Properties

Label 91.2.i.a
Level $91$
Weight $2$
Character orbit 91.i
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \(x^{12} + 35 x^{8} + 295 x^{4} + 169\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{8} q^{2} + \beta_{10} q^{3} + ( -\beta_{4} + \beta_{6} + \beta_{7} + \beta_{8} ) q^{4} -\beta_{2} q^{5} + ( \beta_{1} + \beta_{2} ) q^{6} + ( -\beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{7} + ( \beta_{3} - \beta_{6} ) q^{8} -\beta_{3} q^{9} +O(q^{10})\) \( q -\beta_{8} q^{2} + \beta_{10} q^{3} + ( -\beta_{4} + \beta_{6} + \beta_{7} + \beta_{8} ) q^{4} -\beta_{2} q^{5} + ( \beta_{1} + \beta_{2} ) q^{6} + ( -\beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} ) q^{7} + ( \beta_{3} - \beta_{6} ) q^{8} -\beta_{3} q^{9} + ( \beta_{2} - \beta_{9} + \beta_{11} ) q^{10} + ( -1 + \beta_{4} - \beta_{7} ) q^{11} + ( -\beta_{2} - \beta_{11} ) q^{12} + ( -\beta_{1} + \beta_{2} - \beta_{10} + \beta_{11} ) q^{13} + ( -1 + \beta_{3} - 2 \beta_{7} + 2 \beta_{8} - \beta_{10} ) q^{14} + ( 1 - \beta_{3} + \beta_{4} - \beta_{6} - 3 \beta_{8} ) q^{15} + ( 2 \beta_{3} - \beta_{7} + \beta_{8} ) q^{16} + ( -2 \beta_{1} - 2 \beta_{5} + \beta_{9} ) q^{17} + ( -1 - \beta_{4} + \beta_{8} ) q^{18} + ( \beta_{1} - 2 \beta_{2} ) q^{19} + ( -\beta_{5} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{20} + ( \beta_{3} + \beta_{5} - \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{21} + ( -1 - \beta_{3} ) q^{22} -3 \beta_{6} q^{23} + ( -2 \beta_{5} - \beta_{9} + \beta_{10} ) q^{24} + ( 3 \beta_{4} - \beta_{6} - 2 \beta_{7} - 2 \beta_{8} ) q^{25} + ( -\beta_{1} - \beta_{2} - \beta_{10} - 2 \beta_{11} ) q^{26} + ( -\beta_{1} + \beta_{5} + 2 \beta_{10} ) q^{27} + ( -1 + \beta_{1} - \beta_{2} - \beta_{4} - 2 \beta_{8} ) q^{28} + ( -3 + 2 \beta_{3} - 3 \beta_{7} + 3 \beta_{8} ) q^{29} + ( \beta_{4} + 3 \beta_{6} + 3 \beta_{7} + 3 \beta_{8} ) q^{30} + ( 2 \beta_{1} + 3 \beta_{2} + \beta_{9} + \beta_{10} ) q^{31} + ( 1 - 3 \beta_{3} + \beta_{4} - 3 \beta_{6} - 4 \beta_{8} ) q^{32} + ( \beta_{5} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{33} + ( \beta_{5} - 2 \beta_{9} + 2 \beta_{10} + \beta_{11} ) q^{34} + ( 1 + \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{5} + \beta_{7} - \beta_{8} - \beta_{10} - \beta_{11} ) q^{35} + ( -\beta_{4} + \beta_{6} ) q^{36} + ( 1 - \beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} ) q^{37} + ( 2 \beta_{2} - \beta_{9} + 2 \beta_{11} ) q^{38} + ( 3 + 2 \beta_{3} - 2 \beta_{4} + 3 \beta_{6} + 3 \beta_{7} + 2 \beta_{8} ) q^{39} + ( -\beta_{1} + \beta_{5} ) q^{40} + ( -\beta_{9} - \beta_{10} ) q^{41} + ( 3 - \beta_{1} - 2 \beta_{2} + \beta_{3} + \beta_{5} + 2 \beta_{11} ) q^{42} + ( -3 \beta_{4} + 6 \beta_{6} + 4 \beta_{7} + 4 \beta_{8} ) q^{43} + ( 1 + \beta_{4} ) q^{44} + \beta_{1} q^{45} + ( 3 - 3 \beta_{4} + 3 \beta_{7} ) q^{46} + ( 3 \beta_{5} + 2 \beta_{11} ) q^{47} + ( \beta_{1} - \beta_{2} - \beta_{5} + 2 \beta_{10} + \beta_{11} ) q^{48} + ( -2 \beta_{2} + \beta_{4} - 2 \beta_{6} - 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{11} ) q^{49} + ( -1 - 2 \beta_{3} + \beta_{4} + 2 \beta_{6} + 2 \beta_{7} ) q^{50} + ( -3 \beta_{4} + 3 \beta_{6} - 2 \beta_{7} - 2 \beta_{8} ) q^{51} + ( -\beta_{1} + 2 \beta_{5} + 2 \beta_{10} + \beta_{11} ) q^{52} + ( -4 + 5 \beta_{3} - 2 \beta_{7} + 2 \beta_{8} ) q^{53} + ( 2 \beta_{1} + 2 \beta_{2} - \beta_{9} - \beta_{10} ) q^{54} + \beta_{10} q^{55} + ( \beta_{2} + 4 \beta_{4} - \beta_{7} - \beta_{8} + 2 \beta_{9} + \beta_{11} ) q^{56} + ( 2 - 3 \beta_{3} + 2 \beta_{4} - 3 \beta_{6} - 5 \beta_{8} ) q^{57} + ( -1 - 3 \beta_{3} - \beta_{4} - 3 \beta_{6} - 5 \beta_{8} ) q^{58} + ( -3 \beta_{5} - 2 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{59} + ( 2 + \beta_{3} - 2 \beta_{4} - \beta_{6} - 4 \beta_{7} ) q^{60} + ( 3 \beta_{1} + \beta_{2} - 3 \beta_{5} - \beta_{11} ) q^{61} + ( \beta_{1} - 2 \beta_{2} + \beta_{5} + 5 \beta_{9} - 2 \beta_{11} ) q^{62} + ( 2 - 2 \beta_{4} + \beta_{7} - \beta_{9} + \beta_{10} - \beta_{11} ) q^{63} + ( -2 \beta_{4} + 4 \beta_{7} + 4 \beta_{8} ) q^{64} + ( -3 + 2 \beta_{4} + 3 \beta_{7} + 2 \beta_{8} ) q^{65} + ( -\beta_{1} + \beta_{5} - 2 \beta_{10} ) q^{66} + ( 5 - 2 \beta_{3} + 5 \beta_{4} - 2 \beta_{6} + 2 \beta_{8} ) q^{67} + ( -2 \beta_{1} + 3 \beta_{2} + 2 \beta_{5} - 3 \beta_{11} ) q^{68} + ( -3 \beta_{1} - 3 \beta_{5} - 3 \beta_{9} ) q^{69} + ( -1 - \beta_{1} - 3 \beta_{2} + \beta_{3} - \beta_{4} + \beta_{6} + 3 \beta_{8} + 2 \beta_{9} + 2 \beta_{10} ) q^{70} + ( -2 + \beta_{3} - 2 \beta_{4} + \beta_{6} + 5 \beta_{8} ) q^{71} + ( -3 + 3 \beta_{4} - 2 \beta_{7} ) q^{72} + ( \beta_{5} + 3 \beta_{9} - 3 \beta_{10} - 2 \beta_{11} ) q^{73} + ( -3 - \beta_{3} + \beta_{7} - \beta_{8} ) q^{74} + ( \beta_{1} + 2 \beta_{2} + \beta_{5} + 2 \beta_{9} + 2 \beta_{11} ) q^{75} + ( -3 \beta_{5} + 2 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{76} + ( -\beta_{1} - \beta_{4} - \beta_{5} - \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{77} + ( 2 + 3 \beta_{3} + 3 \beta_{4} - 2 \beta_{6} - 6 \beta_{7} - 4 \beta_{8} ) q^{78} + ( 3 + 2 \beta_{3} + 6 \beta_{7} - 6 \beta_{8} ) q^{79} + ( -2 \beta_{1} - 2 \beta_{2} + \beta_{9} + \beta_{10} ) q^{80} + ( -6 - 3 \beta_{3} + \beta_{7} - \beta_{8} ) q^{81} + ( -\beta_{1} - \beta_{2} - \beta_{5} - \beta_{11} ) q^{82} + ( 2 \beta_{1} - 3 \beta_{2} - 5 \beta_{9} - 5 \beta_{10} ) q^{83} + ( 1 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} + \beta_{4} - 2 \beta_{6} - 2 \beta_{8} - \beta_{9} - \beta_{10} ) q^{84} + ( -3 + 5 \beta_{3} + 3 \beta_{4} - 5 \beta_{6} - 7 \beta_{7} ) q^{85} + ( -2 + 4 \beta_{3} + 2 \beta_{4} - 4 \beta_{6} - 11 \beta_{7} ) q^{86} + ( -\beta_{1} - 3 \beta_{2} + \beta_{5} - \beta_{10} + 3 \beta_{11} ) q^{87} + ( 2 \beta_{4} + 2 \beta_{6} - \beta_{7} - \beta_{8} ) q^{88} + ( -\beta_{5} + \beta_{9} - \beta_{10} + 4 \beta_{11} ) q^{89} + \beta_{9} q^{90} + ( -5 - 2 \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} + 3 \beta_{6} - 2 \beta_{7} + 3 \beta_{8} + 3 \beta_{10} ) q^{91} + ( 3 - 3 \beta_{3} ) q^{92} + ( -6 - 6 \beta_{4} + 11 \beta_{8} ) q^{93} + ( 2 \beta_{2} - 5 \beta_{10} - 2 \beta_{11} ) q^{94} + ( -5 \beta_{4} - 3 \beta_{7} - 3 \beta_{8} ) q^{95} + ( -2 \beta_{1} + 4 \beta_{2} - 2 \beta_{9} - 2 \beta_{10} ) q^{96} + ( -\beta_{1} + 2 \beta_{2} + 2 \beta_{9} + 2 \beta_{10} ) q^{97} + ( -2 \beta_{3} - 2 \beta_{5} + 2 \beta_{6} + 5 \beta_{7} - 2 \beta_{9} + 2 \beta_{10} + 2 \beta_{11} ) q^{98} + ( 1 + \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} - 8q^{7} + 4q^{8} - 4q^{9} + O(q^{10}) \) \( 12q - 4q^{2} - 8q^{7} + 4q^{8} - 4q^{9} - 8q^{11} + 8q^{14} - 4q^{15} + 16q^{16} - 8q^{18} - 16q^{22} - 20q^{28} - 4q^{29} - 16q^{32} - 4q^{35} + 12q^{37} + 40q^{39} + 40q^{42} + 12q^{44} + 24q^{46} - 28q^{50} - 12q^{53} - 8q^{57} - 44q^{58} + 44q^{60} + 20q^{63} - 40q^{65} + 60q^{67} + 4q^{70} - 28q^{72} - 48q^{74} + 44q^{78} - 4q^{79} - 92q^{81} - 4q^{84} + 12q^{85} + 36q^{86} - 32q^{91} + 24q^{92} - 28q^{93} - 28q^{98} + 12q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} + 35 x^{8} + 295 x^{4} + 169\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{9} + 58 \nu^{5} + 659 \nu \)\()/194\)
\(\beta_{3}\)\(=\)\((\)\( -5 \nu^{8} - 96 \nu^{4} + 3 \)\()/194\)
\(\beta_{4}\)\(=\)\((\)\( -9 \nu^{10} - 328 \nu^{6} - 3409 \nu^{2} \)\()/2522\)
\(\beta_{5}\)\(=\)\((\)\( -9 \nu^{11} - 328 \nu^{7} - 3409 \nu^{3} \)\()/2522\)
\(\beta_{6}\)\(=\)\((\)\( 7 \nu^{10} + 115 \nu^{6} - 431 \nu^{2} \)\()/1261\)
\(\beta_{7}\)\(=\)\((\)\( -25 \nu^{10} - 39 \nu^{8} - 771 \nu^{6} - 1001 \nu^{4} - 5126 \nu^{2} - 4264 \)\()/2522\)
\(\beta_{8}\)\(=\)\((\)\( -25 \nu^{10} + 39 \nu^{8} - 771 \nu^{6} + 1001 \nu^{4} - 5126 \nu^{2} + 4264 \)\()/2522\)
\(\beta_{9}\)\(=\)\((\)\( 25 \nu^{11} - 39 \nu^{9} + 771 \nu^{7} - 1001 \nu^{5} + 5126 \nu^{3} - 4264 \nu \)\()/2522\)
\(\beta_{10}\)\(=\)\((\)\( -25 \nu^{11} - 39 \nu^{9} - 771 \nu^{7} - 1001 \nu^{5} - 5126 \nu^{3} - 4264 \nu \)\()/2522\)
\(\beta_{11}\)\(=\)\((\)\( -18 \nu^{11} - 656 \nu^{7} - 5557 \nu^{3} \)\()/1261\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{8} + \beta_{7} + \beta_{6} - 4 \beta_{4}\)
\(\nu^{3}\)\(=\)\(\beta_{11} - 4 \beta_{5}\)
\(\nu^{4}\)\(=\)\(5 \beta_{8} - 5 \beta_{7} + 6 \beta_{3} - 17\)
\(\nu^{5}\)\(=\)\(\beta_{10} + \beta_{9} + 6 \beta_{2} - 17 \beta_{1}\)
\(\nu^{6}\)\(=\)\(-22 \beta_{8} - 22 \beta_{7} - 31 \beta_{6} + 74 \beta_{4}\)
\(\nu^{7}\)\(=\)\(-31 \beta_{11} + 9 \beta_{10} - 9 \beta_{9} + 74 \beta_{5}\)
\(\nu^{8}\)\(=\)\(-96 \beta_{8} + 96 \beta_{7} - 154 \beta_{3} + 327\)
\(\nu^{9}\)\(=\)\(-58 \beta_{10} - 58 \beta_{9} - 154 \beta_{2} + 327 \beta_{1}\)
\(\nu^{10}\)\(=\)\(423 \beta_{8} + 423 \beta_{7} + 751 \beta_{6} - 1462 \beta_{4}\)
\(\nu^{11}\)\(=\)\(751 \beta_{11} - 328 \beta_{10} + 328 \beta_{9} - 1462 \beta_{5}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(\beta_{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
34.1
−0.626770 + 0.626770i
0.626770 0.626770i
−1.52891 + 1.52891i
1.52891 1.52891i
1.33026 1.33026i
−1.33026 + 1.33026i
0.626770 + 0.626770i
−0.626770 0.626770i
1.52891 + 1.52891i
−1.52891 1.52891i
−1.33026 1.33026i
1.33026 + 1.33026i
−1.45161 1.45161i 1.81964i 2.21432i 2.01464 2.01464i −2.64141 + 2.64141i −2.38948 + 1.13594i 0.311108 0.311108i −0.311108 −5.84892
34.2 −1.45161 1.45161i 1.81964i 2.21432i −2.01464 + 2.01464i 2.64141 2.64141i −1.13594 + 2.38948i 0.311108 0.311108i −0.311108 5.84892
34.3 −0.403032 0.403032i 1.23240i 1.67513i −1.03221 + 1.03221i −0.496696 + 0.496696i −0.450747 2.60707i −1.48119 + 1.48119i 1.48119 0.832030
34.4 −0.403032 0.403032i 1.23240i 1.67513i 1.03221 1.03221i 0.496696 0.496696i 2.60707 + 0.450747i −1.48119 + 1.48119i 1.48119 −0.832030
34.5 0.854638 + 0.854638i 2.27378i 0.539189i −0.612999 + 0.612999i 1.94326 1.94326i 0.0148122 + 2.64571i 2.17009 2.17009i −2.17009 −1.04778
34.6 0.854638 + 0.854638i 2.27378i 0.539189i 0.612999 0.612999i −1.94326 + 1.94326i −2.64571 0.0148122i 2.17009 2.17009i −2.17009 1.04778
83.1 −1.45161 + 1.45161i 1.81964i 2.21432i −2.01464 2.01464i 2.64141 + 2.64141i −1.13594 2.38948i 0.311108 + 0.311108i −0.311108 5.84892
83.2 −1.45161 + 1.45161i 1.81964i 2.21432i 2.01464 + 2.01464i −2.64141 2.64141i −2.38948 1.13594i 0.311108 + 0.311108i −0.311108 −5.84892
83.3 −0.403032 + 0.403032i 1.23240i 1.67513i 1.03221 + 1.03221i 0.496696 + 0.496696i 2.60707 0.450747i −1.48119 1.48119i 1.48119 −0.832030
83.4 −0.403032 + 0.403032i 1.23240i 1.67513i −1.03221 1.03221i −0.496696 0.496696i −0.450747 + 2.60707i −1.48119 1.48119i 1.48119 0.832030
83.5 0.854638 0.854638i 2.27378i 0.539189i 0.612999 + 0.612999i −1.94326 1.94326i −2.64571 + 0.0148122i 2.17009 + 2.17009i −2.17009 1.04778
83.6 0.854638 0.854638i 2.27378i 0.539189i −0.612999 0.612999i 1.94326 + 1.94326i 0.0148122 2.64571i 2.17009 + 2.17009i −2.17009 −1.04778
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 83.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
13.d odd 4 1 inner
91.i even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 91.2.i.a 12
3.b odd 2 1 819.2.y.h 12
7.b odd 2 1 inner 91.2.i.a 12
7.c even 3 2 637.2.bc.a 24
7.d odd 6 2 637.2.bc.a 24
13.d odd 4 1 inner 91.2.i.a 12
21.c even 2 1 819.2.y.h 12
39.f even 4 1 819.2.y.h 12
91.i even 4 1 inner 91.2.i.a 12
91.z odd 12 2 637.2.bc.a 24
91.bb even 12 2 637.2.bc.a 24
273.o odd 4 1 819.2.y.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.i.a 12 1.a even 1 1 trivial
91.2.i.a 12 7.b odd 2 1 inner
91.2.i.a 12 13.d odd 4 1 inner
91.2.i.a 12 91.i even 4 1 inner
637.2.bc.a 24 7.c even 3 2
637.2.bc.a 24 7.d odd 6 2
637.2.bc.a 24 91.z odd 12 2
637.2.bc.a 24 91.bb even 12 2
819.2.y.h 12 3.b odd 2 1
819.2.y.h 12 21.c even 2 1
819.2.y.h 12 39.f even 4 1
819.2.y.h 12 273.o odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(91, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 2 + 4 T + 4 T^{2} - 2 T^{3} + 2 T^{4} + 2 T^{5} + T^{6} )^{2} \)
$3$ \( ( 26 + 30 T^{2} + 10 T^{4} + T^{6} )^{2} \)
$5$ \( 169 + 339 T^{4} + 71 T^{8} + T^{12} \)
$7$ \( 117649 + 134456 T + 76832 T^{2} + 24696 T^{3} - 637 T^{4} - 4928 T^{5} - 2624 T^{6} - 704 T^{7} - 13 T^{8} + 72 T^{9} + 32 T^{10} + 8 T^{11} + T^{12} \)
$11$ \( ( 2 + 2 T^{3} + 8 T^{4} + 4 T^{5} + T^{6} )^{2} \)
$13$ \( 4826809 - 571220 T^{2} - 27885 T^{4} + 6760 T^{6} - 165 T^{8} - 20 T^{10} + T^{12} \)
$17$ \( ( -9386 + 1686 T^{2} - 82 T^{4} + T^{6} )^{2} \)
$19$ \( 169 + 357527 T^{4} + 1203 T^{8} + T^{12} \)
$23$ \( ( 729 + 891 T^{2} + 63 T^{4} + T^{6} )^{2} \)
$29$ \( ( -85 - 33 T + T^{2} + T^{3} )^{4} \)
$31$ \( 316733209 + 30446939 T^{4} + 12031 T^{8} + T^{12} \)
$37$ \( ( 1250 - 400 T + 64 T^{2} - 2 T^{3} + 18 T^{4} - 6 T^{5} + T^{6} )^{2} \)
$41$ \( 43264 + 6080 T^{4} + 160 T^{8} + T^{12} \)
$43$ \( ( 83521 + 10115 T^{2} + 195 T^{4} + T^{6} )^{2} \)
$47$ \( 2339947129 + 15722487 T^{4} + 8003 T^{8} + T^{12} \)
$53$ \( ( 113 - 55 T + 3 T^{2} + T^{3} )^{4} \)
$59$ \( 2704 + 158720 T^{4} + 28060 T^{8} + T^{12} \)
$61$ \( ( 260000 + 12496 T^{2} + 196 T^{4} + T^{6} )^{2} \)
$67$ \( ( 35912 + 25192 T + 8836 T^{2} - 3088 T^{3} + 450 T^{4} - 30 T^{5} + T^{6} )^{2} \)
$71$ \( ( 8978 + 6700 T + 2500 T^{2} + 134 T^{3} + T^{6} )^{2} \)
$73$ \( 105625 + 226970591 T^{4} + 33867 T^{8} + T^{12} \)
$79$ \( ( -1165 - 261 T + T^{2} + T^{3} )^{4} \)
$83$ \( 6276893869129 + 4751604443 T^{4} + 142927 T^{8} + T^{12} \)
$89$ \( 19021098889 + 42676175 T^{4} + 13515 T^{8} + T^{12} \)
$97$ \( 105625 + 8400471 T^{4} + 6947 T^{8} + T^{12} \)
show more
show less