Properties

Label 91.2.k.b.23.4
Level $91$
Weight $2$
Character 91.23
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.4
Root \(0.655911 - 1.25291i\) of defining polynomial
Character \(\chi\) \(=\) 91.23
Dual form 91.2.k.b.4.3

$q$-expansion

\(f(q)\) \(=\) \(q+0.180824i q^{2} +(0.913006 - 1.58137i) q^{3} +1.96730 q^{4} +(-2.32670 - 1.34332i) q^{5} +(0.285950 + 0.165093i) q^{6} +(-2.46263 + 0.967177i) q^{7} +0.717383i q^{8} +(-0.167162 - 0.289532i) q^{9} +O(q^{10})\) \(q+0.180824i q^{2} +(0.913006 - 1.58137i) q^{3} +1.96730 q^{4} +(-2.32670 - 1.34332i) q^{5} +(0.285950 + 0.165093i) q^{6} +(-2.46263 + 0.967177i) q^{7} +0.717383i q^{8} +(-0.167162 - 0.289532i) q^{9} +(0.242904 - 0.420723i) q^{10} +(2.33328 + 1.34712i) q^{11} +(1.79616 - 3.11104i) q^{12} +(1.92153 + 3.05086i) q^{13} +(-0.174889 - 0.445303i) q^{14} +(-4.24858 + 2.45292i) q^{15} +3.80489 q^{16} -4.76493 q^{17} +(0.0523543 - 0.0302268i) q^{18} +(0.163180 - 0.0942122i) q^{19} +(-4.57732 - 2.64272i) q^{20} +(-0.718933 + 4.77738i) q^{21} +(-0.243592 + 0.421913i) q^{22} -4.39929 q^{23} +(1.13445 + 0.654975i) q^{24} +(1.10902 + 1.92088i) q^{25} +(-0.551667 + 0.347458i) q^{26} +4.86756 q^{27} +(-4.84475 + 1.90273i) q^{28} +(-3.54280 - 6.13631i) q^{29} +(-0.443546 - 0.768245i) q^{30} +(-3.20369 + 1.84965i) q^{31} +2.12278i q^{32} +(4.26060 - 2.45986i) q^{33} -0.861613i q^{34} +(7.02904 + 1.05778i) q^{35} +(-0.328857 - 0.569598i) q^{36} -7.95413i q^{37} +(0.0170358 + 0.0295069i) q^{38} +(6.57891 - 0.253207i) q^{39} +(0.963675 - 1.66913i) q^{40} +(4.70215 - 2.71479i) q^{41} +(-0.863864 - 0.130000i) q^{42} +(-4.00533 + 6.93743i) q^{43} +(4.59027 + 2.65020i) q^{44} +0.898206i q^{45} -0.795496i q^{46} +(-1.60118 - 0.924445i) q^{47} +(3.47389 - 6.01695i) q^{48} +(5.12914 - 4.76361i) q^{49} +(-0.347341 + 0.200538i) q^{50} +(-4.35041 + 7.53514i) q^{51} +(3.78023 + 6.00196i) q^{52} +(3.53622 + 6.12491i) q^{53} +0.880171i q^{54} +(-3.61923 - 6.26869i) q^{55} +(-0.693836 - 1.76665i) q^{56} -0.344066i q^{57} +(1.10959 - 0.640623i) q^{58} -7.58888i q^{59} +(-8.35825 + 4.82564i) q^{60} +(0.205782 + 0.356425i) q^{61} +(-0.334461 - 0.579304i) q^{62} +(0.691687 + 0.551337i) q^{63} +7.22592 q^{64} +(-0.372548 - 9.67966i) q^{65} +(0.444801 + 0.770418i) q^{66} +(-9.87358 - 5.70051i) q^{67} -9.37407 q^{68} +(-4.01658 + 6.95692i) q^{69} +(-0.191271 + 1.27102i) q^{70} +(2.89675 + 1.67244i) q^{71} +(0.207705 - 0.119919i) q^{72} +(12.3112 - 7.10790i) q^{73} +1.43830 q^{74} +4.05018 q^{75} +(0.321025 - 0.185344i) q^{76} +(-7.04893 - 1.06077i) q^{77} +(0.0457859 + 1.18962i) q^{78} +(-4.55529 + 7.89000i) q^{79} +(-8.85283 - 5.11118i) q^{80} +(4.94560 - 8.56603i) q^{81} +(0.490899 + 0.850261i) q^{82} +16.5866i q^{83} +(-1.41436 + 9.39856i) q^{84} +(11.0866 + 6.40083i) q^{85} +(-1.25445 - 0.724258i) q^{86} -12.9384 q^{87} +(-0.966401 + 1.67386i) q^{88} +5.89165i q^{89} -0.162417 q^{90} +(-7.68275 - 5.65468i) q^{91} -8.65473 q^{92} +6.75498i q^{93} +(0.167162 - 0.289532i) q^{94} -0.506229 q^{95} +(3.35691 + 1.93811i) q^{96} +(0.390659 + 0.225547i) q^{97} +(0.861373 + 0.927470i) q^{98} -0.900747i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + O(q^{10}) \) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + 12q^{10} + 12q^{11} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} + 16q^{16} - 34q^{17} + 3q^{18} + 9q^{19} - 3q^{20} + 21q^{21} - 15q^{22} - 6q^{23} + 15q^{24} - 5q^{25} - 6q^{26} + 12q^{27} - 9q^{28} - q^{29} + 11q^{30} + 18q^{31} - 6q^{33} - 6q^{35} - 13q^{36} + 19q^{38} - 4q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} - 33q^{44} - 15q^{47} + 19q^{48} - 3q^{49} + 18q^{50} + 4q^{51} - 7q^{52} - 8q^{53} - 15q^{55} + 27q^{56} - 24q^{58} - 30q^{60} + 5q^{61} + 41q^{62} - 30q^{63} + 2q^{64} + 21q^{65} - 34q^{66} + 15q^{67} + 22q^{68} + 7q^{69} + 3q^{70} + 30q^{71} + 57q^{72} + 42q^{73} + 66q^{74} - 2q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 63q^{80} + 14q^{81} + 5q^{82} - 12q^{84} - 21q^{85} - 57q^{86} - 20q^{87} - 14q^{88} - 7q^{91} - 66q^{92} + q^{94} - 4q^{95} + 21q^{96} - 3q^{97} - 18q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.180824i 0.127862i 0.997954 + 0.0639308i \(0.0203637\pi\)
−0.997954 + 0.0639308i \(0.979636\pi\)
\(3\) 0.913006 1.58137i 0.527125 0.913006i −0.472376 0.881397i \(-0.656603\pi\)
0.999500 0.0316092i \(-0.0100632\pi\)
\(4\) 1.96730 0.983651
\(5\) −2.32670 1.34332i −1.04053 0.600751i −0.120548 0.992708i \(-0.538465\pi\)
−0.919984 + 0.391956i \(0.871799\pi\)
\(6\) 0.285950 + 0.165093i 0.116739 + 0.0673990i
\(7\) −2.46263 + 0.967177i −0.930788 + 0.365559i
\(8\) 0.717383i 0.253633i
\(9\) −0.167162 0.289532i −0.0557205 0.0965108i
\(10\) 0.242904 0.420723i 0.0768131 0.133044i
\(11\) 2.33328 + 1.34712i 0.703511 + 0.406172i 0.808654 0.588285i \(-0.200197\pi\)
−0.105143 + 0.994457i \(0.533530\pi\)
\(12\) 1.79616 3.11104i 0.518507 0.898080i
\(13\) 1.92153 + 3.05086i 0.532937 + 0.846155i
\(14\) −0.174889 0.445303i −0.0467409 0.119012i
\(15\) −4.24858 + 2.45292i −1.09698 + 0.633342i
\(16\) 3.80489 0.951221
\(17\) −4.76493 −1.15567 −0.577833 0.816155i \(-0.696102\pi\)
−0.577833 + 0.816155i \(0.696102\pi\)
\(18\) 0.0523543 0.0302268i 0.0123400 0.00712452i
\(19\) 0.163180 0.0942122i 0.0374361 0.0216138i −0.481165 0.876630i \(-0.659786\pi\)
0.518601 + 0.855016i \(0.326453\pi\)
\(20\) −4.57732 2.64272i −1.02352 0.590930i
\(21\) −0.718933 + 4.77738i −0.156884 + 1.04251i
\(22\) −0.243592 + 0.421913i −0.0519339 + 0.0899521i
\(23\) −4.39929 −0.917315 −0.458657 0.888613i \(-0.651669\pi\)
−0.458657 + 0.888613i \(0.651669\pi\)
\(24\) 1.13445 + 0.654975i 0.231569 + 0.133696i
\(25\) 1.10902 + 1.92088i 0.221804 + 0.384177i
\(26\) −0.551667 + 0.347458i −0.108191 + 0.0681422i
\(27\) 4.86756 0.936762
\(28\) −4.84475 + 1.90273i −0.915571 + 0.359582i
\(29\) −3.54280 6.13631i −0.657882 1.13948i −0.981163 0.193182i \(-0.938119\pi\)
0.323281 0.946303i \(-0.395214\pi\)
\(30\) −0.443546 0.768245i −0.0809801 0.140262i
\(31\) −3.20369 + 1.84965i −0.575400 + 0.332207i −0.759303 0.650737i \(-0.774460\pi\)
0.183903 + 0.982944i \(0.441127\pi\)
\(32\) 2.12278i 0.375258i
\(33\) 4.26060 2.45986i 0.741676 0.428207i
\(34\) 0.861613i 0.147765i
\(35\) 7.02904 + 1.05778i 1.18812 + 0.178797i
\(36\) −0.328857 0.569598i −0.0548096 0.0949329i
\(37\) 7.95413i 1.30765i −0.756645 0.653826i \(-0.773163\pi\)
0.756645 0.653826i \(-0.226837\pi\)
\(38\) 0.0170358 + 0.0295069i 0.00276357 + 0.00478665i
\(39\) 6.57891 0.253207i 1.05347 0.0405456i
\(40\) 0.963675 1.66913i 0.152370 0.263913i
\(41\) 4.70215 2.71479i 0.734353 0.423979i −0.0856594 0.996324i \(-0.527300\pi\)
0.820013 + 0.572345i \(0.193966\pi\)
\(42\) −0.863864 0.130000i −0.133297 0.0200595i
\(43\) −4.00533 + 6.93743i −0.610807 + 1.05795i 0.380298 + 0.924864i \(0.375821\pi\)
−0.991105 + 0.133084i \(0.957512\pi\)
\(44\) 4.59027 + 2.65020i 0.692010 + 0.399532i
\(45\) 0.898206i 0.133897i
\(46\) 0.795496i 0.117289i
\(47\) −1.60118 0.924445i −0.233557 0.134844i 0.378655 0.925538i \(-0.376387\pi\)
−0.612212 + 0.790694i \(0.709720\pi\)
\(48\) 3.47389 6.01695i 0.501412 0.868471i
\(49\) 5.12914 4.76361i 0.732734 0.680515i
\(50\) −0.347341 + 0.200538i −0.0491215 + 0.0283603i
\(51\) −4.35041 + 7.53514i −0.609180 + 1.05513i
\(52\) 3.78023 + 6.00196i 0.524224 + 0.832322i
\(53\) 3.53622 + 6.12491i 0.485737 + 0.841321i 0.999866 0.0163917i \(-0.00521788\pi\)
−0.514128 + 0.857713i \(0.671885\pi\)
\(54\) 0.880171i 0.119776i
\(55\) −3.61923 6.26869i −0.488017 0.845271i
\(56\) −0.693836 1.76665i −0.0927177 0.236079i
\(57\) 0.344066i 0.0455726i
\(58\) 1.10959 0.640623i 0.145696 0.0841179i
\(59\) 7.58888i 0.987988i −0.869465 0.493994i \(-0.835536\pi\)
0.869465 0.493994i \(-0.164464\pi\)
\(60\) −8.35825 + 4.82564i −1.07905 + 0.622987i
\(61\) 0.205782 + 0.356425i 0.0263477 + 0.0456355i 0.878899 0.477009i \(-0.158279\pi\)
−0.852551 + 0.522644i \(0.824946\pi\)
\(62\) −0.334461 0.579304i −0.0424766 0.0735716i
\(63\) 0.691687 + 0.551337i 0.0871443 + 0.0694620i
\(64\) 7.22592 0.903240
\(65\) −0.372548 9.67966i −0.0462089 1.20061i
\(66\) 0.444801 + 0.770418i 0.0547512 + 0.0948319i
\(67\) −9.87358 5.70051i −1.20625 0.696429i −0.244312 0.969697i \(-0.578562\pi\)
−0.961938 + 0.273268i \(0.911895\pi\)
\(68\) −9.37407 −1.13677
\(69\) −4.01658 + 6.95692i −0.483539 + 0.837514i
\(70\) −0.191271 + 1.27102i −0.0228613 + 0.151916i
\(71\) 2.89675 + 1.67244i 0.343781 + 0.198482i 0.661943 0.749554i \(-0.269732\pi\)
−0.318162 + 0.948037i \(0.603065\pi\)
\(72\) 0.207705 0.119919i 0.0244783 0.0141326i
\(73\) 12.3112 7.10790i 1.44092 0.831917i 0.443011 0.896516i \(-0.353910\pi\)
0.997911 + 0.0645994i \(0.0205769\pi\)
\(74\) 1.43830 0.167199
\(75\) 4.05018 0.467674
\(76\) 0.321025 0.185344i 0.0368241 0.0212604i
\(77\) −7.04893 1.06077i −0.803300 0.120886i
\(78\) 0.0457859 + 1.18962i 0.00518423 + 0.134698i
\(79\) −4.55529 + 7.89000i −0.512511 + 0.887695i 0.487384 + 0.873188i \(0.337951\pi\)
−0.999895 + 0.0145069i \(0.995382\pi\)
\(80\) −8.85283 5.11118i −0.989776 0.571448i
\(81\) 4.94560 8.56603i 0.549511 0.951781i
\(82\) 0.490899 + 0.850261i 0.0542107 + 0.0938956i
\(83\) 16.5866i 1.82061i 0.413934 + 0.910307i \(0.364155\pi\)
−0.413934 + 0.910307i \(0.635845\pi\)
\(84\) −1.41436 + 9.39856i −0.154319 + 1.02547i
\(85\) 11.0866 + 6.40083i 1.20251 + 0.694268i
\(86\) −1.25445 0.724258i −0.135271 0.0780988i
\(87\) −12.9384 −1.38714
\(88\) −0.966401 + 1.67386i −0.103019 + 0.178434i
\(89\) 5.89165i 0.624513i 0.949998 + 0.312257i \(0.101085\pi\)
−0.949998 + 0.312257i \(0.898915\pi\)
\(90\) −0.162417 −0.0171203
\(91\) −7.68275 5.65468i −0.805371 0.592772i
\(92\) −8.65473 −0.902318
\(93\) 6.75498i 0.700459i
\(94\) 0.167162 0.289532i 0.0172414 0.0298630i
\(95\) −0.506229 −0.0519380
\(96\) 3.35691 + 1.93811i 0.342613 + 0.197808i
\(97\) 0.390659 + 0.225547i 0.0396654 + 0.0229008i 0.519702 0.854348i \(-0.326043\pi\)
−0.480036 + 0.877249i \(0.659376\pi\)
\(98\) 0.861373 + 0.927470i 0.0870118 + 0.0936886i
\(99\) 0.900747i 0.0905285i
\(100\) 2.18178 + 3.77896i 0.218178 + 0.377896i
\(101\) −3.82840 + 6.63098i −0.380940 + 0.659807i −0.991197 0.132396i \(-0.957733\pi\)
0.610257 + 0.792204i \(0.291066\pi\)
\(102\) −1.36253 0.786658i −0.134911 0.0778908i
\(103\) 2.57870 4.46644i 0.254087 0.440091i −0.710560 0.703636i \(-0.751558\pi\)
0.964647 + 0.263545i \(0.0848918\pi\)
\(104\) −2.18863 + 1.37847i −0.214613 + 0.135170i
\(105\) 8.09030 10.1498i 0.789532 0.990517i
\(106\) −1.10753 + 0.639433i −0.107573 + 0.0621072i
\(107\) 8.03289 0.776569 0.388284 0.921540i \(-0.373068\pi\)
0.388284 + 0.921540i \(0.373068\pi\)
\(108\) 9.57597 0.921448
\(109\) 1.15490 0.666781i 0.110619 0.0638660i −0.443670 0.896190i \(-0.646324\pi\)
0.554289 + 0.832324i \(0.312990\pi\)
\(110\) 1.13353 0.654443i 0.108078 0.0623987i
\(111\) −12.5785 7.26217i −1.19389 0.689295i
\(112\) −9.37004 + 3.68000i −0.885386 + 0.347727i
\(113\) 9.96917 17.2671i 0.937821 1.62435i 0.168296 0.985736i \(-0.446173\pi\)
0.769525 0.638617i \(-0.220493\pi\)
\(114\) 0.0622152 0.00582699
\(115\) 10.2358 + 5.90965i 0.954495 + 0.551078i
\(116\) −6.96976 12.0720i −0.647126 1.12086i
\(117\) 0.562115 1.06633i 0.0519676 0.0985823i
\(118\) 1.37225 0.126326
\(119\) 11.7343 4.60853i 1.07568 0.422464i
\(120\) −1.75968 3.04786i −0.160636 0.278230i
\(121\) −1.87053 3.23985i −0.170048 0.294532i
\(122\) −0.0644501 + 0.0372103i −0.00583503 + 0.00336886i
\(123\) 9.91448i 0.893959i
\(124\) −6.30263 + 3.63883i −0.565993 + 0.326776i
\(125\) 7.47412i 0.668505i
\(126\) −0.0996949 + 0.125073i −0.00888153 + 0.0111424i
\(127\) −3.98361 6.89981i −0.353488 0.612259i 0.633370 0.773849i \(-0.281671\pi\)
−0.986858 + 0.161590i \(0.948338\pi\)
\(128\) 5.55218i 0.490748i
\(129\) 7.31378 + 12.6678i 0.643942 + 1.11534i
\(130\) 1.75031 0.0673655i 0.153513 0.00590835i
\(131\) −5.00897 + 8.67579i −0.437636 + 0.758007i −0.997507 0.0705727i \(-0.977517\pi\)
0.559871 + 0.828580i \(0.310851\pi\)
\(132\) 8.38190 4.83929i 0.729551 0.421206i
\(133\) −0.310734 + 0.389835i −0.0269440 + 0.0338029i
\(134\) 1.03079 1.78538i 0.0890465 0.154233i
\(135\) −11.3254 6.53870i −0.974731 0.562761i
\(136\) 3.41828i 0.293115i
\(137\) 5.06696i 0.432899i 0.976294 + 0.216450i \(0.0694477\pi\)
−0.976294 + 0.216450i \(0.930552\pi\)
\(138\) −1.25798 0.726293i −0.107086 0.0618261i
\(139\) −3.86289 + 6.69073i −0.327646 + 0.567500i −0.982044 0.188650i \(-0.939589\pi\)
0.654398 + 0.756150i \(0.272922\pi\)
\(140\) 13.8283 + 2.08097i 1.16870 + 0.175874i
\(141\) −2.92378 + 1.68805i −0.246227 + 0.142159i
\(142\) −0.302417 + 0.523802i −0.0253783 + 0.0439565i
\(143\) 0.373602 + 9.70704i 0.0312422 + 0.811744i
\(144\) −0.636031 1.10164i −0.0530025 0.0918031i
\(145\) 19.0365i 1.58089i
\(146\) 1.28528 + 2.22617i 0.106370 + 0.184239i
\(147\) −2.85011 12.4603i −0.235073 1.02771i
\(148\) 15.6482i 1.28627i
\(149\) 12.4002 7.15924i 1.01586 0.586507i 0.102958 0.994686i \(-0.467169\pi\)
0.912902 + 0.408178i \(0.133836\pi\)
\(150\) 0.732368i 0.0597976i
\(151\) 5.60534 3.23624i 0.456156 0.263362i −0.254271 0.967133i \(-0.581835\pi\)
0.710427 + 0.703771i \(0.248502\pi\)
\(152\) 0.0675862 + 0.117063i 0.00548197 + 0.00949504i
\(153\) 0.796513 + 1.37960i 0.0643943 + 0.111534i
\(154\) 0.191812 1.27461i 0.0154567 0.102711i
\(155\) 9.93871 0.798296
\(156\) 12.9427 0.498136i 1.03625 0.0398828i
\(157\) −7.95937 13.7860i −0.635227 1.10025i −0.986467 0.163960i \(-0.947573\pi\)
0.351240 0.936285i \(-0.385760\pi\)
\(158\) −1.42670 0.823705i −0.113502 0.0655305i
\(159\) 12.9144 1.02418
\(160\) 2.85157 4.93907i 0.225437 0.390468i
\(161\) 10.8338 4.25489i 0.853826 0.335332i
\(162\) 1.54894 + 0.894282i 0.121696 + 0.0702614i
\(163\) −4.14100 + 2.39081i −0.324348 + 0.187263i −0.653329 0.757074i \(-0.726628\pi\)
0.328981 + 0.944337i \(0.393295\pi\)
\(164\) 9.25056 5.34081i 0.722348 0.417048i
\(165\) −13.2175 −1.02898
\(166\) −2.99925 −0.232787
\(167\) −2.34729 + 1.35521i −0.181639 + 0.104869i −0.588062 0.808816i \(-0.700109\pi\)
0.406424 + 0.913685i \(0.366776\pi\)
\(168\) −3.42721 0.515750i −0.264415 0.0397910i
\(169\) −5.61544 + 11.7246i −0.431957 + 0.901894i
\(170\) −1.15742 + 2.00472i −0.0887703 + 0.153755i
\(171\) −0.0545550 0.0314973i −0.00417192 0.00240866i
\(172\) −7.87969 + 13.6480i −0.600821 + 1.04065i
\(173\) −0.449908 0.779264i −0.0342059 0.0592463i 0.848416 0.529331i \(-0.177557\pi\)
−0.882622 + 0.470084i \(0.844224\pi\)
\(174\) 2.33957i 0.177362i
\(175\) −4.58895 3.65781i −0.346892 0.276505i
\(176\) 8.87787 + 5.12564i 0.669195 + 0.386360i
\(177\) −12.0009 6.92870i −0.902039 0.520793i
\(178\) −1.06535 −0.0798513
\(179\) −5.52791 + 9.57462i −0.413175 + 0.715641i −0.995235 0.0975054i \(-0.968914\pi\)
0.582060 + 0.813146i \(0.302247\pi\)
\(180\) 1.76704i 0.131708i
\(181\) −3.52898 −0.262307 −0.131153 0.991362i \(-0.541868\pi\)
−0.131153 + 0.991362i \(0.541868\pi\)
\(182\) 1.02250 1.38922i 0.0757928 0.102976i
\(183\) 0.751521 0.0555540
\(184\) 3.15597i 0.232661i
\(185\) −10.6850 + 18.5069i −0.785573 + 1.36065i
\(186\) −1.22146 −0.0895619
\(187\) −11.1179 6.41894i −0.813024 0.469400i
\(188\) −3.15002 1.81866i −0.229738 0.132640i
\(189\) −11.9870 + 4.70779i −0.871928 + 0.342442i
\(190\) 0.0915382i 0.00664088i
\(191\) 10.2002 + 17.6672i 0.738059 + 1.27836i 0.953368 + 0.301810i \(0.0975909\pi\)
−0.215309 + 0.976546i \(0.569076\pi\)
\(192\) 6.59731 11.4269i 0.476120 0.824664i
\(193\) −14.9515 8.63228i −1.07624 0.621365i −0.146357 0.989232i \(-0.546755\pi\)
−0.929878 + 0.367867i \(0.880088\pi\)
\(194\) −0.0407842 + 0.0706403i −0.00292814 + 0.00507168i
\(195\) −15.6473 8.24845i −1.12053 0.590684i
\(196\) 10.0906 9.37146i 0.720755 0.669390i
\(197\) −4.29264 + 2.47836i −0.305838 + 0.176576i −0.645063 0.764130i \(-0.723169\pi\)
0.339224 + 0.940705i \(0.389835\pi\)
\(198\) 0.162877 0.0115751
\(199\) −7.18195 −0.509115 −0.254557 0.967058i \(-0.581930\pi\)
−0.254557 + 0.967058i \(0.581930\pi\)
\(200\) −1.37801 + 0.795593i −0.0974399 + 0.0562569i
\(201\) −18.0293 + 10.4092i −1.27169 + 0.734209i
\(202\) −1.19904 0.692265i −0.0843641 0.0487076i
\(203\) 14.6595 + 11.6850i 1.02890 + 0.820125i
\(204\) −8.55858 + 14.8239i −0.599221 + 1.03788i
\(205\) −14.5873 −1.01882
\(206\) 0.807638 + 0.466290i 0.0562708 + 0.0324880i
\(207\) 0.735392 + 1.27374i 0.0511132 + 0.0885307i
\(208\) 7.31121 + 11.6082i 0.506941 + 0.804881i
\(209\) 0.507661 0.0351157
\(210\) 1.83532 + 1.46292i 0.126649 + 0.100951i
\(211\) 8.79636 + 15.2357i 0.605566 + 1.04887i 0.991962 + 0.126539i \(0.0403868\pi\)
−0.386395 + 0.922333i \(0.626280\pi\)
\(212\) 6.95682 + 12.0496i 0.477796 + 0.827567i
\(213\) 5.28951 3.05390i 0.362431 0.209250i
\(214\) 1.45254i 0.0992934i
\(215\) 18.6384 10.7609i 1.27113 0.733886i
\(216\) 3.49190i 0.237594i
\(217\) 6.10058 7.65356i 0.414135 0.519557i
\(218\) 0.120570 + 0.208833i 0.00816602 + 0.0141440i
\(219\) 25.9582i 1.75410i
\(220\) −7.12013 12.3324i −0.480039 0.831452i
\(221\) −9.15597 14.5371i −0.615897 0.977873i
\(222\) 1.31317 2.27448i 0.0881344 0.152653i
\(223\) 12.2157 7.05271i 0.818020 0.472284i −0.0317129 0.999497i \(-0.510096\pi\)
0.849733 + 0.527213i \(0.176763\pi\)
\(224\) −2.05310 5.22763i −0.137179 0.349286i
\(225\) 0.370772 0.642195i 0.0247181 0.0428130i
\(226\) 3.12230 + 1.80266i 0.207693 + 0.119911i
\(227\) 2.86877i 0.190407i 0.995458 + 0.0952035i \(0.0303502\pi\)
−0.995458 + 0.0952035i \(0.969650\pi\)
\(228\) 0.676881i 0.0448275i
\(229\) 7.59860 + 4.38706i 0.502130 + 0.289905i 0.729593 0.683882i \(-0.239710\pi\)
−0.227463 + 0.973787i \(0.573043\pi\)
\(230\) −1.06861 + 1.85088i −0.0704618 + 0.122043i
\(231\) −8.11319 + 10.1785i −0.533809 + 0.669696i
\(232\) 4.40208 2.54154i 0.289011 0.166861i
\(233\) 2.55371 4.42316i 0.167299 0.289771i −0.770170 0.637839i \(-0.779829\pi\)
0.937469 + 0.348068i \(0.113162\pi\)
\(234\) 0.192818 + 0.101644i 0.0126049 + 0.00664466i
\(235\) 2.48365 + 4.30181i 0.162016 + 0.280619i
\(236\) 14.9296i 0.971836i
\(237\) 8.31803 + 14.4072i 0.540314 + 0.935851i
\(238\) 0.833332 + 2.12184i 0.0540169 + 0.137538i
\(239\) 2.49797i 0.161580i 0.996731 + 0.0807901i \(0.0257443\pi\)
−0.996731 + 0.0807901i \(0.974256\pi\)
\(240\) −16.1654 + 9.33309i −1.04347 + 0.602448i
\(241\) 7.98512i 0.514367i 0.966363 + 0.257183i \(0.0827944\pi\)
−0.966363 + 0.257183i \(0.917206\pi\)
\(242\) 0.585842 0.338236i 0.0376593 0.0217426i
\(243\) −1.72939 2.99538i −0.110940 0.192154i
\(244\) 0.404835 + 0.701195i 0.0259169 + 0.0448894i
\(245\) −18.3330 + 4.19341i −1.17125 + 0.267907i
\(246\) 1.79277 0.114303
\(247\) 0.600984 + 0.316808i 0.0382397 + 0.0201580i
\(248\) −1.32691 2.29827i −0.0842588 0.145941i
\(249\) 26.2296 + 15.1437i 1.66223 + 0.959690i
\(250\) −1.35150 −0.0854762
\(251\) 12.6285 21.8732i 0.797105 1.38063i −0.124389 0.992234i \(-0.539697\pi\)
0.921494 0.388393i \(-0.126970\pi\)
\(252\) 1.36076 + 1.08465i 0.0857196 + 0.0683264i
\(253\) −10.2648 5.92637i −0.645341 0.372588i
\(254\) 1.24765 0.720331i 0.0782845 0.0451976i
\(255\) 20.2442 11.6880i 1.26774 0.731931i
\(256\) 13.4479 0.840493
\(257\) 3.37363 0.210442 0.105221 0.994449i \(-0.466445\pi\)
0.105221 + 0.994449i \(0.466445\pi\)
\(258\) −2.29065 + 1.32250i −0.142609 + 0.0823355i
\(259\) 7.69305 + 19.5881i 0.478023 + 1.21715i
\(260\) −0.732915 19.0428i −0.0454535 1.18099i
\(261\) −1.18444 + 2.05151i −0.0733150 + 0.126985i
\(262\) −1.56879 0.905740i −0.0969201 0.0559568i
\(263\) 0.0794677 0.137642i 0.00490019 0.00848737i −0.863565 0.504238i \(-0.831774\pi\)
0.868465 + 0.495750i \(0.165107\pi\)
\(264\) 1.76466 + 3.05648i 0.108607 + 0.188114i
\(265\) 19.0011i 1.16723i
\(266\) −0.0704914 0.0561880i −0.00432210 0.00344511i
\(267\) 9.31689 + 5.37911i 0.570185 + 0.329196i
\(268\) −19.4243 11.2146i −1.18653 0.685043i
\(269\) −23.3266 −1.42225 −0.711124 0.703066i \(-0.751814\pi\)
−0.711124 + 0.703066i \(0.751814\pi\)
\(270\) 1.18235 2.04789i 0.0719556 0.124631i
\(271\) 11.8210i 0.718074i −0.933323 0.359037i \(-0.883105\pi\)
0.933323 0.359037i \(-0.116895\pi\)
\(272\) −18.1300 −1.09929
\(273\) −15.9566 + 6.98653i −0.965735 + 0.422844i
\(274\) −0.916226 −0.0553513
\(275\) 5.97595i 0.360363i
\(276\) −7.90182 + 13.6864i −0.475634 + 0.823822i
\(277\) 27.3653 1.64422 0.822111 0.569327i \(-0.192796\pi\)
0.822111 + 0.569327i \(0.192796\pi\)
\(278\) −1.20984 0.698503i −0.0725615 0.0418934i
\(279\) 1.07107 + 0.618382i 0.0641232 + 0.0370215i
\(280\) −0.758831 + 5.04251i −0.0453488 + 0.301348i
\(281\) 28.5383i 1.70245i −0.524801 0.851225i \(-0.675860\pi\)
0.524801 0.851225i \(-0.324140\pi\)
\(282\) −0.305239 0.528690i −0.0181767 0.0314830i
\(283\) 8.98604 15.5643i 0.534165 0.925201i −0.465038 0.885290i \(-0.653960\pi\)
0.999203 0.0399101i \(-0.0127072\pi\)
\(284\) 5.69879 + 3.29020i 0.338161 + 0.195237i
\(285\) −0.462190 + 0.800537i −0.0273778 + 0.0474197i
\(286\) −1.75526 + 0.0675561i −0.103791 + 0.00399468i
\(287\) −8.95400 + 11.2334i −0.528538 + 0.663084i
\(288\) 0.614613 0.354847i 0.0362164 0.0209096i
\(289\) 5.70459 0.335564
\(290\) −3.44225 −0.202136
\(291\) 0.713347 0.411851i 0.0418172 0.0241432i
\(292\) 24.2199 13.9834i 1.41737 0.818316i
\(293\) 12.8943 + 7.44453i 0.753293 + 0.434914i 0.826882 0.562375i \(-0.190112\pi\)
−0.0735896 + 0.997289i \(0.523446\pi\)
\(294\) 2.25312 0.515367i 0.131404 0.0300568i
\(295\) −10.1943 + 17.6570i −0.593535 + 1.02803i
\(296\) 5.70616 0.331664
\(297\) 11.3574 + 6.55719i 0.659023 + 0.380487i
\(298\) 1.29456 + 2.24224i 0.0749918 + 0.129890i
\(299\) −8.45337 13.4216i −0.488871 0.776191i
\(300\) 7.96793 0.460028
\(301\) 3.15393 20.9582i 0.181790 1.20801i
\(302\) 0.585190 + 1.01358i 0.0336739 + 0.0583249i
\(303\) 6.99071 + 12.1083i 0.401606 + 0.695601i
\(304\) 0.620883 0.358467i 0.0356101 0.0205595i
\(305\) 1.10572i 0.0633136i
\(306\) −0.249465 + 0.144029i −0.0142610 + 0.00823356i
\(307\) 23.5161i 1.34214i 0.741396 + 0.671068i \(0.234164\pi\)
−0.741396 + 0.671068i \(0.765836\pi\)
\(308\) −13.8674 2.08686i −0.790167 0.118910i
\(309\) −4.70874 8.15577i −0.267871 0.463966i
\(310\) 1.79715i 0.102072i
\(311\) 0.815450 + 1.41240i 0.0462399 + 0.0800899i 0.888219 0.459420i \(-0.151943\pi\)
−0.841979 + 0.539510i \(0.818609\pi\)
\(312\) 0.181647 + 4.71960i 0.0102837 + 0.267195i
\(313\) 0.348367 0.603389i 0.0196909 0.0341056i −0.856012 0.516956i \(-0.827065\pi\)
0.875703 + 0.482850i \(0.160398\pi\)
\(314\) 2.49284 1.43924i 0.140679 0.0812212i
\(315\) −0.868725 2.21195i −0.0489471 0.124629i
\(316\) −8.96164 + 15.5220i −0.504132 + 0.873182i
\(317\) 18.5579 + 10.7144i 1.04231 + 0.601780i 0.920488 0.390771i \(-0.127792\pi\)
0.121826 + 0.992551i \(0.461125\pi\)
\(318\) 2.33522i 0.130953i
\(319\) 19.0903i 1.06885i
\(320\) −16.8126 9.70673i −0.939850 0.542623i
\(321\) 7.33408 12.7030i 0.409348 0.709012i
\(322\) 0.769385 + 1.95901i 0.0428762 + 0.109172i
\(323\) −0.777544 + 0.448915i −0.0432637 + 0.0249783i
\(324\) 9.72949 16.8520i 0.540527 0.936221i
\(325\) −3.72932 + 7.07450i −0.206865 + 0.392423i
\(326\) −0.432315 0.748792i −0.0239437 0.0414717i
\(327\) 2.43510i 0.134661i
\(328\) 1.94754 + 3.37324i 0.107535 + 0.186256i
\(329\) 4.83723 + 0.727939i 0.266685 + 0.0401326i
\(330\) 2.39004i 0.131568i
\(331\) −1.31676 + 0.760232i −0.0723757 + 0.0417861i −0.535751 0.844376i \(-0.679971\pi\)
0.463375 + 0.886162i \(0.346638\pi\)
\(332\) 32.6308i 1.79085i
\(333\) −2.30298 + 1.32962i −0.126202 + 0.0728630i
\(334\) −0.245054 0.424446i −0.0134088 0.0232247i
\(335\) 15.3152 + 26.5268i 0.836761 + 1.44931i
\(336\) −2.73546 + 18.1774i −0.149231 + 0.991658i
\(337\) −32.2304 −1.75570 −0.877850 0.478936i \(-0.841023\pi\)
−0.877850 + 0.478936i \(0.841023\pi\)
\(338\) −2.12009 1.01540i −0.115318 0.0552307i
\(339\) −18.2038 31.5300i −0.988697 1.71247i
\(340\) 21.8106 + 12.5924i 1.18285 + 0.682918i
\(341\) −9.96683 −0.539734
\(342\) 0.00569546 0.00986483i 0.000307975 0.000533429i
\(343\) −8.02394 + 16.6918i −0.433252 + 0.901273i
\(344\) −4.97679 2.87335i −0.268331 0.154921i
\(345\) 18.6907 10.7911i 1.00628 0.580974i
\(346\) 0.140909 0.0813541i 0.00757534 0.00437362i
\(347\) 8.18431 0.439357 0.219678 0.975572i \(-0.429499\pi\)
0.219678 + 0.975572i \(0.429499\pi\)
\(348\) −25.4538 −1.36446
\(349\) −18.9220 + 10.9246i −1.01287 + 0.584782i −0.912031 0.410120i \(-0.865487\pi\)
−0.100841 + 0.994903i \(0.532153\pi\)
\(350\) 0.661419 0.829791i 0.0353543 0.0443542i
\(351\) 9.35317 + 14.8502i 0.499235 + 0.792646i
\(352\) −2.85964 + 4.95304i −0.152419 + 0.263998i
\(353\) −0.491192 0.283590i −0.0261435 0.0150940i 0.486871 0.873474i \(-0.338138\pi\)
−0.513015 + 0.858380i \(0.671471\pi\)
\(354\) 1.25287 2.17004i 0.0665894 0.115336i
\(355\) −4.49325 7.78254i −0.238477 0.413054i
\(356\) 11.5907i 0.614303i
\(357\) 3.42567 22.7639i 0.181305 1.20479i
\(358\) −1.73132 0.999577i −0.0915030 0.0528293i
\(359\) −28.0630 16.2022i −1.48111 0.855118i −0.481336 0.876536i \(-0.659848\pi\)
−0.999771 + 0.0214184i \(0.993182\pi\)
\(360\) −0.644358 −0.0339606
\(361\) −9.48225 + 16.4237i −0.499066 + 0.864407i
\(362\) 0.638123i 0.0335390i
\(363\) −6.83122 −0.358546
\(364\) −15.1143 11.1245i −0.792204 0.583081i
\(365\) −38.1928 −1.99910
\(366\) 0.135893i 0.00710323i
\(367\) 3.93444 6.81465i 0.205376 0.355722i −0.744876 0.667202i \(-0.767492\pi\)
0.950252 + 0.311481i \(0.100825\pi\)
\(368\) −16.7388 −0.872569
\(369\) −1.57204 0.907617i −0.0818371 0.0472487i
\(370\) −3.34648 1.93209i −0.173975 0.100445i
\(371\) −14.6323 11.6633i −0.759671 0.605527i
\(372\) 13.2891i 0.689007i
\(373\) 1.04581 + 1.81140i 0.0541502 + 0.0937909i 0.891830 0.452371i \(-0.149422\pi\)
−0.837680 + 0.546162i \(0.816088\pi\)
\(374\) 1.16070 2.01039i 0.0600182 0.103955i
\(375\) 11.8194 + 6.82392i 0.610350 + 0.352386i
\(376\) 0.663180 1.14866i 0.0342009 0.0592377i
\(377\) 11.9134 22.5997i 0.613571 1.16394i
\(378\) −0.851281 2.16754i −0.0437852 0.111486i
\(379\) 12.3983 7.15817i 0.636859 0.367691i −0.146545 0.989204i \(-0.546815\pi\)
0.783404 + 0.621513i \(0.213482\pi\)
\(380\) −0.995906 −0.0510889
\(381\) −14.5482 −0.745329
\(382\) −3.19466 + 1.84444i −0.163453 + 0.0943695i
\(383\) 21.8129 12.5937i 1.11459 0.643507i 0.174573 0.984644i \(-0.444146\pi\)
0.940013 + 0.341138i \(0.110812\pi\)
\(384\) 8.78006 + 5.06917i 0.448056 + 0.258685i
\(385\) 14.9758 + 11.9371i 0.763237 + 0.608369i
\(386\) 1.56092 2.70359i 0.0794488 0.137609i
\(387\) 2.67815 0.136138
\(388\) 0.768544 + 0.443719i 0.0390169 + 0.0225264i
\(389\) 14.0512 + 24.3373i 0.712422 + 1.23395i 0.963946 + 0.266099i \(0.0857350\pi\)
−0.251524 + 0.967851i \(0.580932\pi\)
\(390\) 1.49152 2.82940i 0.0755259 0.143272i
\(391\) 20.9623 1.06011
\(392\) 3.41733 + 3.67955i 0.172601 + 0.185845i
\(393\) 9.14644 + 15.8421i 0.461377 + 0.799128i
\(394\) −0.448146 0.776212i −0.0225773 0.0391050i
\(395\) 21.1976 12.2384i 1.06657 0.615783i
\(396\) 1.77204i 0.0890485i
\(397\) −18.8590 + 10.8882i −0.946504 + 0.546465i −0.891993 0.452049i \(-0.850693\pi\)
−0.0545111 + 0.998513i \(0.517360\pi\)
\(398\) 1.29867i 0.0650963i
\(399\) 0.332772 + 0.847308i 0.0166595 + 0.0424184i
\(400\) 4.21970 + 7.30874i 0.210985 + 0.365437i
\(401\) 20.5290i 1.02517i 0.858637 + 0.512584i \(0.171312\pi\)
−0.858637 + 0.512584i \(0.828688\pi\)
\(402\) −1.88223 3.26012i −0.0938772 0.162600i
\(403\) −11.7990 6.21984i −0.587751 0.309832i
\(404\) −7.53162 + 13.0451i −0.374712 + 0.649020i
\(405\) −23.0138 + 13.2871i −1.14357 + 0.660239i
\(406\) −2.11292 + 2.65079i −0.104863 + 0.131557i
\(407\) 10.7152 18.5592i 0.531132 0.919947i
\(408\) −5.40558 3.12091i −0.267616 0.154508i
\(409\) 6.26862i 0.309963i 0.987917 + 0.154982i \(0.0495319\pi\)
−0.987917 + 0.154982i \(0.950468\pi\)
\(410\) 2.63774i 0.130269i
\(411\) 8.01275 + 4.62616i 0.395240 + 0.228192i
\(412\) 5.07308 8.78683i 0.249933 0.432896i
\(413\) 7.33979 + 18.6886i 0.361168 + 0.919608i
\(414\) −0.230322 + 0.132976i −0.0113197 + 0.00653543i
\(415\) 22.2811 38.5920i 1.09374 1.89441i
\(416\) −6.47629 + 4.07899i −0.317526 + 0.199989i
\(417\) 7.05369 + 12.2174i 0.345421 + 0.598286i
\(418\) 0.0917972i 0.00448995i
\(419\) −17.0817 29.5864i −0.834497 1.44539i −0.894439 0.447189i \(-0.852425\pi\)
0.0599424 0.998202i \(-0.480908\pi\)
\(420\) 15.9161 19.9677i 0.776625 0.974324i
\(421\) 11.5233i 0.561613i 0.959764 + 0.280806i \(0.0906019\pi\)
−0.959764 + 0.280806i \(0.909398\pi\)
\(422\) −2.75498 + 1.59059i −0.134111 + 0.0774288i
\(423\) 0.618126i 0.0300543i
\(424\) −4.39391 + 2.53682i −0.213387 + 0.123199i
\(425\) −5.28442 9.15288i −0.256332 0.443980i
\(426\) 0.552218 + 0.956469i 0.0267550 + 0.0463411i
\(427\) −0.851492 0.678716i −0.0412066 0.0328454i
\(428\) 15.8031 0.763873
\(429\) 15.6916 + 8.27179i 0.757596 + 0.399366i
\(430\) 1.94582 + 3.37026i 0.0938359 + 0.162529i
\(431\) −7.59505 4.38500i −0.365841 0.211218i 0.305799 0.952096i \(-0.401076\pi\)
−0.671640 + 0.740878i \(0.734410\pi\)
\(432\) 18.5205 0.891069
\(433\) 11.0535 19.1452i 0.531196 0.920058i −0.468141 0.883654i \(-0.655076\pi\)
0.999337 0.0364046i \(-0.0115905\pi\)
\(434\) 1.38394 + 1.10313i 0.0664315 + 0.0529519i
\(435\) 30.1038 + 17.3804i 1.44337 + 0.833328i
\(436\) 2.27203 1.31176i 0.108811 0.0628219i
\(437\) −0.717877 + 0.414467i −0.0343407 + 0.0198266i
\(438\) 4.69387 0.224282
\(439\) 10.3709 0.494978 0.247489 0.968891i \(-0.420395\pi\)
0.247489 + 0.968891i \(0.420395\pi\)
\(440\) 4.49705 2.59637i 0.214389 0.123777i
\(441\) −2.23661 0.688759i −0.106505 0.0327980i
\(442\) 2.62866 1.65562i 0.125032 0.0787496i
\(443\) −17.9068 + 31.0156i −0.850780 + 1.47359i 0.0297257 + 0.999558i \(0.490537\pi\)
−0.880506 + 0.474036i \(0.842797\pi\)
\(444\) −24.7456 14.2869i −1.17438 0.678026i
\(445\) 7.91437 13.7081i 0.375177 0.649826i
\(446\) 1.27530 + 2.20888i 0.0603871 + 0.104593i
\(447\) 26.1457i 1.23665i
\(448\) −17.7948 + 6.98875i −0.840726 + 0.330187i
\(449\) −19.7023 11.3751i −0.929809 0.536825i −0.0430575 0.999073i \(-0.513710\pi\)
−0.886751 + 0.462247i \(0.847043\pi\)
\(450\) 0.116124 + 0.0670443i 0.00547415 + 0.00316050i
\(451\) 14.6286 0.688834
\(452\) 19.6124 33.9696i 0.922489 1.59780i
\(453\) 11.8188i 0.555298i
\(454\) −0.518742 −0.0243458
\(455\) 10.2794 + 23.4771i 0.481905 + 1.10063i
\(456\) 0.246827 0.0115587
\(457\) 31.3172i 1.46496i 0.680791 + 0.732478i \(0.261636\pi\)
−0.680791 + 0.732478i \(0.738364\pi\)
\(458\) −0.793284 + 1.37401i −0.0370677 + 0.0642032i
\(459\) −23.1936 −1.08258
\(460\) 20.1370 + 11.6261i 0.938891 + 0.542069i
\(461\) −7.28113 4.20376i −0.339116 0.195789i 0.320765 0.947159i \(-0.396060\pi\)
−0.659881 + 0.751370i \(0.729393\pi\)
\(462\) −1.84051 1.46706i −0.0856285 0.0682537i
\(463\) 10.0392i 0.466563i −0.972409 0.233281i \(-0.925054\pi\)
0.972409 0.233281i \(-0.0749463\pi\)
\(464\) −13.4800 23.3480i −0.625791 1.08390i
\(465\) 9.07411 15.7168i 0.420802 0.728850i
\(466\) 0.799813 + 0.461772i 0.0370506 + 0.0213912i
\(467\) −13.1756 + 22.8209i −0.609696 + 1.05602i 0.381594 + 0.924330i \(0.375375\pi\)
−0.991290 + 0.131695i \(0.957958\pi\)
\(468\) 1.10585 2.09780i 0.0511180 0.0969706i
\(469\) 29.8284 + 4.48878i 1.37735 + 0.207273i
\(470\) −0.777869 + 0.449103i −0.0358804 + 0.0207156i
\(471\) −29.0678 −1.33937
\(472\) 5.44413 0.250586
\(473\) −18.6911 + 10.7913i −0.859418 + 0.496185i
\(474\) −2.60517 + 1.50410i −0.119660 + 0.0690855i
\(475\) 0.361941 + 0.208967i 0.0166070 + 0.00958806i
\(476\) 23.0849 9.06638i 1.05809 0.415557i
\(477\) 1.18224 2.04770i 0.0541310 0.0937577i
\(478\) −0.451692 −0.0206599
\(479\) −7.43409 4.29207i −0.339672 0.196110i 0.320455 0.947264i \(-0.396164\pi\)
−0.660127 + 0.751154i \(0.729498\pi\)
\(480\) −5.20701 9.01880i −0.237666 0.411650i
\(481\) 24.2669 15.2841i 1.10648 0.696895i
\(482\) −1.44390 −0.0657678
\(483\) 3.16279 21.0171i 0.143912 0.956310i
\(484\) −3.67990 6.37377i −0.167268 0.289717i
\(485\) −0.605963 1.04956i −0.0275154 0.0476580i
\(486\) 0.541637 0.312714i 0.0245691 0.0141850i
\(487\) 21.2562i 0.963212i 0.876388 + 0.481606i \(0.159946\pi\)
−0.876388 + 0.481606i \(0.840054\pi\)
\(488\) −0.255693 + 0.147624i −0.0115747 + 0.00668264i
\(489\) 8.73130i 0.394843i
\(490\) −0.758268 3.31504i −0.0342551 0.149758i
\(491\) −11.2268 19.4453i −0.506657 0.877556i −0.999970 0.00770409i \(-0.997548\pi\)
0.493313 0.869852i \(-0.335786\pi\)
\(492\) 19.5048i 0.879344i
\(493\) 16.8812 + 29.2391i 0.760292 + 1.31686i
\(494\) −0.0572864 + 0.108672i −0.00257744 + 0.00488939i
\(495\) −1.20999 + 2.09577i −0.0543851 + 0.0941978i
\(496\) −12.1897 + 7.03772i −0.547333 + 0.316003i
\(497\) −8.75119 1.31694i −0.392545 0.0590727i
\(498\) −2.73833 + 4.74293i −0.122708 + 0.212536i
\(499\) −33.6694 19.4390i −1.50725 0.870210i −0.999964 0.00843082i \(-0.997316\pi\)
−0.507284 0.861779i \(-0.669350\pi\)
\(500\) 14.7039i 0.657576i
\(501\) 4.94926i 0.221117i
\(502\) 3.95520 + 2.28354i 0.176529 + 0.101919i
\(503\) −2.72850 + 4.72591i −0.121658 + 0.210718i −0.920422 0.390927i \(-0.872154\pi\)
0.798764 + 0.601645i \(0.205488\pi\)
\(504\) −0.395520 + 0.496204i −0.0176178 + 0.0221027i
\(505\) 17.8151 10.2855i 0.792760 0.457700i
\(506\) 1.07163 1.85612i 0.0476397 0.0825144i
\(507\) 13.4141 + 19.5848i 0.595740 + 0.869790i
\(508\) −7.83697 13.5740i −0.347709 0.602250i
\(509\) 10.8925i 0.482800i −0.970426 0.241400i \(-0.922393\pi\)
0.970426 0.241400i \(-0.0776066\pi\)
\(510\) 2.11347 + 3.66064i 0.0935860 + 0.162096i
\(511\) −23.4435 + 29.4113i −1.03708 + 1.30108i
\(512\) 13.5360i 0.598214i
\(513\) 0.794290 0.458584i 0.0350688 0.0202470i
\(514\) 0.610033i 0.0269074i
\(515\) −11.9997 + 6.92804i −0.528771 + 0.305286i
\(516\) 14.3884 + 24.9215i 0.633415 + 1.09711i
\(517\) −2.49068 4.31398i −0.109540 0.189729i
\(518\) −3.54200 + 1.39109i −0.155626 + 0.0611209i
\(519\) −1.64308 −0.0721230
\(520\) 6.94402 0.267260i 0.304515 0.0117201i
\(521\) −13.9480 24.1587i −0.611074 1.05841i −0.991060 0.133419i \(-0.957404\pi\)
0.379985 0.924993i \(-0.375929\pi\)
\(522\) −0.370962 0.214175i −0.0162366 0.00937418i
\(523\) 16.7236 0.731272 0.365636 0.930758i \(-0.380852\pi\)
0.365636 + 0.930758i \(0.380852\pi\)
\(524\) −9.85416 + 17.0679i −0.430481 + 0.745615i
\(525\) −9.97411 + 3.91724i −0.435306 + 0.170962i
\(526\) 0.0248890 + 0.0143696i 0.00108521 + 0.000626546i
\(527\) 15.2654 8.81347i 0.664970 0.383921i
\(528\) 16.2111 9.35949i 0.705498 0.407319i
\(529\) −3.64627 −0.158534
\(530\) 3.43585 0.149244
\(531\) −2.19723 + 1.26857i −0.0953515 + 0.0550512i
\(532\) −0.611307 + 0.766923i −0.0265035 + 0.0332503i
\(533\) 17.3178 + 9.12904i 0.750116 + 0.395423i
\(534\) −0.972671 + 1.68472i −0.0420916 + 0.0729048i
\(535\) −18.6901 10.7907i −0.808045 0.466525i
\(536\) 4.08945 7.08313i 0.176637 0.305945i
\(537\) 10.0940 + 17.4834i 0.435590 + 0.754464i
\(538\) 4.21800i 0.181851i
\(539\) 18.3849 4.20527i 0.791893 0.181134i
\(540\) −22.2804 12.8636i −0.958796 0.553561i
\(541\) 9.66528 + 5.58025i 0.415543 + 0.239914i 0.693169 0.720776i \(-0.256214\pi\)
−0.277626 + 0.960689i \(0.589547\pi\)
\(542\) 2.13751 0.0918141
\(543\) −3.22198 + 5.58063i −0.138268 + 0.239488i
\(544\) 10.1149i 0.433673i
\(545\) −3.58280 −0.153470
\(546\) −1.26333 2.88532i −0.0540656 0.123481i
\(547\) 36.6556 1.56728 0.783640 0.621215i \(-0.213361\pi\)
0.783640 + 0.621215i \(0.213361\pi\)
\(548\) 9.96824i 0.425822i
\(549\) 0.0687976 0.119161i 0.00293621 0.00508567i
\(550\) −1.08059 −0.0460767
\(551\) −1.15623 0.667551i −0.0492571 0.0284386i
\(552\) −4.99077 2.88142i −0.212421 0.122641i
\(553\) 3.58700 23.8360i 0.152535 1.01361i
\(554\) 4.94830i 0.210233i
\(555\) 19.5109 + 33.7938i 0.828190 + 1.43447i
\(556\) −7.59948 + 13.1627i −0.322290 + 0.558222i
\(557\) −28.6461 16.5388i −1.21377 0.700772i −0.250193 0.968196i \(-0.580494\pi\)
−0.963579 + 0.267424i \(0.913827\pi\)
\(558\) −0.111818 + 0.193675i −0.00473364 + 0.00819890i
\(559\) −28.8615 + 1.11081i −1.22071 + 0.0469823i
\(560\) 26.7447 + 4.02472i 1.13017 + 0.170076i
\(561\) −20.3015 + 11.7211i −0.857130 + 0.494864i
\(562\) 5.16039 0.217678
\(563\) −17.7967 −0.750043 −0.375021 0.927016i \(-0.622365\pi\)
−0.375021 + 0.927016i \(0.622365\pi\)
\(564\) −5.75197 + 3.32090i −0.242202 + 0.139835i
\(565\) −46.3906 + 26.7836i −1.95167 + 1.12679i
\(566\) 2.81439 + 1.62489i 0.118298 + 0.0682992i
\(567\) −3.89433 + 25.8783i −0.163547 + 1.08679i
\(568\) −1.19978 + 2.07808i −0.0503417 + 0.0871943i
\(569\) 8.22094 0.344640 0.172320 0.985041i \(-0.444874\pi\)
0.172320 + 0.985041i \(0.444874\pi\)
\(570\) −0.144756 0.0835750i −0.00606317 0.00350057i
\(571\) −12.8776 22.3047i −0.538912 0.933424i −0.998963 0.0455309i \(-0.985502\pi\)
0.460051 0.887893i \(-0.347831\pi\)
\(572\) 0.734988 + 19.0967i 0.0307314 + 0.798473i
\(573\) 37.2513 1.55620
\(574\) −2.03126 1.61910i −0.0847830 0.0675798i
\(575\) −4.87891 8.45051i −0.203464 0.352411i
\(576\) −1.20790 2.09214i −0.0503290 0.0871724i
\(577\) −0.666314 + 0.384697i −0.0277390 + 0.0160151i −0.513805 0.857907i \(-0.671765\pi\)
0.486066 + 0.873922i \(0.338431\pi\)
\(578\) 1.03152i 0.0429058i
\(579\) −27.3017 + 15.7626i −1.13462 + 0.655073i
\(580\) 37.4505i 1.55505i
\(581\) −16.0422 40.8467i −0.665541 1.69461i
\(582\) 0.0744725 + 0.128990i 0.00308698 + 0.00534681i
\(583\) 19.0549i 0.789172i
\(584\) 5.09908 + 8.83187i 0.211002 + 0.365465i
\(585\) −2.74030 + 1.72593i −0.113297 + 0.0713585i
\(586\) −1.34615 + 2.33159i −0.0556088 + 0.0963173i
\(587\) −10.4727 + 6.04644i −0.432256 + 0.249563i −0.700307 0.713841i \(-0.746954\pi\)
0.268051 + 0.963405i \(0.413620\pi\)
\(588\) −5.60703 24.5132i −0.231230 1.01091i
\(589\) −0.348520 + 0.603654i −0.0143605 + 0.0248731i
\(590\) −3.19281 1.84337i −0.131446 0.0758904i
\(591\) 9.05103i 0.372310i
\(592\) 30.2646i 1.24387i
\(593\) −13.8115 7.97406i −0.567170 0.327456i 0.188848 0.982006i \(-0.439525\pi\)
−0.756018 + 0.654551i \(0.772858\pi\)
\(594\) −1.18570 + 2.05369i −0.0486497 + 0.0842638i
\(595\) −33.4929 5.04024i −1.37308 0.206630i
\(596\) 24.3949 14.0844i 0.999253 0.576919i
\(597\) −6.55717 + 11.3573i −0.268367 + 0.464825i
\(598\) 2.42694 1.52857i 0.0992450 0.0625078i
\(599\) 3.55511 + 6.15763i 0.145258 + 0.251594i 0.929469 0.368900i \(-0.120266\pi\)
−0.784211 + 0.620494i \(0.786932\pi\)
\(600\) 2.90553i 0.118618i
\(601\) −10.3953 18.0051i −0.424032 0.734445i 0.572297 0.820046i \(-0.306052\pi\)
−0.996329 + 0.0856011i \(0.972719\pi\)
\(602\) 3.78974 + 0.570306i 0.154458 + 0.0232439i
\(603\) 3.81163i 0.155221i
\(604\) 11.0274 6.36667i 0.448698 0.259056i
\(605\) 10.0509i 0.408626i
\(606\) −2.18946 + 1.26409i −0.0889408 + 0.0513500i
\(607\) 3.85702 + 6.68056i 0.156552 + 0.271156i 0.933623 0.358257i \(-0.116629\pi\)
−0.777071 + 0.629413i \(0.783296\pi\)
\(608\) 0.199992 + 0.346396i 0.00811074 + 0.0140482i
\(609\) 31.8626 12.5137i 1.29114 0.507082i
\(610\) 0.199941 0.00809539
\(611\) −0.256380 6.66133i −0.0103720 0.269489i
\(612\) 1.56698 + 2.71409i 0.0633415 + 0.109711i
\(613\) −17.6997 10.2189i −0.714883 0.412738i 0.0979832 0.995188i \(-0.468761\pi\)
−0.812867 + 0.582450i \(0.802094\pi\)
\(614\) −4.25227 −0.171608
\(615\) −13.3183 + 23.0680i −0.537047 + 0.930193i
\(616\) 0.760978 5.05678i 0.0306607 0.203743i
\(617\) −3.98209 2.29906i −0.160313 0.0925567i 0.417697 0.908586i \(-0.362837\pi\)
−0.578010 + 0.816030i \(0.696171\pi\)
\(618\) 1.47476 0.851451i 0.0593234 0.0342504i
\(619\) −8.70599 + 5.02641i −0.349923 + 0.202028i −0.664651 0.747154i \(-0.731420\pi\)
0.314728 + 0.949182i \(0.398087\pi\)
\(620\) 19.5525 0.785245
\(621\) −21.4138 −0.859306
\(622\) −0.255396 + 0.147453i −0.0102404 + 0.00591232i
\(623\) −5.69827 14.5090i −0.228296 0.581290i
\(624\) 25.0320 0.963425i 1.00208 0.0385679i
\(625\) 15.5853 26.9944i 0.623410 1.07978i
\(626\) 0.109107 + 0.0629930i 0.00436080 + 0.00251771i
\(627\) 0.463498 0.802802i 0.0185103 0.0320608i
\(628\) −15.6585 27.1213i −0.624842 1.08226i
\(629\) 37.9009i 1.51121i
\(630\) 0.399974 0.157086i 0.0159353 0.00625846i
\(631\) −6.29923 3.63686i −0.250768 0.144781i 0.369348 0.929291i \(-0.379581\pi\)
−0.620116 + 0.784510i \(0.712914\pi\)
\(632\) −5.66015 3.26789i −0.225149 0.129990i
\(633\) 32.1245 1.27684
\(634\) −1.93742 + 3.35570i −0.0769447 + 0.133272i
\(635\) 21.4051i 0.849434i
\(636\) 25.4065 1.00743
\(637\) 24.3889 + 6.49484i 0.966322 + 0.257335i
\(638\) 3.45199 0.136665
\(639\) 1.11827i 0.0442381i
\(640\) 7.45835 12.9182i 0.294817 0.510639i
\(641\) −3.85033 −0.152079 −0.0760394 0.997105i \(-0.524227\pi\)
−0.0760394 + 0.997105i \(0.524227\pi\)
\(642\) 2.29700 + 1.32618i 0.0906555 + 0.0523400i
\(643\) 2.49163 + 1.43855i 0.0982605 + 0.0567307i 0.548325 0.836265i \(-0.315266\pi\)
−0.450065 + 0.892996i \(0.648599\pi\)
\(644\) 21.3134 8.37066i 0.839867 0.329850i
\(645\) 39.2990i 1.54740i
\(646\) −0.0811745 0.140598i −0.00319377 0.00553177i
\(647\) 18.5501 32.1296i 0.729278 1.26315i −0.227911 0.973682i \(-0.573190\pi\)
0.957189 0.289464i \(-0.0934771\pi\)
\(648\) 6.14512 + 3.54789i 0.241403 + 0.139374i
\(649\) 10.2231 17.7070i 0.401293 0.695061i
\(650\) −1.27924 0.674349i −0.0501758 0.0264501i
\(651\) −6.53326 16.6350i −0.256059 0.651979i
\(652\) −8.14661 + 4.70345i −0.319046 + 0.184201i
\(653\) 20.0950 0.786377 0.393189 0.919458i \(-0.371372\pi\)
0.393189 + 0.919458i \(0.371372\pi\)
\(654\) 0.440324 0.0172180
\(655\) 23.3087 13.4573i 0.910748 0.525820i
\(656\) 17.8912 10.3295i 0.698532 0.403298i
\(657\) −4.11593 2.37634i −0.160578 0.0927097i
\(658\) −0.131629 + 0.874687i −0.00513142 + 0.0340988i
\(659\) −4.95529 + 8.58281i −0.193031 + 0.334339i −0.946253 0.323427i \(-0.895165\pi\)
0.753223 + 0.657766i \(0.228498\pi\)
\(660\) −26.0029 −1.01216
\(661\) 40.8994 + 23.6133i 1.59080 + 0.918450i 0.993170 + 0.116680i \(0.0372252\pi\)
0.597633 + 0.801770i \(0.296108\pi\)
\(662\) −0.137468 0.238102i −0.00534284 0.00925408i
\(663\) −31.3481 + 1.20652i −1.21746 + 0.0468572i
\(664\) −11.8989 −0.461768
\(665\) 1.24666 0.489613i 0.0483433 0.0189864i
\(666\) −0.240428 0.416433i −0.00931639 0.0161365i
\(667\) 15.5858 + 26.9954i 0.603485 + 1.04527i
\(668\) −4.61783 + 2.66611i −0.178669 + 0.103155i
\(669\) 25.7567i 0.995811i
\(670\) −4.79667 + 2.76936i −0.185312 + 0.106990i
\(671\) 1.10885i 0.0428068i
\(672\) −10.1413 1.52614i −0.391210 0.0588719i
\(673\) 3.45845 + 5.99020i 0.133313 + 0.230905i 0.924952 0.380084i \(-0.124105\pi\)
−0.791639 + 0.610990i \(0.790772\pi\)
\(674\) 5.82801i 0.224487i
\(675\) 5.39823 + 9.35001i 0.207778 + 0.359882i
\(676\) −11.0473 + 23.0659i −0.424895 + 0.887150i
\(677\) 6.16453 10.6773i 0.236922 0.410361i −0.722908 0.690945i \(-0.757195\pi\)
0.959830 + 0.280584i \(0.0905281\pi\)
\(678\) 5.70137 3.29169i 0.218960 0.126416i
\(679\) −1.18019 0.177603i −0.0452916 0.00681579i
\(680\) −4.59185 + 7.95331i −0.176089 + 0.304996i
\(681\) 4.53660 + 2.61921i 0.173843 + 0.100368i
\(682\) 1.80224i 0.0690113i
\(683\) 24.5364i 0.938859i 0.882970 + 0.469430i \(0.155540\pi\)
−0.882970 + 0.469430i \(0.844460\pi\)
\(684\) −0.107326 0.0619648i −0.00410372 0.00236928i
\(685\) 6.80655 11.7893i 0.260065 0.450446i
\(686\) −3.01828 1.45092i −0.115238 0.0553963i
\(687\) 13.8751 8.01082i 0.529370 0.305632i
\(688\) −15.2398 + 26.3961i −0.581012 + 1.00634i
\(689\) −11.8913 + 22.5577i −0.453021 + 0.859380i
\(690\) 1.95129 + 3.37973i 0.0742843 + 0.128664i
\(691\) 9.10716i 0.346453i 0.984882 + 0.173226i \(0.0554192\pi\)
−0.984882 + 0.173226i \(0.944581\pi\)
\(692\) −0.885106 1.53305i −0.0336467 0.0582777i
\(693\) 0.871182 + 2.21821i 0.0330935 + 0.0842629i
\(694\) 1.47992i 0.0561769i
\(695\) 17.9756 10.3782i 0.681853 0.393668i
\(696\) 9.28179i 0.351825i
\(697\) −22.4055 + 12.9358i −0.848667 + 0.489978i
\(698\) −1.97543 3.42155i −0.0747712 0.129508i
\(699\) −4.66312 8.07675i −0.176375 0.305491i
\(700\) −9.02785 7.19602i −0.341221 0.271984i
\(701\) 0.286950 0.0108380 0.00541898 0.999985i \(-0.498275\pi\)
0.00541898 + 0.999985i \(0.498275\pi\)
\(702\) −2.68527 + 1.69127i −0.101349 + 0.0638331i
\(703\) −0.749377 1.29796i −0.0282633 0.0489534i
\(704\) 16.8601 + 9.73419i 0.635440 + 0.366871i
\(705\) 9.07036 0.341609
\(706\) 0.0512797 0.0888191i 0.00192994 0.00334275i
\(707\) 3.01461 20.0324i 0.113376 0.753397i
\(708\) −23.6093 13.6308i −0.887292 0.512278i
\(709\) 16.0949 9.29241i 0.604457 0.348984i −0.166336 0.986069i \(-0.553194\pi\)
0.770793 + 0.637086i \(0.219860\pi\)
\(710\) 1.40727 0.812486i 0.0528138 0.0304921i
\(711\) 3.04588 0.114229
\(712\) −4.22656 −0.158397
\(713\) 14.0940 8.13715i 0.527823 0.304739i
\(714\) 4.11626 + 0.619442i 0.154047 + 0.0231820i
\(715\) 12.1704 23.0872i 0.455148 0.863414i
\(716\) −10.8751 + 18.8362i −0.406421 + 0.703941i
\(717\) 3.95022 + 2.28066i 0.147524 + 0.0851729i
\(718\) 2.92974 5.07445i 0.109337 0.189377i
\(719\) 20.8475 + 36.1088i 0.777479 + 1.34663i 0.933391 + 0.358862i \(0.116835\pi\)
−0.155912 + 0.987771i \(0.549832\pi\)
\(720\) 3.41757i 0.127365i
\(721\) −2.03056 + 13.4933i −0.0756218 + 0.502515i
\(722\) −2.96980 1.71462i −0.110525 0.0638114i
\(723\) 12.6275 + 7.29046i 0.469620 + 0.271135i
\(724\) −6.94257 −0.258019
\(725\) 7.85809 13.6106i 0.291842 0.505486i
\(726\) 1.23525i 0.0458443i
\(727\) 32.7039 1.21292 0.606461 0.795113i \(-0.292589\pi\)
0.606461 + 0.795113i \(0.292589\pi\)
\(728\) 4.05657 5.51147i 0.150346 0.204269i
\(729\) 23.3578 0.865105
\(730\) 6.90616i 0.255608i
\(731\) 19.0851 33.0564i 0.705888 1.22263i
\(732\) 1.47847 0.0546458
\(733\) 8.60423 + 4.96765i 0.317804 + 0.183484i 0.650413 0.759580i \(-0.274596\pi\)
−0.332609 + 0.943065i \(0.607929\pi\)
\(734\) 1.23225 + 0.711440i 0.0454832 + 0.0262597i
\(735\) −10.1068 + 32.8200i −0.372796 + 1.21058i
\(736\) 9.33871i 0.344230i
\(737\) −15.3586 26.6018i −0.565740 0.979891i
\(738\) 0.164119 0.284262i 0.00604129 0.0104638i
\(739\) −9.00853 5.20108i −0.331384 0.191325i 0.325071 0.945690i \(-0.394612\pi\)
−0.656455 + 0.754365i \(0.727945\pi\)
\(740\) −21.0205 + 36.4086i −0.772730 + 1.33841i
\(741\) 1.04969 0.661133i 0.0385615 0.0242873i
\(742\) 2.10900 2.64587i 0.0774237 0.0971328i
\(743\) −1.47972 + 0.854317i −0.0542857 + 0.0313419i −0.526897 0.849929i \(-0.676645\pi\)
0.472612 + 0.881271i \(0.343311\pi\)
\(744\) −4.84590 −0.177659
\(745\) −38.4686 −1.40938
\(746\) −0.327545 + 0.189108i −0.0119923 + 0.00692374i
\(747\) 4.80235 2.77264i 0.175709 0.101446i
\(748\) −21.8723 12.6280i −0.799732 0.461726i
\(749\) −19.7821 + 7.76923i −0.722821 + 0.283881i
\(750\) −1.23393 + 2.13722i −0.0450566 + 0.0780404i
\(751\) −29.9812 −1.09403 −0.547015 0.837123i \(-0.684236\pi\)
−0.547015 + 0.837123i \(0.684236\pi\)
\(752\) −6.09233 3.51741i −0.222164 0.128267i
\(753\) −23.0598 39.9408i −0.840347 1.45552i
\(754\) 4.08656 + 2.15423i 0.148824 + 0.0784523i
\(755\) −17.3893 −0.632860
\(756\) −23.5821 + 9.26165i −0.857673 + 0.336843i
\(757\) −4.20229 7.27858i −0.152735 0.264545i 0.779497 0.626406i \(-0.215475\pi\)
−0.932232 + 0.361861i \(0.882141\pi\)
\(758\) 1.29437 + 2.24191i 0.0470136 + 0.0814299i
\(759\) −18.7436 + 10.8216i −0.680350 + 0.392800i
\(760\) 0.363160i 0.0131732i
\(761\) 44.2184 25.5295i 1.60292 0.925444i 0.612015 0.790846i \(-0.290359\pi\)
0.990900 0.134598i \(-0.0429742\pi\)
\(762\) 2.63067i 0.0952990i
\(763\) −2.19920 + 2.75903i −0.0796163 + 0.0998835i
\(764\) 20.0668 + 34.7568i 0.725993 + 1.25746i
\(765\) 4.27989i 0.154740i
\(766\) 2.27723 + 3.94429i 0.0822798 + 0.142513i
\(767\) 23.1526 14.5823i 0.835991 0.526535i
\(768\) 12.2780 21.2661i 0.443044 0.767375i
\(769\) −0.610062 + 0.352220i −0.0219994 + 0.0127014i −0.510959 0.859605i \(-0.670710\pi\)
0.488960 + 0.872306i \(0.337376\pi\)
\(770\) −2.15850 + 2.70798i −0.0777871 + 0.0975887i
\(771\) 3.08015 5.33498i 0.110929 0.192134i
\(772\) −29.4142 16.9823i −1.05864 0.611206i
\(773\) 1.26521i 0.0455066i −0.999741 0.0227533i \(-0.992757\pi\)
0.999741 0.0227533i \(-0.00724323\pi\)
\(774\) 0.484272i </