\) 5.46054 + 9.45793i 0.316320 + 0.547883i
\(299\) −3.79682 + 4.36661i −0.219576 + 0.252528i
\(300\) 1.23098 0.0710708
\(301\) −10.0304 6.15046i −0.578145 0.354507i
\(302\) 1.03509 + 1.79283i 0.0595629 + 0.103166i
\(303\) 5.64073 + 9.77003i 0.324052 + 0.561274i
\(304\) −19.2036 + 11.0872i −1.10140 + 0.635894i
\(305\) 5.88515i 0.336983i
\(306\) 3.54621 2.04740i 0.202723 0.117042i
\(307\) 4.23590i 0.241756i 0.992667 + 0.120878i \(0.0385709\pi\)
−0.992667 + 0.120878i \(0.961429\pi\)
\(308\) 0.716002 1.16769i 0.0407980 0.0665351i
\(309\) 12.1785 + 21.0939i 0.692813 + 1.19999i
\(310\) 3.86328i 0.219420i
\(311\) 13.6251 + 23.5993i 0.772606 + 1.33819i 0.936130 + 0.351654i \(0.114381\pi\)
−0.163524 + 0.986539i \(0.552286\pi\)
\(312\) 28.4227 9.78261i 1.60912 0.553831i
\(313\) −1.34849 + 2.33565i −0.0762209 + 0.132018i −0.901617 0.432536i \(-0.857619\pi\)
0.825396 + 0.564555i \(0.190952\pi\)
\(314\) 4.60631 2.65945i 0.259949 0.150082i
\(315\) 11.3003 + 0.299026i 0.636698 + 0.0168482i
\(316\) −0.558247 + 0.966913i −0.0314039 + 0.0543931i
\(317\) 20.8456 + 12.0352i 1.17081 + 0.675966i 0.953870 0.300220i \(-0.0970600\pi\)
0.216937 + 0.976186i \(0.430393\pi\)
\(318\) 21.6727i 1.21535i
\(319\) 12.0200i 0.672991i
\(320\) 5.83037 + 3.36617i 0.325928 + 0.188174i
\(321\) 13.9381 24.1416i 0.777951 1.34745i
\(322\) 5.85356 + 0.154896i 0.326206 + 0.00863202i
\(323\) 2.83504 1.63681i 0.157746 0.0910745i
\(324\) −0.157138 + 0.272170i −0.00872986 + 0.0151206i
\(325\) 15.3972 + 2.99497i 0.854082 + 0.166131i
\(326\) 9.90220 + 17.1511i 0.548432 + 0.949912i
\(327\) 41.9612i 2.32046i
\(328\) 1.34217 + 2.32471i 0.0741091 + 0.128361i
\(329\) −5.31659 + 8.67051i −0.293113 + 0.478021i
\(330\) 16.8812i 0.929279i
\(331\) 0.536696 0.309862i 0.0294995 0.0170315i −0.485178 0.874416i \(-0.661245\pi\)
0.514677 + 0.857384i \(0.327912\pi\)
\(332\) 0.571530i 0.0313668i
\(333\) −5.70194 + 3.29201i −0.312464 + 0.180401i
\(334\) −3.11762 5.39987i −0.170588 0.295468i
\(335\) −2.96007 5.12699i −0.161726 0.280117i
\(336\) −24.6550 15.1180i −1.34504 0.824754i
\(337\) −5.72118 −0.311652 −0.155826 0.987784i \(-0.549804\pi\)
−0.155826 + 0.987784i \(0.549804\pi\)
\(338\) 17.7539 2.49048i 0.965684 0.135464i
\(339\) −28.1082 48.6848i −1.52663 2.64420i
\(340\) −0.0383927 0.0221660i −0.00208214 0.00120212i
\(341\) 18.3235 0.992272
\(342\) 21.3647 37.0048i 1.15527 2.00099i
\(343\) −1.46836 + 18.4620i −0.0792837 + 0.996852i
\(344\) 11.1439 + 6.43396i 0.600841 + 0.346896i
\(345\) 3.22740 1.86334i 0.173757 0.100319i
\(346\) 23.3102 13.4581i 1.25316 0.723514i
\(347\) −1.86486 −0.100111 −0.0500554 0.998746i \(-0.515940\pi\)
−0.0500554 + 0.998746i \(0.515940\pi\)
\(348\) 0.645182 0.0345854
\(349\) −19.3273 + 11.1586i −1.03457 + 0.597307i −0.918290 0.395909i \(-0.870429\pi\)
−0.116277 + 0.993217i \(0.537096\pi\)
\(350\) −7.57019 13.9517i −0.404644 0.745751i
\(351\) −15.6867 + 18.0408i −0.837295 + 0.962947i
\(352\) −1.46295 + 2.53391i −0.0779756 + 0.135058i
\(353\) 2.01956 + 1.16600i 0.107491 + 0.0620597i 0.552781 0.833326i \(-0.313566\pi\)
−0.445291 + 0.895386i \(0.646900\pi\)
\(354\) 21.8414 37.8304i 1.16086 2.01066i
\(355\) 3.75354 + 6.50133i 0.199217 + 0.345055i
\(356\) 0.491966i 0.0260741i
\(357\) 3.63984 + 2.23188i 0.192641 + 0.118123i
\(358\) 24.8648 + 14.3557i 1.31415 + 0.758722i
\(359\) −2.83281 1.63553i −0.149510 0.0863197i 0.423379 0.905953i \(-0.360844\pi\)
−0.572889 + 0.819633i \(0.694177\pi\)
\(360\) −12.3629 −0.651585
\(361\) 7.58017 13.1292i 0.398956 0.691013i
\(362\) 22.8264i 1.19973i
\(363\) −48.3741 −2.53898
\(364\) 0.690454 + 0.633198i 0.0361896 + 0.0331886i
\(365\) −4.03092 −0.210988
\(366\) 29.0139i 1.51658i
\(367\) −2.07645 + 3.59652i −0.108390 + 0.187737i −0.915118 0.403186i \(-0.867903\pi\)
0.806728 + 0.590923i \(0.201236\pi\)
\(368\) −6.08880 −0.317401
\(369\) −4.25916 2.45903i −0.221723 0.128012i
\(370\) −1.19544 0.690185i −0.0621477 0.0358810i
\(371\) −12.6844 + 6.88256i −0.658543 + 0.357325i
\(372\) 0.983525i 0.0509934i
\(373\) 5.55446 + 9.62061i 0.287599 + 0.498136i 0.973236 0.229807i \(-0.0738096\pi\)
−0.685637 + 0.727944i \(0.740476\pi\)
\(374\) −2.03591 + 3.52630i −0.105275 + 0.182341i
\(375\) −18.8037 10.8563i −0.971021 0.560619i
\(376\) 5.56165 9.63305i 0.286820 0.496787i
\(377\) 8.06996 + 1.56972i 0.415624 + 0.0808447i
\(378\) 24.1842 + 0.639958i 1.24390 + 0.0329159i
\(379\) −4.01862 + 2.32015i −0.206422 + 0.119178i −0.599648 0.800264i \(-0.704693\pi\)
0.393225 + 0.919442i \(0.371359\pi\)
\(380\) −0.462607 −0.0237312
\(381\) 5.52416 0.283012
\(382\) −5.07586 + 2.93055i −0.259703 + 0.149940i
\(383\) −3.17773 + 1.83466i −0.162374 + 0.0937469i −0.578985 0.815338i \(-0.696551\pi\)
0.416611 + 0.909085i \(0.363218\pi\)
\(384\) 25.9740 + 14.9961i 1.32548 + 0.765266i
\(385\) −9.88008 + 5.36092i −0.503535 + 0.273218i
\(386\) 7.99661 13.8505i 0.407017 0.704973i
\(387\) −23.5756 −1.19842
\(388\) 0.905640 + 0.522872i 0.0459769 + 0.0265448i
\(389\) 8.44156 + 14.6212i 0.428004 + 0.741324i 0.996696 0.0812262i \(-0.0258836\pi\)
−0.568692 + 0.822551i \(0.692550\pi\)
\(390\) −11.3337 2.20455i −0.573902 0.111632i
\(391\) 0.898894 0.0454590
\(392\) 1.07121 20.2265i 0.0541042 1.02159i
\(393\) −22.4468 38.8790i −1.13229 1.96119i
\(394\) −9.94390 17.2233i −0.500966 0.867699i
\(395\) 7.93506 4.58131i 0.399256 0.230511i
\(396\) 2.74454i 0.137918i
\(397\) −14.4700 + 8.35428i −0.726230 + 0.419289i −0.817041 0.576579i \(-0.804387\pi\)
0.0908114 + 0.995868i \(0.471054\pi\)
\(398\) 9.73508i 0.487976i
\(399\) 44.5381 + 1.17856i 2.22970 + 0.0590019i
\(400\) 8.25267 + 14.2940i 0.412633 + 0.714702i
\(401\) 25.3134i 1.26409i −0.774931 0.632046i \(-0.782215\pi\)
0.774931 0.632046i \(-0.217785\pi\)
\(402\) −14.5932 25.2761i −0.727842 1.26066i
\(403\) −2.39291 + 12.3020i −0.119199 + 0.612805i
\(404\) 0.192267 0.333017i 0.00956566 0.0165682i
\(405\) 2.23359 1.28956i 0.110988 0.0640789i
\(406\) −3.96768 7.31237i −0.196913 0.362907i
\(407\) 3.27354 5.66994i 0.162263 0.281048i
\(408\) −4.04391 2.33475i −0.200203 0.115587i
\(409\) 5.73343i 0.283500i 0.989903 + 0.141750i \(0.0452729\pi\)
−0.989903 + 0.141750i \(0.954727\pi\)
\(410\) 1.03109i 0.0509220i
\(411\) −19.5899 11.3102i −0.966299 0.557893i
\(412\) 0.415112 0.718996i 0.0204511 0.0354224i
\(413\) 29.0771 + 0.769435i 1.43079 + 0.0378614i
\(414\) 10.1610 5.86648i 0.499388 0.288322i
\(415\) −2.34516 + 4.06193i −0.115119 + 0.199392i
\(416\) −1.51016 1.31310i −0.0740416 0.0643801i
\(417\) −14.2977 24.7643i −0.700161 1.21272i
\(418\) 42.4897i 2.07824i
\(419\) 17.1729 + 29.7443i 0.838950 + 1.45310i 0.890773 + 0.454448i \(0.150164\pi\)
−0.0518229 + 0.998656i \(0.516503\pi\)
\(420\) −0.287751 0.530320i −0.0140408 0.0258769i
\(421\) 2.94167i 0.143368i −0.997427 0.0716842i \(-0.977163\pi\)
0.997427 0.0716842i \(-0.0228374\pi\)
\(422\) −31.5565 + 18.2191i −1.53614 + 0.886894i
\(423\) 20.3793i 0.990873i
\(424\) 13.6684 7.89148i 0.663798 0.383244i
\(425\) −1.21835 2.11024i −0.0590985 0.102362i
\(426\) 18.5050 + 32.0516i 0.896571 + 1.55291i
\(427\) −16.9810 + 9.21387i −0.821768 + 0.445890i
\(428\) −0.950178 −0.0459286
\(429\) 10.4562 53.7554i 0.504829 2.59533i
\(430\) −2.47137 4.28053i −0.119180 0.206426i
\(431\) 34.3773 + 19.8478i 1.65590 + 0.956033i 0.974578 + 0.224048i \(0.0719273\pi\)
0.681321 + 0.731985i \(0.261406\pi\)
\(432\) −25.1561 −1.21032
\(433\) −4.91827 + 8.51869i −0.236357 + 0.409382i −0.959666 0.281142i \(-0.909287\pi\)
0.723309 + 0.690524i \(0.242620\pi\)
\(434\) 11.1471 6.04840i 0.535078 0.290332i
\(435\) −4.58538 2.64737i −0.219852 0.126932i
\(436\) −1.23865 + 0.715135i −0.0593206 + 0.0342488i
\(437\) 8.12331 4.69000i 0.388591 0.224353i
\(438\) −19.8725 −0.949544
\(439\) −28.5465 −1.36245 −0.681226 0.732073i \(-0.738553\pi\)
−0.681226 + 0.732073i \(0.738553\pi\)
\(440\) 10.6465 6.14678i 0.507554 0.293036i
\(441\) 16.8290 + 33.0739i 0.801383 + 1.57495i
\(442\) −2.10161 1.82737i −0.0999632 0.0869193i
\(443\) −1.66951 + 2.89167i −0.0793207 + 0.137387i −0.902957 0.429731i \(-0.858608\pi\)
0.823636 + 0.567118i \(0.191942\pi\)
\(444\) 0.304337 + 0.175709i 0.0144432 + 0.00833880i
\(445\) −2.01868 + 3.49646i −0.0956947 + 0.165748i
\(446\) 15.8595 + 27.4695i 0.750969 + 1.30072i
\(447\) 22.8170i 1.07921i
\(448\) −0.584622 + 22.0930i −0.0276208 + 1.04380i
\(449\) 15.7487 + 9.09253i 0.743228 + 0.429103i 0.823242 0.567691i \(-0.192163\pi\)
−0.0800136 + 0.996794i \(0.525496\pi\)
\(450\) −27.5443 15.9027i −1.29845 0.749660i
\(451\) 4.89045 0.230282
\(452\) −0.958084 + 1.65945i −0.0450645 + 0.0780539i
\(453\) 4.32516i 0.203214i
\(454\) 0.625219 0.0293430
\(455\) −2.30894 7.33336i −0.108245 0.343793i
\(456\) −48.7265 −2.28183
\(457\) 8.72932i 0.408341i −0.978935 0.204170i \(-0.934550\pi\)
0.978935 0.204170i \(-0.0654496\pi\)
\(458\) −11.9519 + 20.7013i −0.558476 + 0.967309i
\(459\) 3.71381 0.173346
\(460\) −0.110008 0.0635130i −0.00512914 0.00296131i
\(461\) −1.96695 1.13562i −0.0916099 0.0528910i 0.453495 0.891259i \(-0.350177\pi\)
−0.545105 + 0.838368i \(0.683510\pi\)
\(462\) −48.7089 + 26.4294i −2.26614 + 1.22961i
\(463\) 5.48326i 0.254829i −0.991850 0.127414i \(-0.959332\pi\)
0.991850 0.127414i \(-0.0406678\pi\)
\(464\) 4.32538 + 7.49178i 0.200801 + 0.347797i
\(465\) 4.03570 6.99003i 0.187151 0.324155i
\(466\) 9.33356 + 5.38873i 0.432369 + 0.249628i
\(467\) 9.44095 16.3522i 0.436875 0.756690i −0.560572 0.828106i \(-0.689419\pi\)
0.997447 + 0.0714164i \(0.0227519\pi\)
\(468\) 1.84262 + 0.358416i 0.0851753 + 0.0165678i
\(469\) 10.1591 16.5679i 0.469103 0.765032i
\(470\) −3.70018 + 2.13630i −0.170677 + 0.0985401i
\(471\) 11.1126 0.512040
\(472\) −31.8115 −1.46424
\(473\) 20.3025 11.7217i 0.933510 0.538962i
\(474\) 39.1200 22.5859i 1.79684 1.03741i
\(475\) −22.0204 12.7135i −1.01037 0.583335i
\(476\) 0.00384971 0.145482i 0.000176451 0.00666814i
\(477\) −14.4582 + 25.0423i −0.661994 + 1.14661i
\(478\) 18.6606 0.853516
\(479\) −28.6961 16.5677i −1.31116 0.756997i −0.328869 0.944375i \(-0.606668\pi\)
−0.982288 + 0.187378i \(0.940001\pi\)
\(480\) 0.644422 + 1.11617i 0.0294137 + 0.0509461i
\(481\) 3.37917 + 2.93823i 0.154077 + 0.133972i
\(482\) 31.1104 1.41704
\(483\) 10.4293 + 6.39506i 0.474551 + 0.290985i
\(484\) 0.824428 + 1.42795i 0.0374740 + 0.0649069i
\(485\) −4.29100 7.43222i −0.194844 0.337480i
\(486\) −12.7451 + 7.35838i −0.578129 + 0.333783i
\(487\) 15.9563i 0.723048i −0.932363 0.361524i \(-0.882257\pi\)
0.932363 0.361524i \(-0.117743\pi\)
\(488\) 18.2983 10.5645i 0.828326 0.478234i
\(489\) 41.3765i 1.87111i
\(490\) −4.24096 + 6.52263i −0.191587 + 0.294662i
\(491\) −15.8464 27.4468i −0.715138 1.23866i −0.962906 0.269836i \(-0.913031\pi\)
0.247769 0.968819i \(-0.420303\pi\)
\(492\) 0.262498i 0.0118343i
\(493\) −0.638559 1.10602i −0.0287593 0.0498125i
\(494\) −28.5266 5.54882i −1.28347 0.249653i
\(495\) −11.2617 + 19.5058i −0.506174 + 0.876720i
\(496\) −11.4206 + 6.59368i −0.512800 + 0.296065i
\(497\) −12.8823 + 21.0090i −0.577850 + 0.942383i
\(498\) −11.5617 + 20.0254i −0.518090 + 0.897358i
\(499\) 20.9738 + 12.1092i 0.938916 + 0.542083i 0.889620 0.456701i \(-0.150969\pi\)
0.0492955 + 0.998784i \(0.484302\pi\)
\(500\) 0.740089i 0.0330978i
\(501\) 13.0270i 0.582004i
\(502\) −8.04043 4.64215i −0.358862 0.207189i
\(503\) −0.427249 + 0.740017i −0.0190501 + 0.0329957i −0.875393 0.483411i \(-0.839398\pi\)
0.856343 + 0.516407i \(0.172731\pi\)
\(504\) −19.3556 35.6720i −0.862166 1.58896i
\(505\) −2.73294 + 1.57786i −0.121614 + 0.0702139i
\(506\) −5.83356 + 10.1040i −0.259333 + 0.449179i
\(507\) 34.7246 + 14.0401i 1.54218 + 0.623542i
\(508\) −0.0941471 0.163068i −0.00417710 0.00723495i
\(509\) 1.30000i 0.0576215i 0.999585 + 0.0288108i \(0.00917202\pi\)
−0.999585 + 0.0288108i \(0.990828\pi\)
\(510\) 0.896808 + 1.55332i 0.0397113 + 0.0687820i
\(511\) −6.31085 11.6308i −0.279176 0.514516i
\(512\) 24.0616i 1.06338i
\(513\) 33.5618 19.3769i 1.48179 0.855511i
\(514\) 22.8070i 1.00597i
\(515\) −5.90051 + 3.40666i −0.260007 + 0.150115i
\(516\) 0.629167 + 1.08975i 0.0276976 + 0.0479736i
\(517\) −10.1324 17.5499i −0.445624 0.771844i
\(518\) 0.119869 4.52987i 0.00526673 0.199031i
\(519\) 56.2351 2.46845
\(520\) 2.73645 + 7.95057i 0.120001 + 0.348655i
\(521\) 12.5228 + 21.6901i 0.548632 + 0.950259i 0.998369 + 0.0570974i \(0.0181846\pi\)
−0.449736 + 0.893161i \(0.648482\pi\)
\(522\) −14.4365 8.33490i −0.631867 0.364809i
\(523\) 12.8239 0.560752 0.280376 0.959890i \(-0.409541\pi\)
0.280376 + 0.959890i \(0.409541\pi\)
\(524\) −0.765112 + 1.32521i −0.0334241 + 0.0578922i
\(525\) 0.877253 33.1516i 0.0382865 1.44686i
\(526\) 11.9701 + 6.91095i 0.521922 + 0.301332i
\(527\) 1.68603 0.973429i 0.0734446 0.0424032i
\(528\) 49.9040 28.8121i 2.17179 1.25389i
\(529\) −20.4244 −0.888016
\(530\) −6.06244 −0.263335
\(531\) 50.4743 29.1413i 2.19040 1.26463i
\(532\) −0.724263 1.33480i −0.0314008 0.0578711i
\(533\) −0.638656 + 3.28334i −0.0276632 + 0.142217i
\(534\) −9.95213 + 17.2376i −0.430671 + 0.745944i
\(535\) 6.75303 + 3.89886i 0.291959 + 0.168563i
\(536\) −10.6273 + 18.4071i −0.459031 + 0.795066i
\(537\) 29.9928 + 51.9490i 1.29428 + 2.24176i
\(538\) 21.6828i 0.934814i
\(539\) −30.9367 20.1148i −1.33254 0.866406i
\(540\) −0.454501 0.262406i −0.0195586 0.0112922i
\(541\) −24.8938 14.3725i −1.07027 0.617920i −0.142014 0.989865i \(-0.545358\pi\)
−0.928255 + 0.371944i \(0.878691\pi\)
\(542\) −7.19340 −0.308983
\(543\) −23.8451 + 41.3009i −1.02329 + 1.77239i
\(544\) 0.310876i 0.0133287i
\(545\) 11.7376 0.502785
\(546\) −11.3831 36.1536i −0.487151 1.54723i
\(547\) −8.88085 −0.379718 −0.189859 0.981811i \(-0.560803\pi\)
−0.189859 + 0.981811i \(0.560803\pi\)
\(548\) 0.771031i 0.0329368i
\(549\) −19.3556 + 33.5248i −0.826075 + 1.43080i
\(550\) 31.6269 1.34857
\(551\) −11.5413 6.66339i −0.491677 0.283870i
\(552\) −11.5871 6.68983i −0.493181 0.284738i
\(553\) 25.6421 + 15.7232i 1.09041 + 0.668620i
\(554\) 26.5777i 1.12918i
\(555\) −1.44198 2.49757i −0.0612084 0.106016i
\(556\) −0.487345 + 0.844106i −0.0206680 + 0.0357981i
\(557\) 33.5389 + 19.3637i 1.42109 + 0.820465i 0.996392 0.0848711i \(-0.0270478\pi\)
0.424695 + 0.905336i \(0.360381\pi\)
\(558\) 12.7059 22.0072i 0.537882 0.931639i
\(559\) 5.21830 + 15.1614i 0.220711 + 0.641259i
\(560\) 4.22890 6.89666i 0.178704 0.291437i
\(561\) −7.36736 + 4.25355i −0.311050 + 0.179585i
\(562\) 2.95508 0.124653
\(563\) −6.90882 −0.291172 −0.145586 0.989346i \(-0.546507\pi\)
−0.145586 + 0.989346i \(0.546507\pi\)
\(564\) 0.942002 0.543865i 0.0396655 0.0229009i
\(565\) 13.6184 7.86260i 0.572932 0.330782i
\(566\) −18.8105 10.8602i −0.790663 0.456489i
\(567\) 7.21784 + 4.42583i 0.303121 + 0.185868i
\(568\) 13.4761 23.3413i 0.565444 0.979379i
\(569\) 2.83745 0.118952 0.0594759 0.998230i \(-0.481057\pi\)
0.0594759 + 0.998230i \(0.481057\pi\)
\(570\) 16.2089 + 9.35823i 0.678917 + 0.391973i
\(571\) −23.3362 40.4195i −0.976589 1.69150i −0.674588 0.738195i \(-0.735679\pi\)
−0.302001 0.953307i \(-0.597655\pi\)
\(572\) −1.76500 + 0.607485i −0.0737985 + 0.0254002i
\(573\) −12.2453 −0.511557
\(574\) 2.97511 1.61429i 0.124179 0.0673791i
\(575\) −3.49096 6.04653i −0.145583 0.252158i
\(576\) 22.1418 + 38.3507i 0.922576 + 1.59795i
\(577\) −9.88033 + 5.70441i −0.411323 + 0.237478i −0.691358 0.722512i \(-0.742987\pi\)
0.280035 + 0.959990i \(0.409654\pi\)
\(578\) 23.0113i 0.957144i
\(579\) 28.9373 16.7070i 1.20259 0.694318i
\(580\) 0.180474i 0.00749379i
\(581\) −15.3919 0.407298i −0.638563 0.0168975i
\(582\) −21.1547 36.6410i −0.876890 1.51882i
\(583\) 28.7541i 1.19087i
\(584\) 7.23597 + 12.5331i 0.299426 + 0.518622i
\(585\) −11.6251 10.1081i −0.480637 0.417920i
\(586\) 15.9617 27.6465i 0.659371 1.14206i
\(587\) −40.2191 + 23.2205i −1.66002 + 0.958413i −0.687318 + 0.726356i \(0.741212\pi\)
−0.972702 + 0.232057i \(0.925454\pi\)
\(588\) 1.07968 1.66055i 0.0445251 0.0684799i
\(589\) 10.1578 17.5938i 0.418544 0.724939i
\(590\) 10.5821 + 6.10961i 0.435660 + 0.251529i
\(591\) 41.5508i 1.70917i
\(592\) 4.71191i 0.193658i
\(593\) 17.5462 + 10.1303i 0.720535 + 0.416001i 0.814950 0.579532i \(-0.196765\pi\)
−0.0944146 + 0.995533i \(0.530098\pi\)
\(594\) −24.1016 + 41.7451i −0.988899 + 1.71282i
\(595\) −0.624315 + 1.01816i −0.0255944 + 0.0417404i
\(596\) 0.673533 0.388864i 0.0275890 0.0159285i
\(597\) 10.1696 17.6142i 0.416212 0.720901i
\(598\) −6.02179 5.23603i −0.246249 0.214117i
\(599\) 19.4938 + 33.7642i 0.796494 + 1.37957i 0.921886 + 0.387462i \(0.126648\pi\)
−0.125391 + 0.992107i \(0.540019\pi\)
\(600\) 36.2692i 1.48068i
\(601\) −9.56951 16.5749i −0.390348 0.676103i 0.602147 0.798385i \(-0.294312\pi\)
−0.992495 + 0.122282i \(0.960979\pi\)
\(602\) 8.48182 13.8325i 0.345693 0.563771i
\(603\) 38.9412i 1.58581i
\(604\) 0.127674 0.0737127i 0.00519499 0.00299933i
\(605\) 13.5315i 0.550134i
\(606\) −13.4734 + 7.77888i −0.547320 + 0.315995i
\(607\) −21.6668 37.5280i −0.879428 1.52321i −0.851970 0.523590i \(-0.824592\pi\)
−0.0274572 0.999623i \(-0.508741\pi\)
\(608\) 1.62200 + 2.80939i 0.0657808 + 0.113936i
\(609\) 0.459785 17.3754i 0.0186314 0.704087i
\(610\) −8.11595 −0.328605
\(611\) 13.1058 4.51081i 0.530205 0.182488i
\(612\) −0.145803 0.252538i −0.00589373 0.0102082i
\(613\) 8.92834 + 5.15478i 0.360612 + 0.208200i 0.669349 0.742948i \(-0.266573\pi\)
−0.308737 + 0.951147i \(0.599906\pi\)
\(614\) −5.84154 −0.235745
\(615\) 1.07711 1.86561i 0.0434332 0.0752285i
\(616\) 34.4042 + 21.0960i 1.38619 + 0.849982i
\(617\) −9.58684 5.53497i −0.385952 0.222829i 0.294453 0.955666i \(-0.404863\pi\)
−0.680405 + 0.732837i \(0.738196\pi\)
\(618\) −29.0896 + 16.7949i −1.17015 + 0.675589i
\(619\) 29.2384 16.8808i 1.17519 0.678498i 0.220295 0.975433i \(-0.429298\pi\)
0.954897 + 0.296936i \(0.0959647\pi\)
\(620\) −0.275118 −0.0110490
\(621\) 10.6413 0.427020
\(622\) −32.5447 + 18.7897i −1.30492 + 0.753399i
\(623\) −13.2491 0.350597i −0.530816 0.0140464i
\(624\) 12.8267 + 37.2671i 0.513480 + 1.49188i
\(625\) −7.83931 + 13.5781i −0.313573 + 0.543124i
\(626\) −3.22098 1.85964i −0.128736 0.0743260i
\(627\) −44.3860 + 76.8787i −1.77260 + 3.07024i
\(628\) −0.189389 0.328031i −0.00755745 0.0130899i
\(629\) 0.695623i 0.0277363i
\(630\) −0.412374 + 15.5837i −0.0164294 + 0.620870i
\(631\) 33.4264 + 19.2987i 1.33068 + 0.768271i 0.985405 0.170229i \(-0.0544507\pi\)
0.345280 + 0.938500i \(0.387784\pi\)
\(632\) −28.4887 16.4480i −1.13322 0.654265i
\(633\) −76.1290 −3.02586
\(634\) −16.5972 + 28.7473i −0.659161 + 1.14170i
\(635\) 1.54525i 0.0613215i
\(636\) 1.54339 0.0611995
\(637\) 17.5447 18.1434i 0.695148 0.718867i
\(638\) 16.5763 0.656260
\(639\) 49.3798i 1.95343i
\(640\) −4.19480 + 7.26560i −0.165814 + 0.287198i
\(641\) −19.5228 −0.771105 −0.385553 0.922686i \(-0.625989\pi\)
−0.385553 + 0.922686i \(0.625989\pi\)
\(642\) 33.2926 + 19.2215i 1.31395 + 0.758611i
\(643\) 10.8009 + 6.23589i 0.425945 + 0.245920i 0.697618 0.716470i \(-0.254243\pi\)
−0.271673 + 0.962390i \(0.587577\pi\)
\(644\) 0.0110307 0.416853i 0.000434670 0.0164263i
\(645\) 10.3266i 0.406611i
\(646\) 2.25725 + 3.90967i 0.0888103 + 0.153824i
\(647\) 17.9695 31.1241i 0.706455 1.22362i −0.259709 0.965687i \(-0.583627\pi\)
0.966164 0.257929i \(-0.0830401\pi\)
\(648\) −8.01911 4.62984i −0.315021 0.181877i
\(649\) −28.9778 + 50.1910i −1.13748 + 1.97017i
\(650\) −4.13023 + 21.2336i −0.162001 + 0.832849i
\(651\) 26.4873 + 0.700904i 1.03812 + 0.0274706i
\(652\) 1.22139 0.705171i 0.0478334 0.0276166i
\(653\) 4.85888 0.190143 0.0950713 0.995470i \(-0.469692\pi\)
0.0950713 + 0.995470i \(0.469692\pi\)
\(654\) 57.8668 2.26277
\(655\) 10.8755 6.27897i 0.424941 0.245340i
\(656\) −3.04810 + 1.75982i −0.119008 + 0.0687095i
\(657\) −22.9621 13.2572i −0.895838 0.517212i
\(658\) −11.9571 7.33186i −0.466137 0.285826i
\(659\) 11.8103 20.4560i 0.460063 0.796853i −0.538900 0.842370i \(-0.681160\pi\)
0.998964 + 0.0455166i \(0.0144934\pi\)
\(660\) 1.20217 0.0467944
\(661\) 14.1970 + 8.19662i 0.552198 + 0.318812i 0.750008 0.661429i \(-0.230050\pi\)
−0.197810 + 0.980240i \(0.563383\pi\)
\(662\) 0.427316 + 0.740134i 0.0166081 + 0.0287661i
\(663\) −1.89362 5.50176i −0.0735419 0.213671i
\(664\) 16.8393 0.653492
\(665\) −0.329675 + 12.4585i −0.0127842 + 0.483119i
\(666\) −4.53987 7.86328i −0.175916 0.304696i
\(667\) −1.82968 3.16910i −0.0708456 0.122708i
\(668\) −0.384544 + 0.222016i −0.0148784 + 0.00859007i
\(669\) 66.2692i 2.56212i
\(670\) 7.07040 4.08210i 0.273154 0.157705i
\(671\) 38.4939i 1.48604i
\(672\) −2.21168 + 3.60691i −0.0853175 + 0.139139i
\(673\) −7.12678 12.3439i −0.274717 0.475824i 0.695347 0.718675i \(-0.255251\pi\)
−0.970064 + 0.242851i \(0.921918\pi\)
\(674\) 7.88982i 0.303904i
\(675\) −14.4230 24.9814i −0.555143 0.961536i
\(676\) −0.177356 1.26432i −0.00682138 0.0486276i
\(677\) 5.13574 8.89537i 0.197383 0.341877i −0.750296 0.661102i \(-0.770089\pi\)
0.947679 + 0.319225i \(0.103423\pi\)
\(678\) 67.1391 38.7628i 2.57846 1.48867i
\(679\) 14.7269 24.0172i 0.565165 0.921695i
\(680\) 0.653092 1.13119i 0.0250449 0.0433791i
\(681\) 1.13124 + 0.653122i 0.0433492 + 0.0250277i
\(682\) 25.2691i 0.967604i
\(683\) 2.22201i 0.0850230i 0.999096 + 0.0425115i \(0.0135359\pi\)
−0.999096 + 0.0425115i \(0.986464\pi\)
\(684\) −2.63524 1.52146i −0.100761 0.0581744i
\(685\) 3.16377 5.47981i 0.120881 0.209373i
\(686\) −25.4601 2.02494i −0.972069 0.0773127i
\(687\) −43.2504 + 24.9706i −1.65011 + 0.952689i
\(688\) −8.43604 + 14.6117i −0.321621 + 0.557064i
\(689\) 19.3048 + 3.75506i 0.735455 + 0.143056i
\(690\) 2.56965 + 4.45076i 0.0978249 + 0.169438i
\(691\) 2.64015i 0.100436i −0.998738 0.0502179i \(-0.984008\pi\)
0.998738 0.0502179i \(-0.0159916\pi\)
\(692\) −0.958402 1.66000i −0.0364330 0.0631038i
\(693\) −73.9133 1.95588i −2.80773 0.0742978i
\(694\) 2.57174i 0.0976220i
\(695\) 6.92724 3.99944i 0.262765 0.151708i
\(696\) 19.0094i 0.720549i
\(697\) 0.449993 0.259804i 0.0170447 0.00984077i
\(698\) −15.3884 26.6534i −0.582458 1.00885i
\(699\) 11.2585 + 19.5002i 0.425834 + 0.737566i
\(700\) −0.993552 + 0.539100i −0.0375527 + 0.0203761i
\(701\) −8.89991 −0.336145 −0.168072 0.985775i \(-0.553754\pi\)
−0.168072 + 0.985775i \(0.553754\pi\)
\(702\) −24.8793 21.6328i −0.939007 0.816479i
\(703\) −3.62943 6.28635i −0.136886 0.237094i
\(704\) −38.1355 22.0175i −1.43729 0.829818i
\(705\) −8.92656 −0.336194
\(706\) −1.60797 + 2.78509i −0.0605168 + 0.104818i
\(707\) −8.83147 5.41528i −0.332142 0.203663i
\(708\) −2.69403 1.55540i −0.101248 0.0584556i
\(709\) −35.1558 + 20.2972i −1.32030 + 0.762278i −0.983777 0.179396i \(-0.942586\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(710\) −8.96569 + 5.17634i −0.336476 + 0.194265i
\(711\) 60.2695 2.26028
\(712\) 14.4951 0.543226
\(713\) 4.83103 2.78920i 0.180923 0.104456i
\(714\) −3.07788 + 5.01954i −0.115187 + 0.187851i
\(715\) 15.0368 + 2.92487i 0.562344 + 0.109384i
\(716\) 1.02232 1.77071i 0.0382059 0.0661745i
\(717\) 33.7636 + 19.4934i 1.26092 + 0.727995i
\(718\) 2.25548 3.90661i 0.0841738 0.145793i
\(719\) 7.25674 + 12.5690i 0.270631 + 0.468746i 0.969024 0.246968i \(-0.0794344\pi\)
−0.698393 + 0.715715i \(0.746101\pi\)
\(720\) 16.2100i 0.604110i
\(721\) −19.0675 11.6918i −0.710109 0.435425i
\(722\) 18.1059 + 10.4535i 0.673834 + 0.389038i
\(723\) 56.2896 + 32.4988i 2.09343 + 1.20864i
\(724\) 1.62555 0.0604129
\(725\) −4.95984 + 8.59070i −0.184204 + 0.319051i
\(726\) 66.7105i 2.47586i
\(727\) 30.6942 1.13839 0.569193 0.822204i \(-0.307256\pi\)
0.569193 + 0.822204i \(0.307256\pi\)
\(728\) −18.6563 + 20.3433i −0.691449 + 0.753971i
\(729\) −40.3475 −1.49435
\(730\) 5.55885i 0.205742i
\(731\) 1.24542 2.15713i 0.0460635 0.0797842i
\(732\) 2.06618 0.0763683
\(733\) −11.4873 6.63218i −0.424292 0.244965i 0.272620 0.962122i \(-0.412110\pi\)
−0.696912 + 0.717157i \(0.745443\pi\)
\(734\) −4.95980 2.86354i −0.183069 0.105695i
\(735\) −14.4871 + 7.37149i −0.534365 + 0.271902i
\(736\) 0.890761i 0.0328339i
\(737\) 19.3613 + 33.5348i 0.713184 + 1.23527i
\(738\) 3.39113 5.87361i 0.124829 0.216211i
\(739\) −6.28279 3.62737i −0.231116 0.133435i 0.379971 0.924999i \(-0.375934\pi\)
−0.611087 + 0.791564i \(0.709267\pi\)
\(740\) −0.0491505 + 0.0851312i −0.00180681 + 0.00312948i
\(741\) −45.8182 39.8395i −1.68317 1.46354i
\(742\) −9.49142 17.4925i −0.348441 0.642171i
\(743\) −40.0705 + 23.1347i −1.47004 + 0.848730i −0.999435 0.0336128i \(-0.989299\pi\)
−0.470608 + 0.882342i \(0.655965\pi\)
\(744\) −28.9782 −1.06239
\(745\) −6.38250 −0.233837
\(746\) −13.2673 + 7.65991i −0.485752 + 0.280449i
\(747\) −26.7184 + 15.4259i −0.977574 + 0.564403i
\(748\) 0.251121 + 0.144985i 0.00918188 + 0.00530116i
\(749\) −0.677140 + 25.5893i −0.0247421 + 0.935012i
\(750\) 14.9715 25.9314i 0.546681 0.946880i
\(751\) 36.0260 1.31461 0.657305 0.753625i \(-0.271697\pi\)
0.657305 + 0.753625i \(0.271697\pi\)
\(752\) 12.6306 + 7.29229i 0.460591 + 0.265922i
\(753\) −9.69865 16.7985i −0.353438 0.612173i
\(754\) −2.16473 + 11.1289i −0.0788349 + 0.405291i
\(755\) −1.20986 −0.0440313
\(756\) 0.0455737 1.72224i 0.00165750 0.0626373i
\(757\) 5.28132 + 9.14751i 0.191953 + 0.332472i 0.945897 0.324466i \(-0.105185\pi\)
−0.753945 + 0.656938i \(0.771851\pi\)
\(758\) −3.19961 5.54189i −0.116215 0.201291i
\(759\) −21.1099 + 12.1878i −0.766242 + 0.442390i
\(760\) 13.6301i 0.494415i
\(761\) 6.76541 3.90601i 0.245246 0.141593i −0.372340 0.928097i \(-0.621444\pi\)
0.617585 + 0.786504i \(0.288111\pi\)
\(762\) 7.61813i 0.275976i
\(763\) 18.3766 + 33.8678i 0.665278 + 1.22609i
\(764\) 0.208695 + 0.361470i 0.00755031 + 0.0130775i
\(765\) 2.39309i 0.0865223i
\(766\) −2.53010 4.38226i −0.0914163 0.158338i
\(767\) −29.9128 26.0096i −1.08009 0.939152i
\(768\) 3.38714 5.86671i 0.122223 0.211696i
\(769\) 21.9030 12.6457i 0.789844 0.456017i −0.0500637 0.998746i \(-0.515942\pi\)
0.839908 + 0.542729i \(0.182609\pi\)
\(770\) −7.39300 13.6252i −0.266425 0.491017i
\(771\) 23.8249 41.2659i 0.858032 1.48615i
\(772\) −0.986345 0.569467i −0.0354993 0.0204956i
\(773\) 46.6004i 1.67610i −0.545592 0.838051i \(-0.683695\pi\)
0.545592 0.838051i \(-0.316305\pi\)
\(774\) 32.5121i 1