Properties

Label 91.2.k.b.23.3
Level $91$
Weight $2$
Character 91.23
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 23.3
Root \(-1.18541 - 0.771231i\) of defining polynomial
Character \(\chi\) \(=\) 91.23
Dual form 91.2.k.b.4.4

$q$-expansion

\(f(q)\) \(=\) \(q-0.499987i q^{2} +(-0.424801 + 0.735776i) q^{3} +1.75001 q^{4} +(-0.902810 - 0.521238i) q^{5} +(0.367878 + 0.212395i) q^{6} +(2.63491 + 0.239300i) q^{7} -1.87496i q^{8} +(1.13909 + 1.97296i) q^{9} +O(q^{10})\) \(q-0.499987i q^{2} +(-0.424801 + 0.735776i) q^{3} +1.75001 q^{4} +(-0.902810 - 0.521238i) q^{5} +(0.367878 + 0.212395i) q^{6} +(2.63491 + 0.239300i) q^{7} -1.87496i q^{8} +(1.13909 + 1.97296i) q^{9} +(-0.260612 + 0.451393i) q^{10} +(-3.43579 - 1.98365i) q^{11} +(-0.743407 + 1.28762i) q^{12} +(-3.57504 - 0.468096i) q^{13} +(0.119647 - 1.31742i) q^{14} +(0.767029 - 0.442844i) q^{15} +2.56257 q^{16} +0.142035 q^{17} +(0.986453 - 0.569529i) q^{18} +(-4.77160 + 2.75488i) q^{19} +(-1.57993 - 0.912173i) q^{20} +(-1.29538 + 1.83705i) q^{21} +(-0.991800 + 1.71785i) q^{22} -4.39098 q^{23} +(1.37955 + 0.796483i) q^{24} +(-1.95662 - 3.38897i) q^{25} +(-0.234042 + 1.78747i) q^{26} -4.48435 q^{27} +(4.61112 + 0.418779i) q^{28} +(4.19880 + 7.27253i) q^{29} +(-0.221416 - 0.383504i) q^{30} +(2.46516 - 1.42326i) q^{31} -5.03117i q^{32} +(2.91905 - 1.68531i) q^{33} -0.0710158i q^{34} +(-2.25409 - 1.58946i) q^{35} +(1.99342 + 3.45271i) q^{36} +0.843187i q^{37} +(1.37740 + 2.38574i) q^{38} +(1.86309 - 2.43158i) q^{39} +(-0.977298 + 1.69273i) q^{40} +(10.4766 - 6.04869i) q^{41} +(0.918499 + 0.647674i) q^{42} +(2.41161 - 4.17704i) q^{43} +(-6.01267 - 3.47142i) q^{44} -2.37494i q^{45} +2.19543i q^{46} +(-3.94602 - 2.27824i) q^{47} +(-1.08858 + 1.88548i) q^{48} +(6.88547 + 1.26107i) q^{49} +(-1.69444 + 0.978285i) q^{50} +(-0.0603367 + 0.104506i) q^{51} +(-6.25636 - 0.819175i) q^{52} +(0.139800 + 0.242141i) q^{53} +2.24211i q^{54} +(2.06791 + 3.58172i) q^{55} +(0.448678 - 4.94034i) q^{56} -4.68111i q^{57} +(3.63617 - 2.09934i) q^{58} +10.7815i q^{59} +(1.34231 - 0.774983i) q^{60} +(2.93177 + 5.07797i) q^{61} +(-0.711612 - 1.23255i) q^{62} +(2.52926 + 5.47115i) q^{63} +2.60963 q^{64} +(2.98359 + 2.28605i) q^{65} +(-0.842634 - 1.45949i) q^{66} +(-4.45524 - 2.57223i) q^{67} +0.248564 q^{68} +(1.86529 - 3.23078i) q^{69} +(-0.794706 + 1.12701i) q^{70} +(-3.20326 - 1.84940i) q^{71} +(3.69921 - 2.13574i) q^{72} +(5.72686 - 3.30640i) q^{73} +0.421582 q^{74} +3.32470 q^{75} +(-8.35036 + 4.82108i) q^{76} +(-8.57829 - 6.04892i) q^{77} +(-1.21576 - 0.931521i) q^{78} +(-5.96135 + 10.3254i) q^{79} +(-2.31352 - 1.33571i) q^{80} +(-1.51231 + 2.61940i) q^{81} +(-3.02426 - 5.23818i) q^{82} +2.87321i q^{83} +(-2.26694 + 3.21486i) q^{84} +(-0.128231 - 0.0740342i) q^{85} +(-2.08846 - 1.20578i) q^{86} -7.13461 q^{87} +(-3.71926 + 6.44195i) q^{88} -1.74765i q^{89} -1.18744 q^{90} +(-9.30787 - 2.08890i) q^{91} -7.68427 q^{92} +2.41841i q^{93} +(-1.13909 + 1.97296i) q^{94} +5.74379 q^{95} +(3.70181 + 2.13724i) q^{96} +(2.34079 + 1.35145i) q^{97} +(0.630517 - 3.44264i) q^{98} -9.03822i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + O(q^{10}) \) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + 12q^{10} + 12q^{11} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} + 16q^{16} - 34q^{17} + 3q^{18} + 9q^{19} - 3q^{20} + 21q^{21} - 15q^{22} - 6q^{23} + 15q^{24} - 5q^{25} - 6q^{26} + 12q^{27} - 9q^{28} - q^{29} + 11q^{30} + 18q^{31} - 6q^{33} - 6q^{35} - 13q^{36} + 19q^{38} - 4q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} - 33q^{44} - 15q^{47} + 19q^{48} - 3q^{49} + 18q^{50} + 4q^{51} - 7q^{52} - 8q^{53} - 15q^{55} + 27q^{56} - 24q^{58} - 30q^{60} + 5q^{61} + 41q^{62} - 30q^{63} + 2q^{64} + 21q^{65} - 34q^{66} + 15q^{67} + 22q^{68} + 7q^{69} + 3q^{70} + 30q^{71} + 57q^{72} + 42q^{73} + 66q^{74} - 2q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 63q^{80} + 14q^{81} + 5q^{82} - 12q^{84} - 21q^{85} - 57q^{86} - 20q^{87} - 14q^{88} - 7q^{91} - 66q^{92} + q^{94} - 4q^{95} + 21q^{96} - 3q^{97} - 18q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.499987i 0.353544i −0.984252 0.176772i \(-0.943434\pi\)
0.984252 0.176772i \(-0.0565655\pi\)
\(3\) −0.424801 + 0.735776i −0.245259 + 0.424801i −0.962204 0.272328i \(-0.912206\pi\)
0.716946 + 0.697129i \(0.245540\pi\)
\(4\) 1.75001 0.875007
\(5\) −0.902810 0.521238i −0.403749 0.233105i 0.284351 0.958720i \(-0.408222\pi\)
−0.688100 + 0.725616i \(0.741555\pi\)
\(6\) 0.367878 + 0.212395i 0.150186 + 0.0867098i
\(7\) 2.63491 + 0.239300i 0.995901 + 0.0904471i
\(8\) 1.87496i 0.662897i
\(9\) 1.13909 + 1.97296i 0.379696 + 0.657653i
\(10\) −0.260612 + 0.451393i −0.0824127 + 0.142743i
\(11\) −3.43579 1.98365i −1.03593 0.598094i −0.117251 0.993102i \(-0.537408\pi\)
−0.918677 + 0.395009i \(0.870742\pi\)
\(12\) −0.743407 + 1.28762i −0.214603 + 0.371703i
\(13\) −3.57504 0.468096i −0.991537 0.129827i
\(14\) 0.119647 1.31742i 0.0319770 0.352095i
\(15\) 0.767029 0.442844i 0.198046 0.114342i
\(16\) 2.56257 0.640643
\(17\) 0.142035 0.0344486 0.0172243 0.999852i \(-0.494517\pi\)
0.0172243 + 0.999852i \(0.494517\pi\)
\(18\) 0.986453 0.569529i 0.232509 0.134239i
\(19\) −4.77160 + 2.75488i −1.09468 + 0.632014i −0.934818 0.355126i \(-0.884438\pi\)
−0.159861 + 0.987140i \(0.551105\pi\)
\(20\) −1.57993 0.912173i −0.353283 0.203968i
\(21\) −1.29538 + 1.83705i −0.282676 + 0.400877i
\(22\) −0.991800 + 1.71785i −0.211452 + 0.366246i
\(23\) −4.39098 −0.915582 −0.457791 0.889060i \(-0.651359\pi\)
−0.457791 + 0.889060i \(0.651359\pi\)
\(24\) 1.37955 + 0.796483i 0.281599 + 0.162581i
\(25\) −1.95662 3.38897i −0.391325 0.677794i
\(26\) −0.234042 + 1.78747i −0.0458994 + 0.350552i
\(27\) −4.48435 −0.863013
\(28\) 4.61112 + 0.418779i 0.871420 + 0.0791418i
\(29\) 4.19880 + 7.27253i 0.779697 + 1.35047i 0.932116 + 0.362159i \(0.117960\pi\)
−0.152419 + 0.988316i \(0.548706\pi\)
\(30\) −0.221416 0.383504i −0.0404249 0.0700179i
\(31\) 2.46516 1.42326i 0.442756 0.255625i −0.262010 0.965065i \(-0.584385\pi\)
0.704766 + 0.709440i \(0.251052\pi\)
\(32\) 5.03117i 0.889393i
\(33\) 2.91905 1.68531i 0.508141 0.293376i
\(34\) 0.0710158i 0.0121791i
\(35\) −2.25409 1.58946i −0.381010 0.268667i
\(36\) 1.99342 + 3.45271i 0.332237 + 0.575451i
\(37\) 0.843187i 0.138619i 0.997595 + 0.0693095i \(0.0220796\pi\)
−0.997595 + 0.0693095i \(0.977920\pi\)
\(38\) 1.37740 + 2.38574i 0.223445 + 0.387017i
\(39\) 1.86309 2.43158i 0.298334 0.389364i
\(40\) −0.977298 + 1.69273i −0.154524 + 0.267644i
\(41\) 10.4766 6.04869i 1.63618 0.944647i 0.654044 0.756457i \(-0.273071\pi\)
0.982133 0.188190i \(-0.0602621\pi\)
\(42\) 0.918499 + 0.647674i 0.141728 + 0.0999382i
\(43\) 2.41161 4.17704i 0.367768 0.636993i −0.621448 0.783455i \(-0.713455\pi\)
0.989216 + 0.146463i \(0.0467888\pi\)
\(44\) −6.01267 3.47142i −0.906444 0.523336i
\(45\) 2.37494i 0.354036i
\(46\) 2.19543i 0.323699i
\(47\) −3.94602 2.27824i −0.575587 0.332315i 0.183791 0.982965i \(-0.441163\pi\)
−0.759378 + 0.650650i \(0.774496\pi\)
\(48\) −1.08858 + 1.88548i −0.157123 + 0.272146i
\(49\) 6.88547 + 1.26107i 0.983639 + 0.180153i
\(50\) −1.69444 + 0.978285i −0.239630 + 0.138350i
\(51\) −0.0603367 + 0.104506i −0.00844883 + 0.0146338i
\(52\) −6.25636 0.819175i −0.867601 0.113599i
\(53\) 0.139800 + 0.242141i 0.0192030 + 0.0332606i 0.875467 0.483278i \(-0.160554\pi\)
−0.856264 + 0.516538i \(0.827220\pi\)
\(54\) 2.24211i 0.305113i
\(55\) 2.06791 + 3.58172i 0.278837 + 0.482959i
\(56\) 0.448678 4.94034i 0.0599571 0.660180i
\(57\) 4.68111i 0.620028i
\(58\) 3.63617 2.09934i 0.477452 0.275657i
\(59\) 10.7815i 1.40363i 0.712359 + 0.701815i \(0.247627\pi\)
−0.712359 + 0.701815i \(0.752373\pi\)
\(60\) 1.34231 0.774983i 0.173292 0.100050i
\(61\) 2.93177 + 5.07797i 0.375374 + 0.650168i 0.990383 0.138353i \(-0.0441808\pi\)
−0.615009 + 0.788520i \(0.710847\pi\)
\(62\) −0.711612 1.23255i −0.0903748 0.156534i
\(63\) 2.52926 + 5.47115i 0.318657 + 0.689300i
\(64\) 2.60963 0.326204
\(65\) 2.98359 + 2.28605i 0.370069 + 0.283549i
\(66\) −0.842634 1.45949i −0.103721 0.179650i
\(67\) −4.45524 2.57223i −0.544294 0.314248i 0.202523 0.979277i \(-0.435086\pi\)
−0.746818 + 0.665029i \(0.768419\pi\)
\(68\) 0.248564 0.0301428
\(69\) 1.86529 3.23078i 0.224555 0.388940i
\(70\) −0.794706 + 1.12701i −0.0949856 + 0.134704i
\(71\) −3.20326 1.84940i −0.380157 0.219484i 0.297730 0.954650i \(-0.403771\pi\)
−0.677887 + 0.735167i \(0.737104\pi\)
\(72\) 3.69921 2.13574i 0.435956 0.251700i
\(73\) 5.72686 3.30640i 0.670278 0.386985i −0.125904 0.992042i \(-0.540183\pi\)
0.796182 + 0.605057i \(0.206850\pi\)
\(74\) 0.421582 0.0490079
\(75\) 3.32470 0.383903
\(76\) −8.35036 + 4.82108i −0.957852 + 0.553016i
\(77\) −8.57829 6.04892i −0.977587 0.689339i
\(78\) −1.21576 0.931521i −0.137657 0.105474i
\(79\) −5.96135 + 10.3254i −0.670705 + 1.16169i 0.307000 + 0.951710i \(0.400675\pi\)
−0.977705 + 0.209985i \(0.932658\pi\)
\(80\) −2.31352 1.33571i −0.258659 0.149337i
\(81\) −1.51231 + 2.61940i −0.168035 + 0.291045i
\(82\) −3.02426 5.23818i −0.333974 0.578460i
\(83\) 2.87321i 0.315376i 0.987489 + 0.157688i \(0.0504040\pi\)
−0.987489 + 0.157688i \(0.949596\pi\)
\(84\) −2.26694 + 3.21486i −0.247343 + 0.350770i
\(85\) −0.128231 0.0740342i −0.0139086 0.00803013i
\(86\) −2.08846 1.20578i −0.225205 0.130022i
\(87\) −7.13461 −0.764910
\(88\) −3.71926 + 6.44195i −0.396475 + 0.686714i
\(89\) 1.74765i 0.185250i −0.995701 0.0926252i \(-0.970474\pi\)
0.995701 0.0926252i \(-0.0295258\pi\)
\(90\) −1.18744 −0.125167
\(91\) −9.30787 2.08890i −0.975730 0.218976i
\(92\) −7.68427 −0.801141
\(93\) 2.41841i 0.250777i
\(94\) −1.13909 + 1.97296i −0.117488 + 0.203495i
\(95\) 5.74379 0.589301
\(96\) 3.70181 + 2.13724i 0.377815 + 0.218131i
\(97\) 2.34079 + 1.35145i 0.237671 + 0.137219i 0.614106 0.789224i \(-0.289517\pi\)
−0.376435 + 0.926443i \(0.622850\pi\)
\(98\) 0.630517 3.44264i 0.0636919 0.347759i
\(99\) 9.03822i 0.908376i
\(100\) −3.42412 5.93074i −0.342412 0.593074i
\(101\) 5.73612 9.93524i 0.570765 0.988594i −0.425723 0.904854i \(-0.639980\pi\)
0.996488 0.0837401i \(-0.0266866\pi\)
\(102\) 0.0522517 + 0.0301676i 0.00517369 + 0.00298703i
\(103\) 2.08475 3.61090i 0.205417 0.355792i −0.744849 0.667233i \(-0.767478\pi\)
0.950265 + 0.311441i \(0.100812\pi\)
\(104\) −0.877660 + 6.70304i −0.0860617 + 0.657287i
\(105\) 2.12702 0.983303i 0.207576 0.0959606i
\(106\) 0.121067 0.0698982i 0.0117591 0.00678911i
\(107\) 8.48742 0.820510 0.410255 0.911971i \(-0.365440\pi\)
0.410255 + 0.911971i \(0.365440\pi\)
\(108\) −7.84767 −0.755142
\(109\) 5.56886 3.21518i 0.533400 0.307958i −0.209000 0.977916i \(-0.567021\pi\)
0.742400 + 0.669957i \(0.233688\pi\)
\(110\) 1.79081 1.03393i 0.170747 0.0985810i
\(111\) −0.620397 0.358186i −0.0588855 0.0339975i
\(112\) 6.75214 + 0.613225i 0.638018 + 0.0579443i
\(113\) −5.48164 + 9.49448i −0.515670 + 0.893166i 0.484165 + 0.874977i \(0.339123\pi\)
−0.999835 + 0.0181892i \(0.994210\pi\)
\(114\) −2.34049 −0.219207
\(115\) 3.96422 + 2.28874i 0.369665 + 0.213426i
\(116\) 7.34795 + 12.7270i 0.682240 + 1.18167i
\(117\) −3.14875 7.58661i −0.291102 0.701382i
\(118\) 5.39060 0.496245
\(119\) 0.374250 + 0.0339891i 0.0343074 + 0.00311578i
\(120\) −0.830314 1.43815i −0.0757969 0.131284i
\(121\) 2.36975 + 4.10453i 0.215432 + 0.373139i
\(122\) 2.53892 1.46584i 0.229863 0.132711i
\(123\) 10.2780i 0.926732i
\(124\) 4.31406 2.49073i 0.387414 0.223674i
\(125\) 9.29184i 0.831087i
\(126\) 2.73550 1.26460i 0.243698 0.112659i
\(127\) −1.00394 1.73887i −0.0890849 0.154300i 0.818040 0.575162i \(-0.195061\pi\)
−0.907125 + 0.420862i \(0.861728\pi\)
\(128\) 11.3671i 1.00472i
\(129\) 2.04891 + 3.54882i 0.180397 + 0.312456i
\(130\) 1.14299 1.49175i 0.100247 0.130836i
\(131\) 6.22511 10.7822i 0.543890 0.942046i −0.454785 0.890601i \(-0.650284\pi\)
0.998676 0.0514449i \(-0.0163826\pi\)
\(132\) 5.10838 2.94932i 0.444627 0.256706i
\(133\) −13.2320 + 6.11702i −1.14736 + 0.530413i
\(134\) −1.28608 + 2.22756i −0.111101 + 0.192432i
\(135\) 4.04851 + 2.33741i 0.348441 + 0.201172i
\(136\) 0.266310i 0.0228359i
\(137\) 5.24518i 0.448126i 0.974575 + 0.224063i \(0.0719321\pi\)
−0.974575 + 0.224063i \(0.928068\pi\)
\(138\) −1.61535 0.932620i −0.137507 0.0793899i
\(139\) 10.3693 17.9601i 0.879510 1.52336i 0.0276301 0.999618i \(-0.491204\pi\)
0.851880 0.523737i \(-0.175463\pi\)
\(140\) −3.94468 2.78157i −0.333387 0.235085i
\(141\) 3.35255 1.93559i 0.282335 0.163006i
\(142\) −0.924676 + 1.60159i −0.0775971 + 0.134402i
\(143\) 11.3545 + 8.69991i 0.949513 + 0.727523i
\(144\) 2.91900 + 5.05585i 0.243250 + 0.421321i
\(145\) 8.75428i 0.727004i
\(146\) −1.65316 2.86335i −0.136816 0.236973i
\(147\) −3.85282 + 4.53046i −0.317775 + 0.373666i
\(148\) 1.47559i 0.121293i
\(149\) 0.00985188 0.00568799i 0.000807098 0.000465978i −0.499596 0.866258i \(-0.666518\pi\)
0.500403 + 0.865792i \(0.333185\pi\)
\(150\) 1.66231i 0.135727i
\(151\) −16.3726 + 9.45271i −1.33238 + 0.769251i −0.985664 0.168719i \(-0.946037\pi\)
−0.346717 + 0.937970i \(0.612704\pi\)
\(152\) 5.16529 + 8.94654i 0.418960 + 0.725660i
\(153\) 0.161791 + 0.280230i 0.0130800 + 0.0226553i
\(154\) −3.02438 + 4.28903i −0.243712 + 0.345620i
\(155\) −2.96743 −0.238350
\(156\) 3.26044 4.25530i 0.261044 0.340696i
\(157\) −9.89687 17.1419i −0.789856 1.36807i −0.926054 0.377390i \(-0.876822\pi\)
0.136198 0.990682i \(-0.456512\pi\)
\(158\) 5.16255 + 2.98060i 0.410710 + 0.237124i
\(159\) −0.237549 −0.0188388
\(160\) −2.62243 + 4.54219i −0.207321 + 0.359091i
\(161\) −11.5698 1.05076i −0.911830 0.0828117i
\(162\) 1.30967 + 0.756136i 0.102897 + 0.0594076i
\(163\) 7.73581 4.46627i 0.605915 0.349825i −0.165450 0.986218i \(-0.552908\pi\)
0.771365 + 0.636393i \(0.219574\pi\)
\(164\) 18.3343 10.5853i 1.43167 0.826572i
\(165\) −3.51380 −0.273549
\(166\) 1.43657 0.111499
\(167\) 5.31279 3.06734i 0.411116 0.237358i −0.280153 0.959955i \(-0.590385\pi\)
0.691269 + 0.722597i \(0.257052\pi\)
\(168\) 3.44438 + 2.42879i 0.265740 + 0.187385i
\(169\) 12.5618 + 3.34692i 0.966290 + 0.257456i
\(170\) −0.0370161 + 0.0641138i −0.00283900 + 0.00491730i
\(171\) −10.8705 6.27611i −0.831291 0.479946i
\(172\) 4.22036 7.30987i 0.321799 0.557373i
\(173\) 12.1314 + 21.0122i 0.922332 + 1.59753i 0.795797 + 0.605563i \(0.207052\pi\)
0.126535 + 0.991962i \(0.459614\pi\)
\(174\) 3.56721i 0.270429i
\(175\) −4.34454 9.39784i −0.328416 0.710410i
\(176\) −8.80446 5.08325i −0.663661 0.383165i
\(177\) −7.93277 4.57999i −0.596263 0.344253i
\(178\) −0.873801 −0.0654942
\(179\) −2.06838 + 3.58253i −0.154598 + 0.267771i −0.932912 0.360103i \(-0.882741\pi\)
0.778315 + 0.627874i \(0.216075\pi\)
\(180\) 4.15618i 0.309784i
\(181\) −7.86568 −0.584651 −0.292326 0.956319i \(-0.594429\pi\)
−0.292326 + 0.956319i \(0.594429\pi\)
\(182\) −1.04442 + 4.65381i −0.0774176 + 0.344964i
\(183\) −4.98167 −0.368256
\(184\) 8.23289i 0.606937i
\(185\) 0.439501 0.761237i 0.0323127 0.0559673i
\(186\) 1.20917 0.0886608
\(187\) −0.488003 0.281749i −0.0356863 0.0206035i
\(188\) −6.90560 3.98695i −0.503642 0.290778i
\(189\) −11.8158 1.07311i −0.859476 0.0780570i
\(190\) 2.87182i 0.208344i
\(191\) 3.23933 + 5.61069i 0.234390 + 0.405975i 0.959095 0.283084i \(-0.0913574\pi\)
−0.724705 + 0.689059i \(0.758024\pi\)
\(192\) −1.10857 + 1.92011i −0.0800044 + 0.138572i
\(193\) 4.18228 + 2.41464i 0.301047 + 0.173810i 0.642913 0.765939i \(-0.277726\pi\)
−0.341866 + 0.939749i \(0.611059\pi\)
\(194\) 0.675708 1.17036i 0.0485130 0.0840270i
\(195\) −2.94945 + 1.22414i −0.211214 + 0.0876626i
\(196\) 12.0497 + 2.20689i 0.860690 + 0.157635i
\(197\) −22.3748 + 12.9181i −1.59414 + 0.920377i −0.601554 + 0.798832i \(0.705452\pi\)
−0.992586 + 0.121545i \(0.961215\pi\)
\(198\) −4.51899 −0.321151
\(199\) −17.1146 −1.21322 −0.606612 0.794998i \(-0.707472\pi\)
−0.606612 + 0.794998i \(0.707472\pi\)
\(200\) −6.35417 + 3.66858i −0.449308 + 0.259408i
\(201\) 3.78518 2.18537i 0.266986 0.154144i
\(202\) −4.96749 2.86798i −0.349511 0.201790i
\(203\) 9.32312 + 20.1672i 0.654355 + 1.41546i
\(204\) −0.105590 + 0.182887i −0.00739278 + 0.0128047i
\(205\) −12.6112 −0.880806
\(206\) −1.80540 1.04235i −0.125788 0.0726238i
\(207\) −5.00171 8.66322i −0.347643 0.602136i
\(208\) −9.16129 1.19953i −0.635221 0.0831725i
\(209\) 21.8589 1.51201
\(210\) −0.491638 1.06348i −0.0339263 0.0733873i
\(211\) −9.14557 15.8406i −0.629607 1.09051i −0.987631 0.156799i \(-0.949883\pi\)
0.358024 0.933713i \(-0.383451\pi\)
\(212\) 0.244652 + 0.423750i 0.0168028 + 0.0291032i
\(213\) 2.72149 1.57125i 0.186474 0.107661i
\(214\) 4.24360i 0.290086i
\(215\) −4.35446 + 2.51405i −0.296972 + 0.171457i
\(216\) 8.40796i 0.572089i
\(217\) 6.83606 3.16025i 0.464062 0.214532i
\(218\) −1.60755 2.78435i −0.108877 0.188580i
\(219\) 5.61825i 0.379646i
\(220\) 3.61887 + 6.26806i 0.243984 + 0.422593i
\(221\) −0.507782 0.0664862i −0.0341571 0.00447235i
\(222\) −0.179088 + 0.310190i −0.0120196 + 0.0208186i
\(223\) −9.96682 + 5.75435i −0.667428 + 0.385340i −0.795101 0.606477i \(-0.792582\pi\)
0.127674 + 0.991816i \(0.459249\pi\)
\(224\) 1.20396 13.2567i 0.0804430 0.885747i
\(225\) 4.45753 7.72067i 0.297169 0.514712i
\(226\) 4.74711 + 2.74075i 0.315773 + 0.182312i
\(227\) 17.9045i 1.18836i 0.804332 + 0.594181i \(0.202524\pi\)
−0.804332 + 0.594181i \(0.797476\pi\)
\(228\) 8.19200i 0.542528i
\(229\) −3.34589 1.93175i −0.221103 0.127654i 0.385358 0.922767i \(-0.374078\pi\)
−0.606461 + 0.795113i \(0.707411\pi\)
\(230\) 1.14434 1.98206i 0.0754556 0.130693i
\(231\) 8.09472 3.74212i 0.532593 0.246213i
\(232\) 13.6357 7.87256i 0.895226 0.516859i
\(233\) 12.5321 21.7062i 0.821004 1.42202i −0.0839312 0.996472i \(-0.526748\pi\)
0.904935 0.425549i \(-0.139919\pi\)
\(234\) −3.79320 + 1.57433i −0.247969 + 0.102917i
\(235\) 2.37501 + 4.11363i 0.154928 + 0.268344i
\(236\) 18.8678i 1.22819i
\(237\) −5.06477 8.77245i −0.328992 0.569832i
\(238\) 0.0169941 0.187120i 0.00110156 0.0121292i
\(239\) 7.80462i 0.504839i 0.967618 + 0.252419i \(0.0812263\pi\)
−0.967618 + 0.252419i \(0.918774\pi\)
\(240\) 1.96557 1.13482i 0.126877 0.0732524i
\(241\) 21.7653i 1.40202i 0.713150 + 0.701012i \(0.247268\pi\)
−0.713150 + 0.701012i \(0.752732\pi\)
\(242\) 2.05221 1.18484i 0.131921 0.0761647i
\(243\) −8.01138 13.8761i −0.513930 0.890154i
\(244\) 5.13063 + 8.88652i 0.328455 + 0.568901i
\(245\) −5.55895 4.72747i −0.355149 0.302027i
\(246\) 5.13884 0.327640
\(247\) 18.3482 7.61524i 1.16747 0.484546i
\(248\) −2.66855 4.62207i −0.169453 0.293502i
\(249\) −2.11404 1.22054i −0.133972 0.0773488i
\(250\) 4.64579 0.293826
\(251\) 3.83990 6.65090i 0.242372 0.419801i −0.719017 0.694992i \(-0.755408\pi\)
0.961390 + 0.275191i \(0.0887411\pi\)
\(252\) 4.42624 + 9.57458i 0.278827 + 0.603142i
\(253\) 15.0865 + 8.71017i 0.948478 + 0.547604i
\(254\) −0.869411 + 0.501955i −0.0545517 + 0.0314954i
\(255\) 0.108945 0.0628995i 0.00682241 0.00393892i
\(256\) −0.464141 −0.0290088
\(257\) −13.6237 −0.849826 −0.424913 0.905234i \(-0.639695\pi\)
−0.424913 + 0.905234i \(0.639695\pi\)
\(258\) 1.77436 1.02443i 0.110467 0.0637781i
\(259\) −0.201775 + 2.22172i −0.0125377 + 0.138051i
\(260\) 5.22132 + 4.00061i 0.323813 + 0.248107i
\(261\) −9.56560 + 16.5681i −0.592096 + 1.02554i
\(262\) −5.39096 3.11247i −0.333055 0.192289i
\(263\) 5.86158 10.1525i 0.361440 0.626033i −0.626758 0.779214i \(-0.715618\pi\)
0.988198 + 0.153181i \(0.0489518\pi\)
\(264\) −3.15989 5.47309i −0.194478 0.336845i
\(265\) 0.291476i 0.0179052i
\(266\) 3.05843 + 6.61580i 0.187524 + 0.405641i
\(267\) 1.28588 + 0.742403i 0.0786945 + 0.0454343i
\(268\) −7.79673 4.50144i −0.476261 0.274970i
\(269\) 9.19876 0.560858 0.280429 0.959875i \(-0.409523\pi\)
0.280429 + 0.959875i \(0.409523\pi\)
\(270\) 1.16867 2.02420i 0.0711232 0.123189i
\(271\) 2.56369i 0.155733i −0.996964 0.0778665i \(-0.975189\pi\)
0.996964 0.0778665i \(-0.0248108\pi\)
\(272\) 0.363976 0.0220693
\(273\) 5.49095 5.96115i 0.332328 0.360785i
\(274\) 2.62252 0.158432
\(275\) 15.5250i 0.936195i
\(276\) 3.26428 5.65391i 0.196487 0.340325i
\(277\) 0.933882 0.0561115 0.0280558 0.999606i \(-0.491068\pi\)
0.0280558 + 0.999606i \(0.491068\pi\)
\(278\) −8.97981 5.18450i −0.538573 0.310945i
\(279\) 5.61607 + 3.24244i 0.336226 + 0.194120i
\(280\) −2.98016 + 4.22632i −0.178099 + 0.252571i
\(281\) 6.45288i 0.384947i 0.981302 + 0.192473i \(0.0616509\pi\)
−0.981302 + 0.192473i \(0.938349\pi\)
\(282\) −0.967771 1.67623i −0.0576299 0.0998180i
\(283\) 11.0873 19.2037i 0.659071 1.14154i −0.321786 0.946812i \(-0.604283\pi\)
0.980857 0.194731i \(-0.0623835\pi\)
\(284\) −5.60575 3.23648i −0.332640 0.192050i
\(285\) −2.43997 + 4.22615i −0.144531 + 0.250335i
\(286\) 4.34984 5.67711i 0.257211 0.335695i
\(287\) 29.0524 13.4307i 1.71491 0.792788i
\(288\) 9.92629 5.73094i 0.584912 0.337699i
\(289\) −16.9798 −0.998813
\(290\) −4.37702 −0.257028
\(291\) −1.98873 + 1.14820i −0.116582 + 0.0673085i
\(292\) 10.0221 5.78625i 0.586498 0.338615i
\(293\) −20.9600 12.1013i −1.22450 0.706964i −0.258624 0.965978i \(-0.583269\pi\)
−0.965874 + 0.259014i \(0.916602\pi\)
\(294\) 2.26517 + 1.92636i 0.132107 + 0.112347i
\(295\) 5.61972 9.73364i 0.327193 0.566714i
\(296\) 1.58094 0.0918902
\(297\) 15.4073 + 8.89539i 0.894020 + 0.516163i
\(298\) −0.00284392 0.00492581i −0.000164744 0.000285345i
\(299\) 15.6979 + 2.05540i 0.907833 + 0.118867i
\(300\) 5.81827 0.335918
\(301\) 7.35395 10.4290i 0.423875 0.601118i
\(302\) 4.72623 + 8.18607i 0.271964 + 0.471055i
\(303\) 4.87341 + 8.44100i 0.279970 + 0.484923i
\(304\) −12.2276 + 7.05959i −0.701299 + 0.404895i
\(305\) 6.11259i 0.350006i
\(306\) 0.140111 0.0808933i 0.00800963 0.00462436i
\(307\) 24.2924i 1.38644i 0.720726 + 0.693220i \(0.243809\pi\)
−0.720726 + 0.693220i \(0.756191\pi\)
\(308\) −15.0121 10.5857i −0.855395 0.603176i
\(309\) 1.77121 + 3.06782i 0.100761 + 0.174522i
\(310\) 1.48367i 0.0842671i
\(311\) 1.99355 + 3.45294i 0.113044 + 0.195798i 0.916996 0.398896i \(-0.130607\pi\)
−0.803952 + 0.594694i \(0.797273\pi\)
\(312\) −4.55911 3.49322i −0.258109 0.197764i
\(313\) −14.2377 + 24.6604i −0.804763 + 1.39389i 0.111688 + 0.993743i \(0.464374\pi\)
−0.916451 + 0.400147i \(0.868959\pi\)
\(314\) −8.57071 + 4.94830i −0.483673 + 0.279249i
\(315\) 0.568325 6.25775i 0.0320215 0.352585i
\(316\) −10.4324 + 18.0695i −0.586871 + 1.01649i
\(317\) −14.5632 8.40806i −0.817950 0.472244i 0.0317591 0.999496i \(-0.489889\pi\)
−0.849709 + 0.527252i \(0.823222\pi\)
\(318\) 0.118771i 0.00666036i
\(319\) 33.3158i 1.86533i
\(320\) −2.35600 1.36024i −0.131704 0.0760396i
\(321\) −3.60546 + 6.24485i −0.201237 + 0.348553i
\(322\) −0.525367 + 5.78476i −0.0292776 + 0.322372i
\(323\) −0.677736 + 0.391291i −0.0377102 + 0.0217720i
\(324\) −2.64657 + 4.58399i −0.147031 + 0.254666i
\(325\) 5.40863 + 13.0316i 0.300017 + 0.722862i
\(326\) −2.23308 3.86780i −0.123679 0.214218i
\(327\) 5.46324i 0.302118i
\(328\) −11.3410 19.6432i −0.626204 1.08462i
\(329\) −9.85222 6.94723i −0.543171 0.383013i
\(330\) 1.75685i 0.0967115i
\(331\) 5.37730 3.10459i 0.295563 0.170644i −0.344885 0.938645i \(-0.612082\pi\)
0.640448 + 0.768002i \(0.278749\pi\)
\(332\) 5.02816i 0.275956i
\(333\) −1.66357 + 0.960464i −0.0911632 + 0.0526331i
\(334\) −1.53363 2.65633i −0.0839165 0.145348i
\(335\) 2.68149 + 4.64448i 0.146505 + 0.253755i
\(336\) −3.31951 + 4.70757i −0.181094 + 0.256819i
\(337\) 7.69650 0.419255 0.209628 0.977781i \(-0.432775\pi\)
0.209628 + 0.977781i \(0.432775\pi\)
\(338\) 1.67342 6.28072i 0.0910219 0.341626i
\(339\) −4.65721 8.06653i −0.252945 0.438114i
\(340\) −0.224406 0.129561i −0.0121701 0.00702642i
\(341\) −11.2930 −0.611552
\(342\) −3.13797 + 5.43513i −0.169682 + 0.293898i
\(343\) 17.8408 + 4.97049i 0.963313 + 0.268381i
\(344\) −7.83177 4.52167i −0.422261 0.243792i
\(345\) −3.36801 + 1.94452i −0.181327 + 0.104689i
\(346\) 10.5058 6.06553i 0.564795 0.326085i
\(347\) 30.4094 1.63246 0.816231 0.577725i \(-0.196059\pi\)
0.816231 + 0.577725i \(0.196059\pi\)
\(348\) −12.4857 −0.669302
\(349\) −13.9933 + 8.07906i −0.749046 + 0.432462i −0.825349 0.564623i \(-0.809022\pi\)
0.0763028 + 0.997085i \(0.475688\pi\)
\(350\) −4.69880 + 2.17221i −0.251161 + 0.116110i
\(351\) 16.0317 + 2.09911i 0.855709 + 0.112042i
\(352\) −9.98008 + 17.2860i −0.531940 + 0.921347i
\(353\) −10.2558 5.92119i −0.545861 0.315153i 0.201590 0.979470i \(-0.435389\pi\)
−0.747451 + 0.664317i \(0.768723\pi\)
\(354\) −2.28993 + 3.96628i −0.121709 + 0.210805i
\(355\) 1.92796 + 3.33932i 0.102325 + 0.177233i
\(356\) 3.05841i 0.162095i
\(357\) −0.183990 + 0.260926i −0.00973779 + 0.0138097i
\(358\) 1.79122 + 1.03416i 0.0946688 + 0.0546571i
\(359\) −27.1631 15.6826i −1.43362 0.827698i −0.436221 0.899840i \(-0.643683\pi\)
−0.997394 + 0.0721417i \(0.977017\pi\)
\(360\) −4.45292 −0.234689
\(361\) 5.67876 9.83591i 0.298882 0.517679i
\(362\) 3.93273i 0.206700i
\(363\) −4.02669 −0.211346
\(364\) −16.2889 3.65560i −0.853770 0.191605i
\(365\) −6.89369 −0.360832
\(366\) 2.49077i 0.130195i
\(367\) −12.0387 + 20.8517i −0.628415 + 1.08845i 0.359454 + 0.933163i \(0.382963\pi\)
−0.987870 + 0.155285i \(0.950370\pi\)
\(368\) −11.2522 −0.586562
\(369\) 23.8676 + 13.7800i 1.24250 + 0.717358i
\(370\) −0.380608 0.219744i −0.0197869 0.0114240i
\(371\) 0.310416 + 0.671473i 0.0161160 + 0.0348611i
\(372\) 4.23225i 0.219432i
\(373\) 9.19612 + 15.9281i 0.476157 + 0.824728i 0.999627 0.0273160i \(-0.00869604\pi\)
−0.523470 + 0.852044i \(0.675363\pi\)
\(374\) −0.140871 + 0.243995i −0.00728425 + 0.0126167i
\(375\) −6.83672 3.94718i −0.353046 0.203831i
\(376\) −4.27160 + 7.39862i −0.220291 + 0.381555i
\(377\) −11.6066 27.9650i −0.597771 1.44027i
\(378\) −0.536539 + 5.90776i −0.0275966 + 0.303862i
\(379\) −7.04719 + 4.06870i −0.361990 + 0.208995i −0.669953 0.742403i \(-0.733686\pi\)
0.307963 + 0.951398i \(0.400353\pi\)
\(380\) 10.0517 0.515642
\(381\) 1.70589 0.0873955
\(382\) 2.80527 1.61962i 0.143530 0.0828671i
\(383\) −19.3739 + 11.1856i −0.989962 + 0.571555i −0.905263 0.424852i \(-0.860326\pi\)
−0.0846992 + 0.996407i \(0.526993\pi\)
\(384\) 8.36365 + 4.82876i 0.426806 + 0.246417i
\(385\) 4.59164 + 9.93236i 0.234012 + 0.506200i
\(386\) 1.20729 2.09108i 0.0614493 0.106433i
\(387\) 10.9882 0.558560
\(388\) 4.09641 + 2.36506i 0.207963 + 0.120068i
\(389\) −10.6973 18.5283i −0.542374 0.939420i −0.998767 0.0496415i \(-0.984192\pi\)
0.456393 0.889778i \(-0.349141\pi\)
\(390\) 0.612054 + 1.47469i 0.0309926 + 0.0746736i
\(391\) −0.623674 −0.0315406
\(392\) 2.36445 12.9100i 0.119423 0.652051i
\(393\) 5.28886 + 9.16058i 0.266788 + 0.462090i
\(394\) 6.45888 + 11.1871i 0.325394 + 0.563599i
\(395\) 10.7639 6.21456i 0.541592 0.312689i
\(396\) 15.8170i 0.794835i
\(397\) 1.03640 0.598365i 0.0520154 0.0300311i −0.473767 0.880650i \(-0.657106\pi\)
0.525782 + 0.850619i \(0.323773\pi\)
\(398\) 8.55708i 0.428928i
\(399\) 1.12019 12.3343i 0.0560797 0.617486i
\(400\) −5.01399 8.68449i −0.250699 0.434224i
\(401\) 36.2749i 1.81148i −0.423831 0.905741i \(-0.639315\pi\)
0.423831 0.905741i \(-0.360685\pi\)
\(402\) −1.09266 1.89254i −0.0544968 0.0943913i
\(403\) −9.47926 + 3.93428i −0.472196 + 0.195980i
\(404\) 10.0383 17.3868i 0.499423 0.865026i
\(405\) 2.73066 1.57655i 0.135688 0.0783393i
\(406\) 10.0833 4.66144i 0.500428 0.231343i
\(407\) 1.67259 2.89701i 0.0829072 0.143599i
\(408\) 0.195945 + 0.113129i 0.00970071 + 0.00560071i
\(409\) 14.6723i 0.725500i −0.931887 0.362750i \(-0.881838\pi\)
0.931887 0.362750i \(-0.118162\pi\)
\(410\) 6.30544i 0.311404i
\(411\) −3.85928 2.22816i −0.190364 0.109907i
\(412\) 3.64834 6.31912i 0.179741 0.311321i
\(413\) −2.58002 + 28.4082i −0.126954 + 1.39788i
\(414\) −4.33150 + 2.50079i −0.212881 + 0.122907i
\(415\) 1.49763 2.59397i 0.0735156 0.127333i
\(416\) −2.35507 + 17.9866i −0.115467 + 0.881866i
\(417\) 8.80975 + 15.2589i 0.431415 + 0.747233i
\(418\) 10.9292i 0.534563i
\(419\) 2.96674 + 5.13855i 0.144935 + 0.251034i 0.929349 0.369203i \(-0.120369\pi\)
−0.784414 + 0.620238i \(0.787036\pi\)
\(420\) 3.72232 1.72079i 0.181630 0.0839661i
\(421\) 2.63174i 0.128263i −0.997941 0.0641317i \(-0.979572\pi\)
0.997941 0.0641317i \(-0.0204278\pi\)
\(422\) −7.92008 + 4.57266i −0.385544 + 0.222594i
\(423\) 10.3805i 0.504715i
\(424\) 0.454004 0.262119i 0.0220484 0.0127296i
\(425\) −0.277910 0.481354i −0.0134806 0.0233491i
\(426\) −0.785606 1.36071i −0.0380628 0.0659266i
\(427\) 6.50978 + 14.0816i 0.315030 + 0.681454i
\(428\) 14.8531 0.717952
\(429\) −11.2246 + 4.65866i −0.541929 + 0.224922i
\(430\) 1.25699 + 2.17717i 0.0606175 + 0.104993i
\(431\) 16.3139 + 9.41883i 0.785812 + 0.453689i 0.838486 0.544923i \(-0.183441\pi\)
−0.0526738 + 0.998612i \(0.516774\pi\)
\(432\) −11.4915 −0.552884
\(433\) 9.56773 16.5718i 0.459796 0.796389i −0.539154 0.842207i \(-0.681256\pi\)
0.998950 + 0.0458176i \(0.0145893\pi\)
\(434\) −1.58008 3.41794i −0.0758463 0.164066i
\(435\) 6.44119 + 3.71883i 0.308832 + 0.178304i
\(436\) 9.74557 5.62661i 0.466728 0.269466i
\(437\) 20.9520 12.0966i 1.00227 0.578660i
\(438\) 2.80905 0.134222
\(439\) 1.26511 0.0603803 0.0301901 0.999544i \(-0.490389\pi\)
0.0301901 + 0.999544i \(0.490389\pi\)
\(440\) 6.71557 3.87724i 0.320152 0.184840i
\(441\) 5.35512 + 15.0212i 0.255006 + 0.715296i
\(442\) −0.0332422 + 0.253884i −0.00158117 + 0.0120760i
\(443\) 10.4696 18.1339i 0.497426 0.861568i −0.502569 0.864537i \(-0.667612\pi\)
0.999996 + 0.00296930i \(0.000945159\pi\)
\(444\) −1.08570 0.626831i −0.0515252 0.0297481i
\(445\) −0.910940 + 1.57779i −0.0431827 + 0.0747946i
\(446\) 2.87710 + 4.98328i 0.136234 + 0.235965i
\(447\) 0.00966505i 0.000457141i
\(448\) 6.87614 + 0.624486i 0.324867 + 0.0295042i
\(449\) 15.4700 + 8.93162i 0.730075 + 0.421509i 0.818450 0.574578i \(-0.194834\pi\)
−0.0883746 + 0.996087i \(0.528167\pi\)
\(450\) −3.86023 2.22871i −0.181973 0.105062i
\(451\) −47.9940 −2.25995
\(452\) −9.59295 + 16.6155i −0.451214 + 0.781526i
\(453\) 16.0621i 0.754662i
\(454\) 8.95199 0.420138
\(455\) 7.31443 + 6.73749i 0.342906 + 0.315858i
\(456\) −8.77687 −0.411015
\(457\) 6.56597i 0.307143i 0.988138 + 0.153571i \(0.0490775\pi\)
−0.988138 + 0.153571i \(0.950922\pi\)
\(458\) −0.965850 + 1.67290i −0.0451312 + 0.0781695i
\(459\) −0.636936 −0.0297296
\(460\) 6.93744 + 4.00533i 0.323460 + 0.186749i
\(461\) −4.42854 2.55682i −0.206258 0.119083i 0.393313 0.919404i \(-0.371329\pi\)
−0.599571 + 0.800322i \(0.704662\pi\)
\(462\) −1.87101 4.04725i −0.0870472 0.188295i
\(463\) 33.3239i 1.54869i −0.632761 0.774347i \(-0.718079\pi\)
0.632761 0.774347i \(-0.281921\pi\)
\(464\) 10.7597 + 18.6364i 0.499508 + 0.865173i
\(465\) 1.26057 2.18336i 0.0584574 0.101251i
\(466\) −10.8528 6.26587i −0.502747 0.290261i
\(467\) −6.47472 + 11.2145i −0.299614 + 0.518947i −0.976048 0.217557i \(-0.930191\pi\)
0.676433 + 0.736504i \(0.263525\pi\)
\(468\) −5.51035 13.2767i −0.254716 0.613714i
\(469\) −11.1236 7.84374i −0.513641 0.362190i
\(470\) 2.05676 1.18747i 0.0948713 0.0547740i
\(471\) 16.8168 0.774877
\(472\) 20.2148 0.930463
\(473\) −16.5716 + 9.56761i −0.761962 + 0.439919i
\(474\) −4.38611 + 2.53232i −0.201461 + 0.116313i
\(475\) 18.6724 + 10.7805i 0.856750 + 0.494645i
\(476\) 0.654942 + 0.0594814i 0.0300192 + 0.00272633i
\(477\) −0.318489 + 0.551640i −0.0145826 + 0.0252578i
\(478\) 3.90221 0.178483
\(479\) 23.3930 + 13.5060i 1.06885 + 0.617104i 0.927868 0.372908i \(-0.121639\pi\)
0.140987 + 0.990012i \(0.454973\pi\)
\(480\) −2.22802 3.85905i −0.101695 0.176141i
\(481\) 0.394692 3.01442i 0.0179964 0.137446i
\(482\) 10.8823 0.495677
\(483\) 5.68799 8.06644i 0.258813 0.367036i
\(484\) 4.14710 + 7.18299i 0.188505 + 0.326499i
\(485\) −1.40886 2.44021i −0.0639729 0.110804i
\(486\) −6.93788 + 4.00558i −0.314708 + 0.181697i
\(487\) 32.0838i 1.45386i 0.686713 + 0.726928i \(0.259053\pi\)
−0.686713 + 0.726928i \(0.740947\pi\)
\(488\) 9.52097 5.49694i 0.430994 0.248835i
\(489\) 7.58910i 0.343191i
\(490\) −2.36367 + 2.77940i −0.106780 + 0.125561i
\(491\) −14.3020 24.7718i −0.645440 1.11793i −0.984200 0.177061i \(-0.943341\pi\)
0.338760 0.940873i \(-0.389992\pi\)
\(492\) 17.9866i 0.810897i
\(493\) 0.596378 + 1.03296i 0.0268595 + 0.0465220i
\(494\) −3.80752 9.17385i −0.171308 0.412751i
\(495\) −4.71106 + 8.15980i −0.211746 + 0.366756i
\(496\) 6.31716 3.64721i 0.283649 0.163765i
\(497\) −7.99773 5.63954i −0.358747 0.252968i
\(498\) −0.610255 + 1.05699i −0.0273462 + 0.0473650i
\(499\) 1.55726 + 0.899082i 0.0697123 + 0.0402484i 0.534451 0.845199i \(-0.320518\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(500\) 16.2608i 0.727207i
\(501\) 5.21204i 0.232857i
\(502\) −3.32536 1.91990i −0.148418 0.0856893i
\(503\) −14.5386 + 25.1816i −0.648245 + 1.12279i 0.335297 + 0.942112i \(0.391163\pi\)
−0.983542 + 0.180681i \(0.942170\pi\)
\(504\) 10.2582 4.74226i 0.456935 0.211237i
\(505\) −10.3572 + 5.97976i −0.460891 + 0.266096i
\(506\) 4.35497 7.54303i 0.193602 0.335329i
\(507\) −7.79884 + 7.82088i −0.346359 + 0.347338i
\(508\) −1.75690 3.04304i −0.0779499 0.135013i
\(509\) 23.1913i 1.02794i −0.857809 0.513969i \(-0.828175\pi\)
0.857809 0.513969i \(-0.171825\pi\)
\(510\) −0.0314489 0.0544711i −0.00139258 0.00241202i
\(511\) 15.8810 7.34163i 0.702532 0.324774i
\(512\) 22.5022i 0.994464i
\(513\) 21.3975 12.3539i 0.944723 0.545436i
\(514\) 6.81169i 0.300451i
\(515\) −3.76427 + 2.17330i −0.165874 + 0.0957671i
\(516\) 3.58562 + 6.21048i 0.157848 + 0.273401i
\(517\) 9.03847 + 15.6551i 0.397511 + 0.688510i
\(518\) 1.11083 + 0.100885i 0.0488070 + 0.00443262i
\(519\) −20.6137 −0.904840
\(520\) 4.28624 5.59410i 0.187964 0.245318i
\(521\) −16.6255 28.7962i −0.728376 1.26158i −0.957569 0.288203i \(-0.906942\pi\)
0.229193 0.973381i \(-0.426391\pi\)
\(522\) 8.28383 + 4.78267i 0.362574 + 0.209332i
\(523\) 38.7121 1.69276 0.846380 0.532579i \(-0.178777\pi\)
0.846380 + 0.532579i \(0.178777\pi\)
\(524\) 10.8940 18.8690i 0.475908 0.824296i
\(525\) 8.76027 + 0.795602i 0.382330 + 0.0347229i
\(526\) −5.07614 2.93071i −0.221330 0.127785i
\(527\) 0.350140 0.202153i 0.0152523 0.00880594i
\(528\) 7.48028 4.31874i 0.325537 0.187949i
\(529\) −3.71931 −0.161709
\(530\) −0.145734 −0.00633029
\(531\) −21.2714 + 12.2811i −0.923102 + 0.532953i
\(532\) −23.1561 + 10.7049i −1.00394 + 0.464115i
\(533\) −40.2857 + 16.7202i −1.74497 + 0.724233i
\(534\) 0.371191 0.642922i 0.0160630 0.0278220i
\(535\) −7.66253 4.42396i −0.331280 0.191265i
\(536\) −4.82283 + 8.35338i −0.208314 + 0.360811i
\(537\) −1.75730 3.04372i −0.0758329 0.131346i
\(538\) 4.59926i 0.198288i
\(539\) −21.1555 17.9911i −0.911231 0.774933i
\(540\) 7.08495 + 4.09050i 0.304888 + 0.176027i
\(541\) −19.6306 11.3337i −0.843986 0.487275i 0.0146313 0.999893i \(-0.495343\pi\)
−0.858617 + 0.512618i \(0.828676\pi\)
\(542\) −1.28181 −0.0550585
\(543\) 3.34135 5.78738i 0.143391 0.248360i
\(544\) 0.714603i 0.0306384i
\(545\) −6.70349 −0.287146
\(546\) −2.98049 2.74540i −0.127553 0.117492i
\(547\) −9.21134 −0.393848 −0.196924 0.980419i \(-0.563095\pi\)
−0.196924 + 0.980419i \(0.563095\pi\)
\(548\) 9.17913i 0.392113i
\(549\) −6.67909 + 11.5685i −0.285056 + 0.493732i
\(550\) 7.76231 0.330986
\(551\) −40.0699 23.1344i −1.70704 0.985558i
\(552\) −6.05757 3.49734i −0.257827 0.148857i
\(553\) −18.1785 + 25.7798i −0.773027 + 1.09627i
\(554\) 0.466928i 0.0198379i
\(555\) 0.373400 + 0.646748i 0.0158500 + 0.0274529i
\(556\) 18.1464 31.4304i 0.769577 1.33295i
\(557\) 9.81039 + 5.66403i 0.415680 + 0.239993i 0.693227 0.720719i \(-0.256188\pi\)
−0.277547 + 0.960712i \(0.589522\pi\)
\(558\) 1.62118 2.80796i 0.0686299 0.118871i
\(559\) −10.5769 + 13.8042i −0.447354 + 0.583855i
\(560\) −5.77627 4.07310i −0.244092 0.172120i
\(561\) 0.414608 0.239374i 0.0175048 0.0101064i
\(562\) 3.22636 0.136096
\(563\) −32.6386 −1.37555 −0.687777 0.725922i \(-0.741414\pi\)
−0.687777 + 0.725922i \(0.741414\pi\)
\(564\) 5.86700 3.38732i 0.247045 0.142632i
\(565\) 9.89776 5.71448i 0.416402 0.240410i
\(566\) −9.60161 5.54349i −0.403586 0.233010i
\(567\) −4.61162 + 6.53998i −0.193670 + 0.274653i
\(568\) −3.46755 + 6.00597i −0.145495 + 0.252005i
\(569\) −35.0091 −1.46766 −0.733829 0.679335i \(-0.762269\pi\)
−0.733829 + 0.679335i \(0.762269\pi\)
\(570\) 2.11302 + 1.21995i 0.0885046 + 0.0510981i
\(571\) 13.1273 + 22.7371i 0.549360 + 0.951519i 0.998319 + 0.0579663i \(0.0184616\pi\)
−0.448959 + 0.893552i \(0.648205\pi\)
\(572\) 19.8706 + 15.2250i 0.830830 + 0.636587i
\(573\) −5.50428 −0.229945
\(574\) −6.71516 14.5258i −0.280285 0.606296i
\(575\) 8.59149 + 14.8809i 0.358290 + 0.620576i
\(576\) 2.97260 + 5.14870i 0.123858 + 0.214529i
\(577\) 21.2806 12.2863i 0.885922 0.511487i 0.0133154 0.999911i \(-0.495761\pi\)
0.872606 + 0.488424i \(0.162428\pi\)
\(578\) 8.48969i 0.353124i
\(579\) −3.55327 + 2.05148i −0.147669 + 0.0852567i
\(580\) 15.3201i 0.636133i
\(581\) −0.687561 + 7.57065i −0.0285248 + 0.314083i
\(582\) 0.574083 + 0.994341i 0.0237965 + 0.0412167i
\(583\) 1.10926i 0.0459408i
\(584\) −6.19936 10.7376i −0.256531 0.444325i
\(585\) −1.11170 + 8.49051i −0.0459632 + 0.351039i
\(586\) −6.05048 + 10.4797i −0.249943 + 0.432914i
\(587\) 17.7777 10.2640i 0.733765 0.423639i −0.0860331 0.996292i \(-0.527419\pi\)
0.819798 + 0.572653i \(0.194086\pi\)
\(588\) −6.74248 + 7.92837i −0.278055 + 0.326961i
\(589\) −7.84184 + 13.5825i −0.323117 + 0.559656i
\(590\) −4.86669 2.80978i −0.200358 0.115677i
\(591\) 21.9505i 0.902923i
\(592\) 2.16073i 0.0888054i
\(593\) 33.1545 + 19.1417i 1.36149 + 0.786057i 0.989822 0.142308i \(-0.0454524\pi\)
0.371669 + 0.928365i \(0.378786\pi\)
\(594\) 4.44757 7.70342i 0.182486 0.316075i
\(595\) −0.320160 0.225759i −0.0131253 0.00925521i
\(596\) 0.0172409 0.00995405i 0.000706216 0.000407734i
\(597\) 7.27030 12.5925i 0.297554 0.515378i
\(598\) 1.02767 7.84874i 0.0420247 0.320959i
\(599\) −7.03567 12.1861i −0.287470 0.497912i 0.685735 0.727851i \(-0.259481\pi\)
−0.973205 + 0.229939i \(0.926147\pi\)
\(600\) 6.23367i 0.254488i
\(601\) 10.1171 + 17.5233i 0.412685 + 0.714791i 0.995182 0.0980417i \(-0.0312579\pi\)
−0.582498 + 0.812832i \(0.697925\pi\)
\(602\) −5.21437 3.67688i −0.212522 0.149858i
\(603\) 11.7200i 0.477276i
\(604\) −28.6522 + 16.5424i −1.16584 + 0.673099i
\(605\) 4.94082i 0.200873i
\(606\) 4.22039 2.43664i 0.171441 0.0989818i
\(607\) −3.27563 5.67356i −0.132954 0.230283i 0.791860 0.610703i \(-0.209113\pi\)
−0.924814 + 0.380420i \(0.875780\pi\)
\(608\) 13.8603 + 24.0067i 0.562108 + 0.973600i
\(609\) −18.7990 1.70731i −0.761775 0.0691839i
\(610\) −3.05621 −0.123742
\(611\) 13.0407 + 9.99190i 0.527572 + 0.404229i
\(612\) 0.283136 + 0.490406i 0.0114451 + 0.0198235i
\(613\) 28.8598 + 16.6622i 1.16564 + 0.672980i 0.952648 0.304075i \(-0.0983472\pi\)
0.212988 + 0.977055i \(0.431681\pi\)
\(614\) 12.1459 0.490168
\(615\) 5.35726 9.27904i 0.216025 0.374167i
\(616\) −11.3415 + 16.0839i −0.456961 + 0.648040i
\(617\) 5.85466 + 3.38019i 0.235700 + 0.136081i 0.613199 0.789929i \(-0.289883\pi\)
−0.377499 + 0.926010i \(0.623216\pi\)
\(618\) 1.53387 0.885581i 0.0617013 0.0356233i
\(619\) 15.2582 8.80931i 0.613278 0.354076i −0.160970 0.986959i \(-0.551462\pi\)
0.774247 + 0.632883i \(0.218129\pi\)
\(620\) −5.19304 −0.208558
\(621\) 19.6907 0.790159
\(622\) 1.72642 0.996751i 0.0692233 0.0399661i
\(623\) 0.418213 4.60489i 0.0167554 0.184491i
\(624\) 4.77431 6.23110i 0.191125 0.249444i
\(625\) −4.93986 + 8.55609i −0.197594 + 0.342244i
\(626\) 12.3299 + 7.11866i 0.492801 + 0.284519i
\(627\) −9.28569 + 16.0833i −0.370835 + 0.642304i
\(628\) −17.3197 29.9985i −0.691130 1.19707i
\(629\) 0.119762i 0.00477524i
\(630\) −3.12879 0.284155i −0.124654 0.0113210i
\(631\) 13.6416 + 7.87596i 0.543062 + 0.313537i 0.746319 0.665588i \(-0.231819\pi\)
−0.203257 + 0.979125i \(0.565153\pi\)
\(632\) 19.3596 + 11.1773i 0.770084 + 0.444608i
\(633\) 15.5402 0.617667
\(634\) −4.20392 + 7.28140i −0.166959 + 0.289181i
\(635\) 2.09316i 0.0830644i
\(636\) −0.415713 −0.0164841
\(637\) −24.0255 7.73143i −0.951925 0.306330i
\(638\) −16.6575 −0.659475
\(639\) 8.42653i 0.333348i
\(640\) −5.92497 + 10.2623i −0.234205 + 0.405655i
\(641\) 20.9405 0.827099 0.413550 0.910482i \(-0.364289\pi\)
0.413550 + 0.910482i \(0.364289\pi\)
\(642\) 3.12234 + 1.80268i 0.123229 + 0.0711463i
\(643\) −16.3952 9.46576i −0.646563 0.373293i 0.140575 0.990070i \(-0.455105\pi\)
−0.787138 + 0.616777i \(0.788438\pi\)
\(644\) −20.2473 1.83885i −0.797857 0.0724608i
\(645\) 4.27188i 0.168205i
\(646\) 0.195640 + 0.338859i 0.00769736 + 0.0133322i
\(647\) −18.8384 + 32.6291i −0.740614 + 1.28278i 0.211601 + 0.977356i \(0.432132\pi\)
−0.952216 + 0.305426i \(0.901201\pi\)
\(648\) 4.91126 + 2.83552i 0.192933 + 0.111390i
\(649\) 21.3867 37.0429i 0.839503 1.45406i
\(650\) 6.51562 2.70424i 0.255563 0.106069i
\(651\) −0.578727 + 6.37229i −0.0226821 + 0.249750i
\(652\) 13.5378 7.81604i 0.530180 0.306100i
\(653\) 29.0326 1.13613 0.568066 0.822983i \(-0.307692\pi\)
0.568066 + 0.822983i \(0.307692\pi\)
\(654\) 2.73155 0.106812
\(655\) −11.2402 + 6.48952i −0.439190 + 0.253567i
\(656\) 26.8472 15.5002i 1.04821 0.605182i
\(657\) 13.0468 + 7.53257i 0.509004 + 0.293874i
\(658\) −3.47352 + 4.92598i −0.135412 + 0.192035i
\(659\) 0.709152 1.22829i 0.0276247 0.0478473i −0.851883 0.523733i \(-0.824539\pi\)
0.879507 + 0.475886i \(0.157872\pi\)
\(660\) −6.14919 −0.239357
\(661\) −3.97764 2.29649i −0.154712 0.0893231i 0.420645 0.907225i \(-0.361804\pi\)
−0.575357 + 0.817902i \(0.695137\pi\)
\(662\) −1.55225 2.68858i −0.0603300 0.104495i
\(663\) 0.264625 0.345370i 0.0102772 0.0134131i
\(664\) 5.38715 0.209062
\(665\) 15.1344 + 1.37449i 0.586885 + 0.0533005i
\(666\) 0.480219 + 0.831764i 0.0186081 + 0.0322302i
\(667\) −18.4368 31.9335i −0.713877 1.23647i
\(668\) 9.29746 5.36789i 0.359730 0.207690i
\(669\) 9.77780i 0.378032i
\(670\) 2.32218 1.34071i 0.0897135 0.0517961i
\(671\) 23.2624i 0.898036i
\(672\) 9.24249 + 6.51728i 0.356537 + 0.251410i
\(673\) −2.10111 3.63924i −0.0809920 0.140282i 0.822684 0.568499i \(-0.192475\pi\)
−0.903676 + 0.428216i \(0.859142\pi\)
\(674\) 3.84815i 0.148225i
\(675\) 8.77418 + 15.1973i 0.337718 + 0.584945i
\(676\) 21.9833 + 5.85716i 0.845510 + 0.225275i
\(677\) −4.04354 + 7.00361i −0.155406 + 0.269171i −0.933207 0.359340i \(-0.883002\pi\)
0.777801 + 0.628511i \(0.216335\pi\)
\(678\) −4.03316 + 2.32854i −0.154892 + 0.0894272i
\(679\) 5.84435 + 4.12110i 0.224285 + 0.158153i
\(680\) −0.138811 + 0.240427i −0.00532315 + 0.00921997i
\(681\) −13.1737 7.60583i −0.504817 0.291456i
\(682\) 5.64636i 0.216210i
\(683\) 24.6865i 0.944604i 0.881437 + 0.472302i \(0.156577\pi\)
−0.881437 + 0.472302i \(0.843423\pi\)
\(684\) −19.0236 10.9833i −0.727386 0.419956i
\(685\) 2.73398 4.73540i 0.104460 0.180930i
\(686\) 2.48518 8.92016i 0.0948846 0.340573i
\(687\) 2.84267 1.64122i 0.108455 0.0626164i
\(688\) 6.17994 10.7040i 0.235608 0.408085i
\(689\) −0.386445 0.931102i −0.0147224 0.0354722i
\(690\) 0.972234 + 1.68396i 0.0370123 + 0.0641072i
\(691\) 11.2567i 0.428225i 0.976809 + 0.214113i \(0.0686859\pi\)
−0.976809 + 0.214113i \(0.931314\pi\)
\(692\) 21.2301 + 36.7716i 0.807047 + 1.39785i
\(693\) 2.16285 23.8149i 0.0821599 0.904652i
\(694\) 15.2043i 0.577147i
\(695\) −18.7230 + 10.8097i −0.710202 + 0.410035i
\(696\) 13.3771i 0.507057i
\(697\) 1.48805 0.859128i 0.0563640 0.0325418i
\(698\) 4.03942 + 6.99648i 0.152894 + 0.264821i
\(699\) 10.6473 + 18.4416i 0.402717 + 0.697526i
\(700\) −7.60300 16.4463i −0.287366 0.621614i
\(701\) 22.2305 0.839635 0.419818 0.907608i \(-0.362094\pi\)
0.419818 + 0.907608i \(0.362094\pi\)
\(702\) 1.04953 8.01564i 0.0396118 0.302531i
\(703\) −2.32288 4.02335i −0.0876091 0.151743i
\(704\) −8.96614 5.17660i −0.337924 0.195101i
\(705\) −4.03562 −0.151990
\(706\) −2.96052 + 5.12776i −0.111420 + 0.192986i
\(707\) 17.4916 24.8058i 0.657841 0.932918i
\(708\) −13.8825 8.01504i −0.521734 0.301224i
\(709\) 20.5889 11.8870i 0.773234 0.446427i −0.0607929 0.998150i \(-0.519363\pi\)
0.834027 + 0.551723i \(0.186030\pi\)
\(710\) 1.66961 0.963952i 0.0626595 0.0361765i
\(711\) −27.1620 −1.01866
\(712\) −3.27677 −0.122802
\(713\) −10.8245 + 6.24951i −0.405380 + 0.234046i
\(714\) 0.130459 + 0.0919926i 0.00488232 + 0.00344274i
\(715\) −5.71626 13.7728i −0.213776 0.515072i
\(716\) −3.61969 + 6.26948i −0.135274 + 0.234301i
\(717\) −5.74246 3.31541i −0.214456 0.123816i
\(718\) −7.84111 + 13.5812i −0.292628 + 0.506846i
\(719\) 10.3904 + 17.9967i 0.387496 + 0.671163i 0.992112 0.125354i \(-0.0400068\pi\)
−0.604616 + 0.796517i \(0.706673\pi\)
\(720\) 6.08597i 0.226811i
\(721\) 6.35722 9.01550i 0.236755 0.335755i
\(722\) −4.91782 2.83931i −0.183022 0.105668i
\(723\) −16.0144 9.24589i −0.595580 0.343859i
\(724\) −13.7650 −0.511574
\(725\) 16.4309 28.4592i 0.610229 1.05695i
\(726\) 2.01329i 0.0747203i
\(727\) −26.7719 −0.992915 −0.496457 0.868061i \(-0.665366\pi\)
−0.496457 + 0.868061i \(0.665366\pi\)
\(728\) −3.91659 + 17.4519i −0.145159 + 0.646809i
\(729\) 4.53910 0.168115
\(730\) 3.44675i 0.127570i
\(731\) 0.342535 0.593287i 0.0126691 0.0219435i
\(732\) −8.71799 −0.322226
\(733\) 4.55224 + 2.62824i 0.168141 + 0.0970761i 0.581709 0.813397i \(-0.302384\pi\)
−0.413568 + 0.910473i \(0.635718\pi\)
\(734\) 10.4255 + 6.01919i 0.384814 + 0.222172i
\(735\) 5.83981 2.08191i 0.215405 0.0767926i
\(736\) 22.0917i 0.814312i
\(737\) 10.2048 + 17.6753i 0.375900 + 0.651078i
\(738\) 6.88981 11.9335i 0.253617 0.439278i
\(739\) 6.19209 + 3.57501i 0.227780 + 0.131509i 0.609547 0.792750i \(-0.291351\pi\)
−0.381768 + 0.924258i \(0.624685\pi\)
\(740\) 0.769132 1.33218i 0.0282738 0.0489717i
\(741\) −2.19121 + 16.7351i −0.0804960 + 0.614780i
\(742\) 0.335727 0.155204i 0.0123249 0.00569771i
\(743\) −0.618032 + 0.356821i −0.0226734 + 0.0130905i −0.511294 0.859406i \(-0.670834\pi\)
0.488620 + 0.872496i \(0.337500\pi\)
\(744\) 4.53441 0.166240
\(745\) −0.0118592 −0.000434486
\(746\) 7.96386 4.59794i 0.291578 0.168342i
\(747\) −5.66873 + 3.27284i −0.207408 + 0.119747i
\(748\) −0.854012 0.493064i −0.0312258 0.0180282i
\(749\) 22.3636 + 2.03104i 0.817147 + 0.0742127i
\(750\) −1.97354 + 3.41827i −0.0720634 + 0.124817i
\(751\) 25.7013 0.937854 0.468927 0.883237i \(-0.344641\pi\)
0.468927 + 0.883237i \(0.344641\pi\)
\(752\) −10.1120 5.83815i −0.368746 0.212896i
\(753\) 3.26238 + 5.65062i 0.118888 + 0.205920i
\(754\) −13.9821 + 5.80315i −0.509199 + 0.211338i
\(755\) 19.7084 0.717263
\(756\) −20.6779 1.87795i −0.752047 0.0683004i
\(757\) −8.19425 14.1928i −0.297825 0.515848i 0.677813 0.735234i \(-0.262928\pi\)
−0.975638 + 0.219386i \(0.929594\pi\)
\(758\) 2.03430 + 3.52350i 0.0738889 + 0.127979i
\(759\) −12.8175 + 7.40018i −0.465245 + 0.268609i
\(760\) 10.7694i 0.390646i
\(761\) 7.20531 4.15999i 0.261192 0.150800i −0.363686 0.931522i \(-0.618482\pi\)
0.624878 + 0.780722i \(0.285149\pi\)
\(762\) 0.852923i 0.0308981i
\(763\) 15.4428 7.13907i 0.559067 0.258452i
\(764\) 5.66888 + 9.81878i 0.205093 + 0.355231i
\(765\) 0.337326i 0.0121960i
\(766\) 5.59263 + 9.68671i 0.202070 + 0.349995i
\(767\) 5.04678 38.5442i 0.182229 1.39175i
\(768\) 0.197167 0.341504i 0.00711466 0.0123230i
\(769\) 22.1346 12.7794i 0.798194 0.460838i −0.0446452 0.999003i \(-0.514216\pi\)
0.842839 + 0.538165i \(0.180882\pi\)
\(770\) 4.96605 2.29576i 0.178964 0.0827334i
\(771\) 5.78738 10.0240i 0.208427 0.361007i
\(772\) 7.31905 + 4.22565i 0.263418 + 0.152085i
\(773\) 8.40077i 0.302155i 0.988522 + 0.151077i \(0.0482742\pi\)
−0.988522 + 0.151077i \(0.951726\pi\)
\(774\) 5.49394i 0.197476i