Properties

Label 91.2.k.b
Level $91$
Weight $2$
Character orbit 91.k
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.k (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{9} q^{2} + ( \beta_{1} + \beta_{4} + \beta_{6} ) q^{3} + ( -1 - \beta_{2} - \beta_{4} + \beta_{5} + \beta_{7} - \beta_{8} - \beta_{11} ) q^{4} + ( \beta_{3} + \beta_{8} - \beta_{10} ) q^{5} + ( -1 - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{11} ) q^{6} + ( -\beta_{1} + \beta_{2} + \beta_{4} - \beta_{7} + \beta_{11} ) q^{7} + ( -\beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} - \beta_{9} + \beta_{11} ) q^{8} + ( -1 + \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{9} +O(q^{10})\) \( q + \beta_{9} q^{2} + ( \beta_{1} + \beta_{4} + \beta_{6} ) q^{3} + ( -1 - \beta_{2} - \beta_{4} + \beta_{5} + \beta_{7} - \beta_{8} - \beta_{11} ) q^{4} + ( \beta_{3} + \beta_{8} - \beta_{10} ) q^{5} + ( -1 - \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{11} ) q^{6} + ( -\beta_{1} + \beta_{2} + \beta_{4} - \beta_{7} + \beta_{11} ) q^{7} + ( -\beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} - \beta_{9} + \beta_{11} ) q^{8} + ( -1 + \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} - \beta_{7} ) q^{9} + ( -\beta_{1} - \beta_{3} - 2 \beta_{4} - \beta_{6} + \beta_{8} ) q^{10} + ( 1 + \beta_{1} - \beta_{2} - \beta_{5} - \beta_{8} + \beta_{10} ) q^{11} + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} + \beta_{5} - 2 \beta_{9} + \beta_{10} ) q^{12} + ( -\beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{6} + 2 \beta_{7} + \beta_{10} - \beta_{11} ) q^{13} + ( 1 + \beta_{1} + 2 \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{14} + ( 1 - \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - \beta_{7} + \beta_{11} ) q^{15} + ( 1 + \beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} - \beta_{8} - \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{16} + ( -2 - \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} + \beta_{11} ) q^{17} + ( 2 \beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{18} + ( -\beta_{4} - \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} - \beta_{11} ) q^{19} + ( \beta_{2} + \beta_{3} + \beta_{4} - \beta_{7} + 2 \beta_{8} + \beta_{10} + \beta_{11} ) q^{20} + ( 3 - 2 \beta_{1} - \beta_{2} + \beta_{4} - \beta_{5} - \beta_{6} + \beta_{8} + \beta_{9} - \beta_{10} ) q^{21} + ( \beta_{1} + 3 \beta_{4} + \beta_{6} + 2 \beta_{9} - \beta_{10} ) q^{22} + ( \beta_{2} + \beta_{3} + \beta_{4} - 2 \beta_{5} + \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{23} + ( 1 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - 2 \beta_{6} - \beta_{10} ) q^{24} + ( \beta_{1} + 2 \beta_{3} - 2 \beta_{4} - \beta_{6} + 2 \beta_{7} - \beta_{8} - 2 \beta_{11} ) q^{25} + ( -2 - 3 \beta_{3} + \beta_{4} + 2 \beta_{5} - 3 \beta_{6} - \beta_{7} - \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{26} + ( 2 \beta_{1} - \beta_{2} - \beta_{4} - \beta_{5} + \beta_{6} - \beta_{7} - 2 \beta_{8} - \beta_{11} ) q^{27} + ( 1 - 4 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + \beta_{7} + 2 \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{28} + ( -1 - \beta_{1} + 2 \beta_{2} - \beta_{3} + 2 \beta_{4} + 2 \beta_{5} + \beta_{6} - 3 \beta_{7} + 3 \beta_{8} + \beta_{11} ) q^{29} + ( 3 + \beta_{1} + 3 \beta_{3} + 2 \beta_{4} + \beta_{6} + \beta_{7} + \beta_{8} - \beta_{11} ) q^{30} + ( 2 - 3 \beta_{1} - \beta_{4} - 2 \beta_{6} + \beta_{7} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{31} + ( \beta_{1} - \beta_{2} + \beta_{4} - \beta_{6} - 2 \beta_{8} + \beta_{9} + \beta_{11} ) q^{32} + ( -1 + 2 \beta_{1} - \beta_{2} - 3 \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{7} - \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{33} + ( 2 + \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} + 2 \beta_{6} + \beta_{7} - 3 \beta_{9} ) q^{34} + ( -3 + \beta_{1} - 2 \beta_{2} - 4 \beta_{3} - 3 \beta_{4} - \beta_{6} + \beta_{7} - 3 \beta_{8} - \beta_{9} + 2 \beta_{10} ) q^{35} + ( -1 - 2 \beta_{1} - 2 \beta_{4} + \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{36} + ( -2 + \beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} - 3 \beta_{9} + \beta_{11} ) q^{37} + ( 3 + 4 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} + \beta_{10} + \beta_{11} ) q^{38} + ( -2 + 3 \beta_{1} - 2 \beta_{4} + 2 \beta_{5} - \beta_{6} + \beta_{7} - 4 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{39} + ( -3 - 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + 3 \beta_{5} - 3 \beta_{6} - \beta_{7} + 2 \beta_{9} - \beta_{10} - \beta_{11} ) q^{40} + ( -1 + \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} - 4 \beta_{8} - \beta_{9} + \beta_{10} ) q^{41} + ( -\beta_{1} + \beta_{2} - 2 \beta_{3} + \beta_{4} - 2 \beta_{5} + 2 \beta_{6} + \beta_{8} + 2 \beta_{9} - \beta_{10} + 2 \beta_{11} ) q^{42} + ( 2 - 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{6} + 4 \beta_{9} - 2 \beta_{10} ) q^{43} + ( -4 + \beta_{1} - 3 \beta_{2} - 5 \beta_{4} - \beta_{6} + 3 \beta_{7} - 3 \beta_{8} - 3 \beta_{11} ) q^{44} + ( -\beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} + \beta_{11} ) q^{45} + ( 1 - \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - \beta_{5} + 2 \beta_{6} + \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{11} ) q^{46} + ( -2 + \beta_{1} - \beta_{4} - \beta_{6} ) q^{47} + ( -3 + \beta_{1} - \beta_{2} - \beta_{3} - 5 \beta_{4} + 3 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} - 2 \beta_{11} ) q^{48} + ( -1 + 2 \beta_{1} - \beta_{2} + 4 \beta_{5} + 2 \beta_{7} - \beta_{8} - 2 \beta_{11} ) q^{49} + ( -2 \beta_{1} - 2 \beta_{2} - \beta_{3} - 3 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} + \beta_{7} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{50} + ( -5 \beta_{1} - \beta_{2} - 3 \beta_{3} - 2 \beta_{4} - 5 \beta_{6} + \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{51} + ( -1 + 3 \beta_{1} - 2 \beta_{2} - \beta_{3} + 2 \beta_{4} - 2 \beta_{6} - \beta_{7} - 4 \beta_{8} + 3 \beta_{9} - 3 \beta_{10} - \beta_{11} ) q^{52} + ( -1 - \beta_{1} - \beta_{3} - 3 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{11} ) q^{53} + ( 3 - \beta_{1} + \beta_{2} + 2 \beta_{3} + \beta_{4} - 2 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} + \beta_{9} - \beta_{11} ) q^{54} + ( -3 - \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - 2 \beta_{7} + 2 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{55} + ( 4 + \beta_{2} + 3 \beta_{3} - 2 \beta_{5} + 2 \beta_{6} + \beta_{7} + \beta_{8} - 4 \beta_{9} + 5 \beta_{10} + \beta_{11} ) q^{56} + ( 3 + \beta_{1} - 2 \beta_{2} + \beta_{3} + 4 \beta_{4} - 2 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} + \beta_{9} + 2 \beta_{11} ) q^{57} + ( -2 + \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{5} + 2 \beta_{6} - 3 \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{58} + ( 3 + \beta_{1} + \beta_{3} + 6 \beta_{4} + 5 \beta_{6} + 4 \beta_{8} - 4 \beta_{9} ) q^{59} + ( -3 \beta_{1} + \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} + \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{60} + ( 1 + 2 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{5} - \beta_{6} + \beta_{8} - 2 \beta_{11} ) q^{61} + ( 3 + 3 \beta_{1} - 3 \beta_{3} + 8 \beta_{4} - \beta_{6} - 5 \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} + 5 \beta_{11} ) q^{62} + ( -1 + \beta_{1} - 2 \beta_{3} + 5 \beta_{4} + 2 \beta_{5} + \beta_{7} + \beta_{9} - \beta_{10} ) q^{63} + ( -1 + 3 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} - 4 \beta_{8} + \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{64} + ( 1 + \beta_{1} - \beta_{2} + 3 \beta_{3} - \beta_{4} + 3 \beta_{5} + \beta_{6} + 3 \beta_{8} - 2 \beta_{10} - 2 \beta_{11} ) q^{65} + ( -7 + 2 \beta_{2} - 2 \beta_{3} - 7 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} - 2 \beta_{8} - 2 \beta_{11} ) q^{66} + ( 3 + \beta_{2} + 4 \beta_{3} + 3 \beta_{4} - \beta_{5} + \beta_{6} - 2 \beta_{7} + 5 \beta_{8} + \beta_{10} + 2 \beta_{11} ) q^{67} + ( 4 - 2 \beta_{1} + 4 \beta_{2} + \beta_{3} + 4 \beta_{4} - 3 \beta_{5} + \beta_{6} - 3 \beta_{7} + 4 \beta_{8} + 4 \beta_{11} ) q^{68} + ( 3 - 3 \beta_{1} + 2 \beta_{2} + \beta_{3} - 3 \beta_{5} + \beta_{7} + \beta_{8} + 4 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{69} + ( 2 + 2 \beta_{1} + 3 \beta_{2} + 5 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - \beta_{8} - 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{70} + ( 2 + 3 \beta_{1} - \beta_{3} + \beta_{4} - 3 \beta_{6} - \beta_{8} - 3 \beta_{10} ) q^{71} + ( 5 - 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} - 4 \beta_{9} + 4 \beta_{10} + \beta_{11} ) q^{72} + ( 4 \beta_{1} - 2 \beta_{2} - 4 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} - 4 \beta_{8} + \beta_{9} - \beta_{10} - 2 \beta_{11} ) q^{73} + ( 6 + \beta_{1} + 3 \beta_{2} - \beta_{3} + 3 \beta_{4} - 3 \beta_{5} + \beta_{6} - 3 \beta_{7} + \beta_{8} + 3 \beta_{11} ) q^{74} + ( \beta_{3} - \beta_{5} + 4 \beta_{6} - \beta_{7} - 3 \beta_{8} - 2 \beta_{9} + 4 \beta_{10} ) q^{75} + ( -5 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - 3 \beta_{11} ) q^{76} + ( -3 + \beta_{1} + 4 \beta_{3} - 3 \beta_{4} - 2 \beta_{6} - 2 \beta_{7} - \beta_{11} ) q^{77} + ( 4 - 2 \beta_{2} + 3 \beta_{3} - \beta_{6} - \beta_{7} - \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{78} + ( -3 \beta_{1} - \beta_{2} - 4 \beta_{3} + 6 \beta_{4} - 3 \beta_{6} + \beta_{7} + 3 \beta_{8} - 2 \beta_{9} + \beta_{10} + \beta_{11} ) q^{79} + ( -6 - 2 \beta_{1} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} + 4 \beta_{6} - 2 \beta_{7} + \beta_{8} - 2 \beta_{10} + 2 \beta_{11} ) q^{80} + ( -3 + 2 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} + 3 \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{10} - \beta_{11} ) q^{81} + ( 1 + \beta_{1} - 3 \beta_{2} - 3 \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} - 4 \beta_{9} - 4 \beta_{10} + 2 \beta_{11} ) q^{82} + ( 3 - 4 \beta_{1} + 3 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} - \beta_{8} + 3 \beta_{9} - 3 \beta_{11} ) q^{83} + ( 1 - 3 \beta_{1} + \beta_{2} - 3 \beta_{6} + 2 \beta_{7} + \beta_{8} + \beta_{9} + 3 \beta_{10} - 2 \beta_{11} ) q^{84} + ( -5 + \beta_{1} - 7 \beta_{3} - 2 \beta_{4} - \beta_{5} - \beta_{7} - 7 \beta_{8} + 5 \beta_{10} + \beta_{11} ) q^{85} + ( -5 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 5 \beta_{4} + \beta_{5} + \beta_{6} + 3 \beta_{7} + 3 \beta_{10} - 3 \beta_{11} ) q^{86} + ( -3 \beta_{1} + 4 \beta_{3} - \beta_{5} - \beta_{6} - \beta_{7} + 5 \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{87} + ( 2 - \beta_{1} - 3 \beta_{3} + 5 \beta_{4} - 2 \beta_{5} + \beta_{6} + 2 \beta_{7} + 3 \beta_{8} - 4 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{88} + ( -1 - 3 \beta_{1} + 2 \beta_{2} - 6 \beta_{4} - \beta_{5} - 2 \beta_{6} + \beta_{7} + 4 \beta_{9} - 2 \beta_{11} ) q^{89} + ( \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + 2 \beta_{4} - \beta_{5} - \beta_{7} - \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{90} + ( \beta_{1} + 2 \beta_{2} + 2 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} + 4 \beta_{6} - 4 \beta_{7} + 3 \beta_{8} + \beta_{9} + \beta_{10} + 3 \beta_{11} ) q^{91} + ( -5 - 2 \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} + 3 \beta_{8} - 3 \beta_{9} + 6 \beta_{10} - \beta_{11} ) q^{92} + ( 5 + \beta_{1} - \beta_{2} + \beta_{3} + 9 \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} ) q^{93} + ( -1 - \beta_{4} + \beta_{5} - \beta_{6} - \beta_{7} - \beta_{11} ) q^{94} + ( -\beta_{1} + \beta_{5} + \beta_{7} + \beta_{9} - 2 \beta_{10} ) q^{95} + ( 2 - \beta_{3} + \beta_{4} - \beta_{8} - 2 \beta_{10} ) q^{96} + ( 1 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} + 3 \beta_{6} + \beta_{7} - 2 \beta_{10} - \beta_{11} ) q^{97} + ( -5 - 2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} - 7 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 3 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{98} + ( -5 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 8 \beta_{4} + 2 \beta_{5} - 4 \beta_{6} - 2 \beta_{7} - 4 \beta_{8} - 2 \beta_{11} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + O(q^{10}) \) \( 12q - 3q^{3} - 8q^{4} - 3q^{5} - 9q^{6} - 3q^{7} - q^{9} + 12q^{10} + 12q^{11} - q^{12} - 2q^{13} + 4q^{14} - 12q^{15} + 16q^{16} - 34q^{17} + 3q^{18} + 9q^{19} - 3q^{20} + 21q^{21} - 15q^{22} - 6q^{23} + 15q^{24} - 5q^{25} - 6q^{26} + 12q^{27} - 9q^{28} - q^{29} + 11q^{30} + 18q^{31} - 6q^{33} - 6q^{35} - 13q^{36} + 19q^{38} - 4q^{39} - q^{40} - 6q^{41} - 8q^{42} + 11q^{43} - 33q^{44} - 15q^{47} + 19q^{48} - 3q^{49} + 18q^{50} + 4q^{51} - 7q^{52} - 8q^{53} - 15q^{55} + 27q^{56} - 24q^{58} - 30q^{60} + 5q^{61} + 41q^{62} - 30q^{63} + 2q^{64} + 21q^{65} - 34q^{66} + 15q^{67} + 22q^{68} + 7q^{69} + 3q^{70} + 30q^{71} + 57q^{72} + 42q^{73} + 66q^{74} - 2q^{75} - 45q^{76} - 19q^{77} + 44q^{78} - 35q^{79} - 63q^{80} + 14q^{81} + 5q^{82} - 12q^{84} - 21q^{85} - 57q^{86} - 20q^{87} - 14q^{88} - 7q^{91} - 66q^{92} + q^{94} - 4q^{95} + 21q^{96} - 3q^{97} - 18q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{11} - 13 \nu^{10} - 9 \nu^{9} + 72 \nu^{8} - 91 \nu^{7} - 164 \nu^{6} + 313 \nu^{5} + 42 \nu^{4} - 620 \nu^{3} + 344 \nu^{2} + 608 \nu - 800 \)\()/224\)
\(\beta_{3}\)\(=\)\((\)\( -9 \nu^{11} + 5 \nu^{10} + 25 \nu^{9} - 32 \nu^{8} - 21 \nu^{7} + 132 \nu^{6} - 73 \nu^{5} - 154 \nu^{4} + 260 \nu^{3} + 40 \nu^{2} - 320 \nu + 256 \)\()/224\)
\(\beta_{4}\)\(=\)\((\)\( -11 \nu^{11} + 17 \nu^{10} + 29 \nu^{9} - 78 \nu^{8} + 21 \nu^{7} + 166 \nu^{6} - 167 \nu^{5} - 140 \nu^{4} + 380 \nu^{3} - 88 \nu^{2} - 304 \nu + 288 \)\()/224\)
\(\beta_{5}\)\(=\)\((\)\( -13 \nu^{11} + 29 \nu^{10} + 5 \nu^{9} - 96 \nu^{8} + 91 \nu^{7} + 200 \nu^{6} - 289 \nu^{5} - 126 \nu^{4} + 584 \nu^{3} - 160 \nu^{2} - 512 \nu + 544 \)\()/224\)
\(\beta_{6}\)\(=\)\((\)\( 8 \nu^{11} - 13 \nu^{10} - 9 \nu^{9} + 51 \nu^{8} - 42 \nu^{7} - 101 \nu^{6} + 194 \nu^{5} + 7 \nu^{4} - 340 \nu^{3} + 260 \nu^{2} + 216 \nu - 464 \)\()/112\)
\(\beta_{7}\)\(=\)\((\)\( 13 \nu^{11} - 57 \nu^{10} - 5 \nu^{9} + 208 \nu^{8} - 231 \nu^{7} - 396 \nu^{6} + 821 \nu^{5} + 42 \nu^{4} - 1452 \nu^{3} + 720 \nu^{2} + 1184 \nu - 1664 \)\()/224\)
\(\beta_{8}\)\(=\)\((\)\( 2 \nu^{11} - 5 \nu^{10} - 4 \nu^{9} + 18 \nu^{8} - 7 \nu^{7} - 41 \nu^{6} + 45 \nu^{5} + 35 \nu^{4} - 99 \nu^{3} + 16 \nu^{2} + 96 \nu - 88 \)\()/28\)
\(\beta_{9}\)\(=\)\((\)\( 3 \nu^{11} - 4 \nu^{10} - 6 \nu^{9} + 20 \nu^{8} - 44 \nu^{6} + 43 \nu^{5} + 56 \nu^{4} - 82 \nu^{3} + 3 \nu^{2} + 102 \nu - 48 \)\()/28\)
\(\beta_{10}\)\(=\)\((\)\( -15 \nu^{11} + 20 \nu^{10} + 30 \nu^{9} - 121 \nu^{8} + 21 \nu^{7} + 269 \nu^{6} - 271 \nu^{5} - 273 \nu^{4} + 634 \nu^{3} - 64 \nu^{2} - 664 \nu + 464 \)\()/112\)
\(\beta_{11}\)\(=\)\((\)\( -17 \nu^{11} + 39 \nu^{10} + 13 \nu^{9} - 160 \nu^{8} + 133 \nu^{7} + 310 \nu^{6} - 547 \nu^{5} - 168 \nu^{4} + 1062 \nu^{3} - 500 \nu^{2} - 872 \nu + 1056 \)\()/112\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} + 1\)
\(\nu^{3}\)\(=\)\(\beta_{11} + \beta_{9} + \beta_{6} - \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2}\)
\(\nu^{4}\)\(=\)\(-\beta_{11} + \beta_{10} + \beta_{9} - \beta_{7} - \beta_{6} + \beta_{2} - \beta_{1} - 1\)
\(\nu^{5}\)\(=\)\(\beta_{10} + 2 \beta_{9} - 2 \beta_{8} + 2 \beta_{7} - \beta_{6} + \beta_{5} - 2 \beta_{3} - \beta_{2} - \beta_{1}\)
\(\nu^{6}\)\(=\)\(-4 \beta_{11} + 2 \beta_{10} - 3 \beta_{8} + \beta_{7} - 5 \beta_{6} + 4 \beta_{5} - 7 \beta_{4} - 2 \beta_{3} - 4 \beta_{2} + 3 \beta_{1} - 6\)
\(\nu^{7}\)\(=\)\(-\beta_{11} - \beta_{10} - \beta_{9} + 3 \beta_{8} + \beta_{7} + \beta_{6} + 6 \beta_{5} + 4 \beta_{4} - \beta_{3} - 4 \beta_{2} + \beta_{1}\)
\(\nu^{8}\)\(=\)\(-4 \beta_{10} - 2 \beta_{9} - \beta_{8} + 2 \beta_{5} - 4 \beta_{4} + 8 \beta_{3} - 2 \beta_{2} + 3 \beta_{1} - 6\)
\(\nu^{9}\)\(=\)\(2 \beta_{11} - 6 \beta_{10} - 2 \beta_{9} + 6 \beta_{8} - 3 \beta_{7} + 7 \beta_{6} - 4 \beta_{5} + 21 \beta_{4} + 6 \beta_{3} - 3 \beta_{1} + 4\)
\(\nu^{10}\)\(=\)\(5 \beta_{11} - 9 \beta_{10} + \beta_{9} - 16 \beta_{8} + \beta_{7} + 3 \beta_{6} - 8 \beta_{5} + 2 \beta_{4} + 2 \beta_{3} + 7 \beta_{2} - 6 \beta_{1} + 1\)
\(\nu^{11}\)\(=\)\(-2 \beta_{11} - \beta_{10} - 19 \beta_{8} + \beta_{7} + 4 \beta_{6} - 15 \beta_{5} - 5 \beta_{4} - 13 \beta_{3} - 14 \beta_{2} + 9 \beta_{1} - 5\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(-\beta_{4}\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1
1.32725 0.488273i
−1.38488 0.286553i
0.655911 + 1.25291i
−1.18541 + 0.771231i
0.874681 1.11128i
1.21245 + 0.727987i
1.21245 0.727987i
0.874681 + 1.11128i
−1.18541 0.771231i
0.655911 1.25291i
−1.38488 + 0.286553i
1.32725 + 0.488273i
2.58860i −0.259233 0.449005i −4.70085 −1.39608 + 0.806027i −1.16229 + 0.671051i 1.06153 2.42346i 6.99143i 1.36560 2.36528i 2.08648 + 3.61389i
4.2 1.37905i −1.44060 2.49520i 0.0982074 −0.697972 + 0.402974i −3.44101 + 1.98667i 0.0699870 + 2.64483i 2.89354i −2.65067 + 4.59109i 0.555723 + 0.962541i
4.3 0.180824i 0.913006 + 1.58137i 1.96730 −2.32670 + 1.34332i 0.285950 0.165093i −2.46263 0.967177i 0.717383i −0.167162 + 0.289532i 0.242904 + 0.420723i
4.4 0.499987i −0.424801 0.735776i 1.75001 −0.902810 + 0.521238i 0.367878 0.212395i 2.63491 0.239300i 1.87496i 1.13909 1.97296i −0.260612 0.451393i
4.5 1.34523i −1.02505 1.77544i 0.190366 3.08979 1.78389i 2.38837 1.37893i −2.44601 + 1.00849i 2.94654i −0.601462 + 1.04176i 2.39973 + 4.15646i
4.6 2.30327i 0.736680 + 1.27597i −3.30504 0.733776 0.423646i −2.93889 + 1.69677i −0.357777 2.62145i 3.00585i 0.414604 0.718115i 0.975769 + 1.69008i
23.1 2.30327i 0.736680 1.27597i −3.30504 0.733776 + 0.423646i −2.93889 1.69677i −0.357777 + 2.62145i 3.00585i 0.414604 + 0.718115i 0.975769 1.69008i
23.2 1.34523i −1.02505 + 1.77544i 0.190366 3.08979 + 1.78389i 2.38837 + 1.37893i −2.44601 1.00849i 2.94654i −0.601462 1.04176i 2.39973 4.15646i
23.3 0.499987i −0.424801 + 0.735776i 1.75001 −0.902810 0.521238i 0.367878 + 0.212395i 2.63491 + 0.239300i 1.87496i 1.13909 + 1.97296i −0.260612 + 0.451393i
23.4 0.180824i 0.913006 1.58137i 1.96730 −2.32670 1.34332i 0.285950 + 0.165093i −2.46263 + 0.967177i 0.717383i −0.167162 0.289532i 0.242904 0.420723i
23.5 1.37905i −1.44060 + 2.49520i 0.0982074 −0.697972 0.402974i −3.44101 1.98667i 0.0699870 2.64483i 2.89354i −2.65067 4.59109i 0.555723 0.962541i
23.6 2.58860i −0.259233 + 0.449005i −4.70085 −1.39608 0.806027i −1.16229 0.671051i 1.06153 + 2.42346i 6.99143i 1.36560 + 2.36528i 2.08648 3.61389i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.k even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 91.2.k.b 12
3.b odd 2 1 819.2.bm.f 12
7.b odd 2 1 637.2.k.i 12
7.c even 3 1 91.2.u.b yes 12
7.c even 3 1 637.2.q.g 12
7.d odd 6 1 637.2.q.i 12
7.d odd 6 1 637.2.u.g 12
13.e even 6 1 91.2.u.b yes 12
13.f odd 12 2 1183.2.e.j 24
21.h odd 6 1 819.2.do.e 12
39.h odd 6 1 819.2.do.e 12
91.k even 6 1 inner 91.2.k.b 12
91.l odd 6 1 637.2.k.i 12
91.p odd 6 1 637.2.q.i 12
91.t odd 6 1 637.2.u.g 12
91.u even 6 1 637.2.q.g 12
91.x odd 12 2 8281.2.a.cp 12
91.ba even 12 2 8281.2.a.co 12
91.bd odd 12 2 1183.2.e.j 24
273.bp odd 6 1 819.2.bm.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.k.b 12 1.a even 1 1 trivial
91.2.k.b 12 91.k even 6 1 inner
91.2.u.b yes 12 7.c even 3 1
91.2.u.b yes 12 13.e even 6 1
637.2.k.i 12 7.b odd 2 1
637.2.k.i 12 91.l odd 6 1
637.2.q.g 12 7.c even 3 1
637.2.q.g 12 91.u even 6 1
637.2.q.i 12 7.d odd 6 1
637.2.q.i 12 91.p odd 6 1
637.2.u.g 12 7.d odd 6 1
637.2.u.g 12 91.t odd 6 1
819.2.bm.f 12 3.b odd 2 1
819.2.bm.f 12 273.bp odd 6 1
819.2.do.e 12 21.h odd 6 1
819.2.do.e 12 39.h odd 6 1
1183.2.e.j 24 13.f odd 12 2
1183.2.e.j 24 91.bd odd 12 2
8281.2.a.co 12 91.ba even 12 2
8281.2.a.cp 12 91.x odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 16 T_{2}^{10} + 88 T_{2}^{8} + 197 T_{2}^{6} + 172 T_{2}^{4} + 36 T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(91, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 36 T^{2} + 172 T^{4} + 197 T^{6} + 88 T^{8} + 16 T^{10} + T^{12} \)
$3$ \( 49 + 133 T + 333 T^{2} + 300 T^{3} + 355 T^{4} + 147 T^{5} + 233 T^{6} + 75 T^{7} + 69 T^{8} + 17 T^{9} + 14 T^{10} + 3 T^{11} + T^{12} \)
$5$ \( 121 + 363 T + 275 T^{2} - 264 T^{3} - 343 T^{4} + 351 T^{5} + 801 T^{6} + 495 T^{7} + 81 T^{8} - 33 T^{9} - 8 T^{10} + 3 T^{11} + T^{12} \)
$7$ \( 117649 + 50421 T + 14406 T^{2} + 5145 T^{3} - 1911 T^{4} - 1806 T^{5} - 475 T^{6} - 258 T^{7} - 39 T^{8} + 15 T^{9} + 6 T^{10} + 3 T^{11} + T^{12} \)
$11$ \( 85849 - 83505 T - 20684 T^{2} + 46455 T^{3} + 9240 T^{4} - 29736 T^{5} + 13287 T^{6} - 1143 T^{7} - 604 T^{8} + 84 T^{9} + 41 T^{10} - 12 T^{11} + T^{12} \)
$13$ \( 4826809 + 742586 T - 514098 T^{2} - 37349 T^{3} + 57629 T^{4} - 819 T^{5} - 6395 T^{6} - 63 T^{7} + 341 T^{8} - 17 T^{9} - 18 T^{10} + 2 T^{11} + T^{12} \)
$17$ \( ( 19 - 146 T + 56 T^{2} + 198 T^{3} + 96 T^{4} + 17 T^{5} + T^{6} )^{2} \)
$19$ \( 1 - 48 T + 915 T^{2} - 7056 T^{3} + 25855 T^{4} - 39258 T^{5} + 27731 T^{6} - 6990 T^{7} + 22 T^{8} + 234 T^{9} + T^{10} - 9 T^{11} + T^{12} \)
$23$ \( ( 793 + 646 T - 185 T^{2} - 259 T^{3} - 50 T^{4} + 3 T^{5} + T^{6} )^{2} \)
$29$ \( 16072081 + 20205360 T + 19636658 T^{2} + 8770940 T^{3} + 3370218 T^{4} + 597669 T^{5} + 162746 T^{6} + 18504 T^{7} + 6148 T^{8} + 294 T^{9} + 87 T^{10} + T^{11} + T^{12} \)
$31$ \( 241274089 - 221904438 T + 60760488 T^{2} + 6685848 T^{3} - 4975196 T^{4} - 325530 T^{5} + 469517 T^{6} - 65880 T^{7} - 3446 T^{8} + 1116 T^{9} + 46 T^{10} - 18 T^{11} + T^{12} \)
$37$ \( 123201 + 371790 T^{2} + 363609 T^{4} + 123741 T^{6} + 7164 T^{8} + 147 T^{10} + T^{12} \)
$41$ \( 389707081 - 591933885 T + 198922270 T^{2} + 153073425 T^{3} + 9911704 T^{4} - 6405744 T^{5} - 349015 T^{6} + 188553 T^{7} + 21580 T^{8} - 1026 T^{9} - 159 T^{10} + 6 T^{11} + T^{12} \)
$43$ \( 418898089 - 158496448 T + 88152595 T^{2} - 22738656 T^{3} + 9218116 T^{4} - 2107681 T^{5} + 554133 T^{6} - 78022 T^{7} + 12754 T^{8} - 1093 T^{9} + 170 T^{10} - 11 T^{11} + T^{12} \)
$47$ \( 121 + 363 T - 77 T^{2} - 1320 T^{3} + 1083 T^{4} + 1035 T^{5} - 567 T^{6} - 543 T^{7} + 179 T^{8} + 255 T^{9} + 92 T^{10} + 15 T^{11} + T^{12} \)
$53$ \( 289 - 4488 T + 59309 T^{2} - 175040 T^{3} + 479331 T^{4} + 266772 T^{5} + 137852 T^{6} + 25392 T^{7} + 5287 T^{8} + 504 T^{9} + 102 T^{10} + 8 T^{11} + T^{12} \)
$59$ \( 35582408689 + 14985781851 T^{2} + 693359866 T^{4} + 13023632 T^{6} + 120841 T^{8} + 553 T^{10} + T^{12} \)
$61$ \( 3157729 - 8574025 T + 21325925 T^{2} - 6565616 T^{3} + 3051325 T^{4} - 343235 T^{5} + 187245 T^{6} - 20375 T^{7} + 6295 T^{8} - 333 T^{9} + 100 T^{10} - 5 T^{11} + T^{12} \)
$67$ \( 5708255809 + 3991238331 T + 441704945 T^{2} - 341579382 T^{3} - 11086297 T^{4} + 13240623 T^{5} + 357402 T^{6} - 351759 T^{7} + 15543 T^{8} + 2730 T^{9} - 107 T^{10} - 15 T^{11} + T^{12} \)
$71$ \( 639230089 - 907078191 T + 408851926 T^{2} + 28665723 T^{3} - 35115036 T^{4} - 1753566 T^{5} + 2943903 T^{6} - 193635 T^{7} - 25312 T^{8} + 2190 T^{9} + 227 T^{10} - 30 T^{11} + T^{12} \)
$73$ \( 484396081 - 1488776796 T + 1844455448 T^{2} - 981108576 T^{3} + 272029226 T^{4} - 39258450 T^{5} + 1956141 T^{6} + 180798 T^{7} - 13662 T^{8} - 3948 T^{9} + 682 T^{10} - 42 T^{11} + T^{12} \)
$79$ \( 65086724641 - 9372380177 T + 6623723602 T^{2} + 1016625969 T^{3} + 321095857 T^{4} + 44623483 T^{5} + 9161565 T^{6} + 1236997 T^{7} + 156649 T^{8} + 13048 T^{9} + 881 T^{10} + 35 T^{11} + T^{12} \)
$83$ \( 402363481 + 194879694 T^{2} + 33361345 T^{4} + 2359793 T^{6} + 59836 T^{8} + 463 T^{10} + T^{12} \)
$89$ \( 145033849 + 107270948 T^{2} + 24138686 T^{4} + 1621338 T^{6} + 42861 T^{8} + 430 T^{10} + T^{12} \)
$97$ \( 1681 - 8364 T + 8255 T^{2} + 27948 T^{3} - 34684 T^{4} - 122601 T^{5} + 291057 T^{6} - 159822 T^{7} + 33072 T^{8} - 537 T^{9} - 176 T^{10} + 3 T^{11} + T^{12} \)
show more
show less