Properties

Label 91.2.g.b.9.1
Level $91$
Weight $2$
Character 91.9
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(0.217953 - 0.377506i\) of defining polynomial
Character \(\chi\) \(=\) 91.9
Dual form 91.2.g.b.81.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.929081 - 1.60921i) q^{2} +2.29407 q^{3} +(-0.726381 + 1.25813i) q^{4} +(0.0986811 - 0.170921i) q^{5} +(-2.13137 - 3.69165i) q^{6} +(1.58836 + 2.11592i) q^{7} -1.01686 q^{8} +2.26275 q^{9} +O(q^{10})\) \(q+(-0.929081 - 1.60921i) q^{2} +2.29407 q^{3} +(-0.726381 + 1.25813i) q^{4} +(0.0986811 - 0.170921i) q^{5} +(-2.13137 - 3.69165i) q^{6} +(1.58836 + 2.11592i) q^{7} -1.01686 q^{8} +2.26275 q^{9} -0.366731 q^{10} -4.18274 q^{11} +(-1.66637 + 2.88623i) q^{12} +(-2.72221 - 2.36423i) q^{13} +(1.92926 - 4.52187i) q^{14} +(0.226381 - 0.392104i) q^{15} +(2.39750 + 4.15260i) q^{16} +(-0.420653 + 0.728592i) q^{17} +(-2.10227 - 3.64125i) q^{18} +1.35175 q^{19} +(0.143360 + 0.248307i) q^{20} +(3.64380 + 4.85406i) q^{21} +(3.88610 + 6.73092i) q^{22} +(2.05760 + 3.56386i) q^{23} -2.33274 q^{24} +(2.48052 + 4.29639i) q^{25} +(-1.27540 + 6.57718i) q^{26} -1.69131 q^{27} +(-3.81585 + 0.461395i) q^{28} +(4.11931 - 7.13485i) q^{29} -0.841305 q^{30} +(0.640350 + 1.10912i) q^{31} +(3.43809 - 5.95495i) q^{32} -9.59548 q^{33} +1.56328 q^{34} +(0.518396 - 0.0626819i) q^{35} +(-1.64362 + 2.84683i) q^{36} +(-1.52242 - 2.63692i) q^{37} +(-1.25589 - 2.17526i) q^{38} +(-6.24494 - 5.42370i) q^{39} +(-0.100344 + 0.173802i) q^{40} +(-2.69848 + 4.67390i) q^{41} +(4.42585 - 10.3735i) q^{42} +(-2.66389 - 4.61399i) q^{43} +(3.03826 - 5.26242i) q^{44} +(0.223290 - 0.386750i) q^{45} +(3.82334 - 6.62223i) q^{46} +(5.83204 - 10.1014i) q^{47} +(5.50003 + 9.52634i) q^{48} +(-1.95424 + 6.72168i) q^{49} +(4.60921 - 7.98339i) q^{50} +(-0.965006 + 1.67144i) q^{51} +(4.95187 - 1.70756i) q^{52} +(-2.32398 - 4.02525i) q^{53} +(1.57136 + 2.72168i) q^{54} +(-0.412757 + 0.714916i) q^{55} +(-1.61513 - 2.15159i) q^{56} +3.10101 q^{57} -15.3087 q^{58} +(-3.02905 + 5.24648i) q^{59} +(0.328878 + 0.569634i) q^{60} -11.3657 q^{61} +(1.18987 - 2.06092i) q^{62} +(3.59405 + 4.78779i) q^{63} -3.18704 q^{64} +(-0.672726 + 0.231978i) q^{65} +(8.91498 + 15.4412i) q^{66} +13.3970 q^{67} +(-0.611109 - 1.05847i) q^{68} +(4.72026 + 8.17574i) q^{69} +(-0.582500 - 0.775973i) q^{70} +(2.98520 + 5.17051i) q^{71} -2.30089 q^{72} +(-1.94273 - 3.36491i) q^{73} +(-2.82891 + 4.89982i) q^{74} +(5.69049 + 9.85622i) q^{75} +(-0.981887 + 1.70068i) q^{76} +(-6.64368 - 8.85034i) q^{77} +(-2.92585 + 15.0885i) q^{78} +(5.36669 - 9.29537i) q^{79} +0.946353 q^{80} -10.6682 q^{81} +10.0284 q^{82} +3.07390 q^{83} +(-8.75383 + 1.05847i) q^{84} +(0.0830210 + 0.143797i) q^{85} +(-4.94994 + 8.57354i) q^{86} +(9.44997 - 16.3678i) q^{87} +4.25324 q^{88} +(5.99207 + 10.3786i) q^{89} -0.829819 q^{90} +(0.678673 - 9.51522i) q^{91} -5.97840 q^{92} +(1.46901 + 2.54439i) q^{93} -21.6737 q^{94} +(0.133392 - 0.231042i) q^{95} +(7.88721 - 13.6611i) q^{96} +(-9.73637 - 16.8639i) q^{97} +(12.6323 - 3.10019i) q^{98} -9.46448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} - 8q^{10} - 8q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} + 8q^{16} + 5q^{17} + 3q^{18} + 2q^{19} - q^{20} - 9q^{21} - 5q^{22} - q^{23} + 22q^{24} + 7q^{25} + 5q^{26} - 8q^{27} - 7q^{28} + 3q^{29} + 10q^{30} + 16q^{31} + 8q^{32} - 32q^{33} + 32q^{34} + 8q^{35} - 21q^{36} - 13q^{37} - 17q^{38} - 23q^{39} - 5q^{40} - 8q^{41} + 2q^{42} - 11q^{43} + 21q^{44} - 7q^{45} + 16q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} - 25q^{52} - 2q^{53} - 18q^{54} + 9q^{55} - 18q^{56} + 42q^{57} + 16q^{58} + 13q^{59} + 20q^{60} + 10q^{61} + 5q^{62} + 32q^{63} - 30q^{64} + 19q^{65} + 18q^{66} + 22q^{67} + 29q^{68} + 23q^{69} - 39q^{70} + 6q^{71} - 50q^{72} - 30q^{73} - 3q^{74} - 3q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} + 14q^{80} + 12q^{81} - 2q^{82} - 54q^{83} + 5q^{84} - q^{85} - 7q^{86} + 16q^{87} + 4q^{89} - 16q^{90} - 20q^{91} + 54q^{92} - 7q^{93} - 90q^{94} - 6q^{95} + 19q^{96} - 35q^{97} + 62q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.929081 1.60921i −0.656959 1.13789i −0.981399 0.191980i \(-0.938509\pi\)
0.324440 0.945906i \(-0.394824\pi\)
\(3\) 2.29407 1.32448 0.662240 0.749291i \(-0.269606\pi\)
0.662240 + 0.749291i \(0.269606\pi\)
\(4\) −0.726381 + 1.25813i −0.363191 + 0.629065i
\(5\) 0.0986811 0.170921i 0.0441315 0.0764381i −0.843116 0.537732i \(-0.819281\pi\)
0.887247 + 0.461294i \(0.152615\pi\)
\(6\) −2.13137 3.69165i −0.870130 1.50711i
\(7\) 1.58836 + 2.11592i 0.600343 + 0.799743i
\(8\) −1.01686 −0.359513
\(9\) 2.26275 0.754249
\(10\) −0.366731 −0.115970
\(11\) −4.18274 −1.26114 −0.630571 0.776131i \(-0.717179\pi\)
−0.630571 + 0.776131i \(0.717179\pi\)
\(12\) −1.66637 + 2.88623i −0.481039 + 0.833184i
\(13\) −2.72221 2.36423i −0.755005 0.655719i
\(14\) 1.92926 4.52187i 0.515616 1.20852i
\(15\) 0.226381 0.392104i 0.0584514 0.101241i
\(16\) 2.39750 + 4.15260i 0.599376 + 1.03815i
\(17\) −0.420653 + 0.728592i −0.102023 + 0.176709i −0.912518 0.409036i \(-0.865865\pi\)
0.810495 + 0.585746i \(0.199198\pi\)
\(18\) −2.10227 3.64125i −0.495511 0.858250i
\(19\) 1.35175 0.310113 0.155057 0.987906i \(-0.450444\pi\)
0.155057 + 0.987906i \(0.450444\pi\)
\(20\) 0.143360 + 0.248307i 0.0320563 + 0.0555232i
\(21\) 3.64380 + 4.85406i 0.795143 + 1.05924i
\(22\) 3.88610 + 6.73092i 0.828519 + 1.43504i
\(23\) 2.05760 + 3.56386i 0.429038 + 0.743116i 0.996788 0.0800850i \(-0.0255192\pi\)
−0.567750 + 0.823201i \(0.692186\pi\)
\(24\) −2.33274 −0.476168
\(25\) 2.48052 + 4.29639i 0.496105 + 0.859279i
\(26\) −1.27540 + 6.57718i −0.250126 + 1.28989i
\(27\) −1.69131 −0.325492
\(28\) −3.81585 + 0.461395i −0.721129 + 0.0871954i
\(29\) 4.11931 7.13485i 0.764936 1.32491i −0.175344 0.984507i \(-0.556104\pi\)
0.940280 0.340401i \(-0.110563\pi\)
\(30\) −0.841305 −0.153601
\(31\) 0.640350 + 1.10912i 0.115010 + 0.199203i 0.917784 0.397080i \(-0.129977\pi\)
−0.802774 + 0.596284i \(0.796643\pi\)
\(32\) 3.43809 5.95495i 0.607774 1.05270i
\(33\) −9.59548 −1.67036
\(34\) 1.56328 0.268100
\(35\) 0.518396 0.0626819i 0.0876249 0.0105952i
\(36\) −1.64362 + 2.84683i −0.273936 + 0.474471i
\(37\) −1.52242 2.63692i −0.250285 0.433506i 0.713319 0.700839i \(-0.247191\pi\)
−0.963604 + 0.267333i \(0.913858\pi\)
\(38\) −1.25589 2.17526i −0.203732 0.352874i
\(39\) −6.24494 5.42370i −0.999990 0.868487i
\(40\) −0.100344 + 0.173802i −0.0158659 + 0.0274805i
\(41\) −2.69848 + 4.67390i −0.421431 + 0.729941i −0.996080 0.0884599i \(-0.971805\pi\)
0.574648 + 0.818400i \(0.305139\pi\)
\(42\) 4.42585 10.3735i 0.682923 1.60066i
\(43\) −2.66389 4.61399i −0.406239 0.703627i 0.588226 0.808697i \(-0.299827\pi\)
−0.994465 + 0.105070i \(0.966493\pi\)
\(44\) 3.03826 5.26242i 0.458035 0.793340i
\(45\) 0.223290 0.386750i 0.0332862 0.0576534i
\(46\) 3.82334 6.62223i 0.563721 0.976394i
\(47\) 5.83204 10.1014i 0.850690 1.47344i −0.0298969 0.999553i \(-0.509518\pi\)
0.880587 0.473885i \(-0.157149\pi\)
\(48\) 5.50003 + 9.52634i 0.793862 + 1.37501i
\(49\) −1.95424 + 6.72168i −0.279177 + 0.960240i
\(50\) 4.60921 7.98339i 0.651841 1.12902i
\(51\) −0.965006 + 1.67144i −0.135128 + 0.234048i
\(52\) 4.95187 1.70756i 0.686700 0.236796i
\(53\) −2.32398 4.02525i −0.319223 0.552911i 0.661103 0.750295i \(-0.270089\pi\)
−0.980326 + 0.197384i \(0.936755\pi\)
\(54\) 1.57136 + 2.72168i 0.213835 + 0.370373i
\(55\) −0.412757 + 0.714916i −0.0556562 + 0.0963993i
\(56\) −1.61513 2.15159i −0.215831 0.287518i
\(57\) 3.10101 0.410739
\(58\) −15.3087 −2.01013
\(59\) −3.02905 + 5.24648i −0.394349 + 0.683033i −0.993018 0.117964i \(-0.962363\pi\)
0.598669 + 0.800997i \(0.295697\pi\)
\(60\) 0.328878 + 0.569634i 0.0424580 + 0.0735394i
\(61\) −11.3657 −1.45523 −0.727614 0.685986i \(-0.759371\pi\)
−0.727614 + 0.685986i \(0.759371\pi\)
\(62\) 1.18987 2.06092i 0.151114 0.261737i
\(63\) 3.59405 + 4.78779i 0.452808 + 0.603205i
\(64\) −3.18704 −0.398380
\(65\) −0.672726 + 0.231978i −0.0834414 + 0.0287733i
\(66\) 8.91498 + 15.4412i 1.09736 + 1.90068i
\(67\) 13.3970 1.63671 0.818354 0.574715i \(-0.194887\pi\)
0.818354 + 0.574715i \(0.194887\pi\)
\(68\) −0.611109 1.05847i −0.0741078 0.128358i
\(69\) 4.72026 + 8.17574i 0.568253 + 0.984243i
\(70\) −0.582500 0.775973i −0.0696221 0.0927465i
\(71\) 2.98520 + 5.17051i 0.354278 + 0.613627i 0.986994 0.160757i \(-0.0513934\pi\)
−0.632716 + 0.774384i \(0.718060\pi\)
\(72\) −2.30089 −0.271162
\(73\) −1.94273 3.36491i −0.227380 0.393833i 0.729651 0.683820i \(-0.239683\pi\)
−0.957031 + 0.289986i \(0.906349\pi\)
\(74\) −2.82891 + 4.89982i −0.328854 + 0.569592i
\(75\) 5.69049 + 9.85622i 0.657081 + 1.13810i
\(76\) −0.981887 + 1.70068i −0.112630 + 0.195081i
\(77\) −6.64368 8.85034i −0.757118 1.00859i
\(78\) −2.92585 + 15.0885i −0.331287 + 1.70844i
\(79\) 5.36669 9.29537i 0.603799 1.04581i −0.388441 0.921474i \(-0.626986\pi\)
0.992240 0.124337i \(-0.0396805\pi\)
\(80\) 0.946353 0.105806
\(81\) −10.6682 −1.18536
\(82\) 10.0284 1.10745
\(83\) 3.07390 0.337404 0.168702 0.985667i \(-0.446042\pi\)
0.168702 + 0.985667i \(0.446042\pi\)
\(84\) −8.75383 + 1.05847i −0.955121 + 0.115489i
\(85\) 0.0830210 + 0.143797i 0.00900489 + 0.0155969i
\(86\) −4.94994 + 8.57354i −0.533765 + 0.924509i
\(87\) 9.44997 16.3678i 1.01314 1.75482i
\(88\) 4.25324 0.453397
\(89\) 5.99207 + 10.3786i 0.635159 + 1.10013i 0.986482 + 0.163873i \(0.0523986\pi\)
−0.351323 + 0.936254i \(0.614268\pi\)
\(90\) −0.829819 −0.0874706
\(91\) 0.678673 9.51522i 0.0711442 0.997466i
\(92\) −5.97840 −0.623291
\(93\) 1.46901 + 2.54439i 0.152329 + 0.263841i
\(94\) −21.6737 −2.23547
\(95\) 0.133392 0.231042i 0.0136858 0.0237045i
\(96\) 7.88721 13.6611i 0.804986 1.39428i
\(97\) −9.73637 16.8639i −0.988578 1.71227i −0.624807 0.780779i \(-0.714822\pi\)
−0.363771 0.931488i \(-0.618511\pi\)
\(98\) 12.6323 3.10019i 1.27605 0.313167i
\(99\) −9.46448 −0.951216
\(100\) −7.20722 −0.720722
\(101\) −16.9339 −1.68499 −0.842495 0.538704i \(-0.818914\pi\)
−0.842495 + 0.538704i \(0.818914\pi\)
\(102\) 3.58627 0.355094
\(103\) 3.61712 6.26504i 0.356406 0.617313i −0.630952 0.775822i \(-0.717335\pi\)
0.987357 + 0.158509i \(0.0506688\pi\)
\(104\) 2.76809 + 2.40408i 0.271434 + 0.235739i
\(105\) 1.18923 0.143797i 0.116057 0.0140331i
\(106\) −4.31833 + 7.47957i −0.419434 + 0.726480i
\(107\) 4.92625 + 8.53251i 0.476238 + 0.824869i 0.999629 0.0272237i \(-0.00866664\pi\)
−0.523391 + 0.852093i \(0.675333\pi\)
\(108\) 1.22853 2.12788i 0.118216 0.204756i
\(109\) 6.90796 + 11.9649i 0.661662 + 1.14603i 0.980179 + 0.198115i \(0.0634821\pi\)
−0.318516 + 0.947917i \(0.603185\pi\)
\(110\) 1.53394 0.146255
\(111\) −3.49255 6.04927i −0.331498 0.574171i
\(112\) −4.97847 + 11.6687i −0.470421 + 1.10259i
\(113\) 2.13432 + 3.69675i 0.200780 + 0.347761i 0.948780 0.315938i \(-0.102319\pi\)
−0.748000 + 0.663699i \(0.768986\pi\)
\(114\) −2.88109 4.99019i −0.269839 0.467374i
\(115\) 0.812183 0.0757365
\(116\) 5.98437 + 10.3652i 0.555635 + 0.962388i
\(117\) −6.15967 5.34965i −0.569462 0.494575i
\(118\) 11.2569 1.03629
\(119\) −2.20979 + 0.267197i −0.202571 + 0.0244939i
\(120\) −0.230197 + 0.398713i −0.0210140 + 0.0363973i
\(121\) 6.49529 0.590481
\(122\) 10.5596 + 18.2898i 0.956026 + 1.65589i
\(123\) −6.19049 + 10.7222i −0.558178 + 0.966792i
\(124\) −1.86055 −0.167082
\(125\) 1.96593 0.175839
\(126\) 4.36542 10.2318i 0.388903 0.911526i
\(127\) 1.09512 1.89680i 0.0971761 0.168314i −0.813339 0.581791i \(-0.802352\pi\)
0.910515 + 0.413477i \(0.135686\pi\)
\(128\) −3.91516 6.78126i −0.346055 0.599385i
\(129\) −6.11114 10.5848i −0.538056 0.931941i
\(130\) 0.998318 + 0.867035i 0.0875583 + 0.0760440i
\(131\) −1.13806 + 1.97117i −0.0994326 + 0.172222i −0.911450 0.411411i \(-0.865036\pi\)
0.812017 + 0.583633i \(0.198369\pi\)
\(132\) 6.96998 12.0724i 0.606659 1.05076i
\(133\) 2.14707 + 2.86020i 0.186174 + 0.248011i
\(134\) −12.4469 21.5587i −1.07525 1.86239i
\(135\) −0.166900 + 0.289079i −0.0143645 + 0.0248800i
\(136\) 0.427743 0.740873i 0.0366787 0.0635293i
\(137\) −6.72399 + 11.6463i −0.574469 + 0.995010i 0.421630 + 0.906768i \(0.361458\pi\)
−0.996099 + 0.0882417i \(0.971875\pi\)
\(138\) 8.77101 15.1918i 0.746638 1.29321i
\(139\) −2.02270 3.50342i −0.171563 0.297156i 0.767403 0.641165i \(-0.221548\pi\)
−0.938966 + 0.344009i \(0.888215\pi\)
\(140\) −0.297691 + 0.697740i −0.0251595 + 0.0589698i
\(141\) 13.3791 23.1733i 1.12672 1.95154i
\(142\) 5.54698 9.60765i 0.465492 0.806256i
\(143\) 11.3863 + 9.88894i 0.952169 + 0.826955i
\(144\) 5.42494 + 9.39628i 0.452079 + 0.783023i
\(145\) −0.812996 1.40815i −0.0675156 0.116940i
\(146\) −3.60991 + 6.25255i −0.298758 + 0.517465i
\(147\) −4.48315 + 15.4200i −0.369764 + 1.27182i
\(148\) 4.42344 0.363605
\(149\) 15.3519 1.25768 0.628840 0.777535i \(-0.283530\pi\)
0.628840 + 0.777535i \(0.283530\pi\)
\(150\) 10.5738 18.3144i 0.863351 1.49537i
\(151\) −3.06054 5.30101i −0.249063 0.431390i 0.714203 0.699939i \(-0.246789\pi\)
−0.963266 + 0.268548i \(0.913456\pi\)
\(152\) −1.37454 −0.111490
\(153\) −0.951831 + 1.64862i −0.0769510 + 0.133283i
\(154\) −8.06958 + 18.9138i −0.650265 + 1.52412i
\(155\) 0.252762 0.0203023
\(156\) 11.3599 3.91726i 0.909521 0.313632i
\(157\) −2.26834 3.92888i −0.181033 0.313559i 0.761199 0.648518i \(-0.224611\pi\)
−0.942233 + 0.334959i \(0.891278\pi\)
\(158\) −19.9443 −1.58669
\(159\) −5.33137 9.23421i −0.422805 0.732320i
\(160\) −0.678549 1.17528i −0.0536440 0.0929142i
\(161\) −4.27265 + 10.0144i −0.336732 + 0.789245i
\(162\) 9.91163 + 17.1674i 0.778731 + 1.34880i
\(163\) 1.82254 0.142752 0.0713762 0.997449i \(-0.477261\pi\)
0.0713762 + 0.997449i \(0.477261\pi\)
\(164\) −3.92025 6.79007i −0.306120 0.530215i
\(165\) −0.946893 + 1.64007i −0.0737155 + 0.127679i
\(166\) −2.85590 4.94656i −0.221661 0.383928i
\(167\) 5.35397 9.27336i 0.414303 0.717594i −0.581052 0.813866i \(-0.697359\pi\)
0.995355 + 0.0962726i \(0.0306921\pi\)
\(168\) −3.70522 4.93588i −0.285864 0.380812i
\(169\) 1.82086 + 12.8718i 0.140066 + 0.990142i
\(170\) 0.154266 0.267197i 0.0118317 0.0204931i
\(171\) 3.05867 0.233903
\(172\) 7.74000 0.590169
\(173\) −13.4927 −1.02583 −0.512915 0.858439i \(-0.671434\pi\)
−0.512915 + 0.858439i \(0.671434\pi\)
\(174\) −35.1191 −2.66237
\(175\) −5.15087 + 12.0728i −0.389369 + 0.912618i
\(176\) −10.0281 17.3692i −0.755898 1.30925i
\(177\) −6.94886 + 12.0358i −0.522308 + 0.904664i
\(178\) 11.1342 19.2851i 0.834547 1.44548i
\(179\) 10.4692 0.782502 0.391251 0.920284i \(-0.372042\pi\)
0.391251 + 0.920284i \(0.372042\pi\)
\(180\) 0.324388 + 0.561857i 0.0241785 + 0.0418783i
\(181\) 12.5209 0.930674 0.465337 0.885133i \(-0.345933\pi\)
0.465337 + 0.885133i \(0.345933\pi\)
\(182\) −15.9426 + 7.74828i −1.18174 + 0.574340i
\(183\) −26.0737 −1.92742
\(184\) −2.09228 3.62393i −0.154245 0.267160i
\(185\) −0.600938 −0.0441819
\(186\) 2.72965 4.72789i 0.200148 0.346666i
\(187\) 1.75948 3.04751i 0.128666 0.222856i
\(188\) 8.47256 + 14.6749i 0.617925 + 1.07028i
\(189\) −2.68640 3.57867i −0.195407 0.260310i
\(190\) −0.495729 −0.0359640
\(191\) 13.1137 0.948874 0.474437 0.880290i \(-0.342652\pi\)
0.474437 + 0.880290i \(0.342652\pi\)
\(192\) −7.31129 −0.527647
\(193\) 1.04157 0.0749740 0.0374870 0.999297i \(-0.488065\pi\)
0.0374870 + 0.999297i \(0.488065\pi\)
\(194\) −18.0917 + 31.3358i −1.29891 + 2.24978i
\(195\) −1.54328 + 0.532172i −0.110517 + 0.0381096i
\(196\) −7.03722 7.34118i −0.502658 0.524370i
\(197\) −0.739167 + 1.28027i −0.0526635 + 0.0912158i −0.891155 0.453698i \(-0.850104\pi\)
0.838492 + 0.544914i \(0.183438\pi\)
\(198\) 8.79326 + 15.2304i 0.624910 + 1.08238i
\(199\) −7.04993 + 12.2108i −0.499756 + 0.865603i −1.00000 0.000281618i \(-0.999910\pi\)
0.500244 + 0.865885i \(0.333244\pi\)
\(200\) −2.52233 4.36881i −0.178356 0.308922i
\(201\) 30.7337 2.16779
\(202\) 15.7330 + 27.2503i 1.10697 + 1.91733i
\(203\) 21.6397 2.61657i 1.51881 0.183647i
\(204\) −1.40192 2.42820i −0.0981543 0.170008i
\(205\) 0.532578 + 0.922451i 0.0371968 + 0.0644268i
\(206\) −13.4424 −0.936576
\(207\) 4.65582 + 8.06412i 0.323602 + 0.560495i
\(208\) 3.29118 16.9725i 0.228202 1.17683i
\(209\) −5.65402 −0.391097
\(210\) −1.33629 1.78014i −0.0922131 0.122841i
\(211\) −13.2346 + 22.9230i −0.911108 + 1.57809i −0.0986067 + 0.995126i \(0.531439\pi\)
−0.812501 + 0.582959i \(0.801895\pi\)
\(212\) 6.75239 0.463756
\(213\) 6.84825 + 11.8615i 0.469234 + 0.812737i
\(214\) 9.15376 15.8548i 0.625738 1.08381i
\(215\) −1.05150 −0.0717119
\(216\) 1.71981 0.117019
\(217\) −1.32970 + 3.11661i −0.0902660 + 0.211569i
\(218\) 12.8361 22.2328i 0.869370 1.50579i
\(219\) −4.45676 7.71934i −0.301160 0.521625i
\(220\) −0.599638 1.03860i −0.0404276 0.0700227i
\(221\) 2.86766 0.988862i 0.192900 0.0665180i
\(222\) −6.48971 + 11.2405i −0.435561 + 0.754414i
\(223\) 0.364024 0.630508i 0.0243769 0.0422219i −0.853580 0.520962i \(-0.825573\pi\)
0.877956 + 0.478740i \(0.158907\pi\)
\(224\) 18.0611 2.18386i 1.20676 0.145916i
\(225\) 5.61280 + 9.72165i 0.374187 + 0.648110i
\(226\) 3.96591 6.86916i 0.263808 0.456929i
\(227\) 1.42598 2.46986i 0.0946454 0.163931i −0.814815 0.579721i \(-0.803162\pi\)
0.909461 + 0.415790i \(0.136495\pi\)
\(228\) −2.25252 + 3.90147i −0.149177 + 0.258381i
\(229\) −1.58676 + 2.74835i −0.104856 + 0.181616i −0.913679 0.406436i \(-0.866772\pi\)
0.808823 + 0.588052i \(0.200105\pi\)
\(230\) −0.754584 1.30698i −0.0497558 0.0861795i
\(231\) −15.2411 20.3033i −1.00279 1.33586i
\(232\) −4.18874 + 7.25511i −0.275004 + 0.476321i
\(233\) −6.70354 + 11.6109i −0.439163 + 0.760653i −0.997625 0.0688769i \(-0.978058\pi\)
0.558462 + 0.829530i \(0.311392\pi\)
\(234\) −2.88590 + 14.8825i −0.188657 + 0.972899i
\(235\) −1.15102 1.99363i −0.0750845 0.130050i
\(236\) −4.40050 7.62188i −0.286448 0.496142i
\(237\) 12.3115 21.3242i 0.799721 1.38516i
\(238\) 2.48305 + 3.30778i 0.160952 + 0.214411i
\(239\) −15.5538 −1.00609 −0.503046 0.864259i \(-0.667788\pi\)
−0.503046 + 0.864259i \(0.667788\pi\)
\(240\) 2.17100 0.140137
\(241\) 3.78787 6.56078i 0.243998 0.422617i −0.717851 0.696196i \(-0.754874\pi\)
0.961849 + 0.273579i \(0.0882076\pi\)
\(242\) −6.03465 10.4523i −0.387922 0.671900i
\(243\) −19.3997 −1.24449
\(244\) 8.25583 14.2995i 0.528525 0.915433i
\(245\) 0.956028 + 0.997322i 0.0610784 + 0.0637166i
\(246\) 23.0059 1.46680
\(247\) −3.67975 3.19585i −0.234137 0.203347i
\(248\) −0.651143 1.12781i −0.0413476 0.0716162i
\(249\) 7.05173 0.446885
\(250\) −1.82651 3.16361i −0.115519 0.200084i
\(251\) −0.637382 1.10398i −0.0402312 0.0696825i 0.845209 0.534436i \(-0.179476\pi\)
−0.885440 + 0.464754i \(0.846143\pi\)
\(252\) −8.63432 + 1.04402i −0.543911 + 0.0657671i
\(253\) −8.60638 14.9067i −0.541079 0.937176i
\(254\) −4.06982 −0.255363
\(255\) 0.190456 + 0.329879i 0.0119268 + 0.0206578i
\(256\) −10.4620 + 18.1208i −0.653878 + 1.13255i
\(257\) 4.24010 + 7.34406i 0.264490 + 0.458110i 0.967430 0.253139i \(-0.0814631\pi\)
−0.702940 + 0.711249i \(0.748130\pi\)
\(258\) −11.3555 + 19.6683i −0.706962 + 1.22449i
\(259\) 3.16135 7.40970i 0.196437 0.460416i
\(260\) 0.196798 1.01488i 0.0122049 0.0629402i
\(261\) 9.32095 16.1444i 0.576952 0.999311i
\(262\) 4.22939 0.261293
\(263\) 12.7883 0.788560 0.394280 0.918990i \(-0.370994\pi\)
0.394280 + 0.918990i \(0.370994\pi\)
\(264\) 9.75722 0.600515
\(265\) −0.917333 −0.0563513
\(266\) 2.60788 6.11245i 0.159899 0.374778i
\(267\) 13.7462 + 23.8092i 0.841255 + 1.45710i
\(268\) −9.73135 + 16.8552i −0.594437 + 1.02959i
\(269\) 2.35586 4.08047i 0.143639 0.248790i −0.785225 0.619210i \(-0.787453\pi\)
0.928864 + 0.370420i \(0.120786\pi\)
\(270\) 0.620254 0.0377475
\(271\) 9.00562 + 15.5982i 0.547052 + 0.947522i 0.998475 + 0.0552119i \(0.0175834\pi\)
−0.451422 + 0.892310i \(0.649083\pi\)
\(272\) −4.03407 −0.244601
\(273\) 1.55692 21.8286i 0.0942292 1.32112i
\(274\) 24.9885 1.50961
\(275\) −10.3754 17.9707i −0.625659 1.08367i
\(276\) −13.7148 −0.825537
\(277\) 13.0604 22.6213i 0.784725 1.35918i −0.144438 0.989514i \(-0.546137\pi\)
0.929163 0.369670i \(-0.120529\pi\)
\(278\) −3.75850 + 6.50991i −0.225420 + 0.390439i
\(279\) 1.44895 + 2.50965i 0.0867463 + 0.150249i
\(280\) −0.527133 + 0.0637384i −0.0315022 + 0.00380910i
\(281\) −3.66197 −0.218455 −0.109227 0.994017i \(-0.534838\pi\)
−0.109227 + 0.994017i \(0.534838\pi\)
\(282\) −49.7210 −2.96084
\(283\) 7.64527 0.454464 0.227232 0.973841i \(-0.427032\pi\)
0.227232 + 0.973841i \(0.427032\pi\)
\(284\) −8.67357 −0.514682
\(285\) 0.306011 0.530027i 0.0181265 0.0313961i
\(286\) 5.33465 27.5106i 0.315445 1.62674i
\(287\) −14.1757 + 1.71406i −0.836768 + 0.101178i
\(288\) 7.77953 13.4745i 0.458413 0.793995i
\(289\) 8.14610 + 14.1095i 0.479183 + 0.829968i
\(290\) −1.51068 + 2.61657i −0.0887100 + 0.153650i
\(291\) −22.3359 38.6869i −1.30935 2.26787i
\(292\) 5.64466 0.330329
\(293\) 8.57670 + 14.8553i 0.501056 + 0.867855i 0.999999 + 0.00122001i \(0.000388343\pi\)
−0.498943 + 0.866635i \(0.666278\pi\)
\(294\) 28.9793 7.11205i 1.69011 0.414783i
\(295\) 0.597821 + 1.03546i 0.0348065 + 0.0602866i
\(296\) 1.54809 + 2.68136i 0.0899807 + 0.155851i
\(297\) 7.07429 0.410492
\(298\) −14.2632 24.7045i −0.826244 1.43110i
\(299\) 2.82457 14.5662i 0.163349 0.842385i
\(300\) −16.5339 −0.954583
\(301\) 5.53163 12.9652i 0.318838 0.747305i
\(302\) −5.68698 + 9.85014i −0.327249 + 0.566812i
\(303\) −38.8476 −2.23174
\(304\) 3.24083 + 5.61328i 0.185874 + 0.321944i
\(305\) −1.12158 + 1.94263i −0.0642215 + 0.111235i
\(306\) 3.53731 0.202215
\(307\) −28.0696 −1.60201 −0.801007 0.598655i \(-0.795702\pi\)
−0.801007 + 0.598655i \(0.795702\pi\)
\(308\) 15.9607 1.92989i 0.909446 0.109966i
\(309\) 8.29793 14.3724i 0.472052 0.817619i
\(310\) −0.234836 0.406748i −0.0133378 0.0231017i
\(311\) 11.7670 + 20.3811i 0.667248 + 1.15571i 0.978671 + 0.205436i \(0.0658611\pi\)
−0.311423 + 0.950271i \(0.600806\pi\)
\(312\) 6.35020 + 5.51512i 0.359509 + 0.312232i
\(313\) 1.67430 2.89997i 0.0946370 0.163916i −0.814820 0.579714i \(-0.803164\pi\)
0.909457 + 0.415798i \(0.136498\pi\)
\(314\) −4.21494 + 7.30050i −0.237863 + 0.411991i
\(315\) 1.17300 0.141833i 0.0660910 0.00799140i
\(316\) 7.79652 + 13.5040i 0.438588 + 0.759658i
\(317\) 3.63917 6.30323i 0.204396 0.354025i −0.745544 0.666456i \(-0.767810\pi\)
0.949940 + 0.312432i \(0.101144\pi\)
\(318\) −9.90655 + 17.1586i −0.555532 + 0.962209i
\(319\) −17.2300 + 29.8432i −0.964694 + 1.67090i
\(320\) −0.314501 + 0.544732i −0.0175811 + 0.0304514i
\(321\) 11.3011 + 19.5742i 0.630768 + 1.09252i
\(322\) 20.0849 2.42857i 1.11929 0.135339i
\(323\) −0.568618 + 0.984875i −0.0316388 + 0.0547999i
\(324\) 7.74919 13.4220i 0.430511 0.745666i
\(325\) 3.40514 17.5602i 0.188883 0.974065i
\(326\) −1.69329 2.93286i −0.0937826 0.162436i
\(327\) 15.8473 + 27.4484i 0.876359 + 1.51790i
\(328\) 2.74396 4.75268i 0.151510 0.262423i
\(329\) 30.6371 3.70449i 1.68908 0.204235i
\(330\) 3.51896 0.193712
\(331\) −14.3234 −0.787283 −0.393642 0.919264i \(-0.628785\pi\)
−0.393642 + 0.919264i \(0.628785\pi\)
\(332\) −2.23282 + 3.86736i −0.122542 + 0.212249i
\(333\) −3.44486 5.96668i −0.188777 0.326972i
\(334\) −19.8971 −1.08872
\(335\) 1.32203 2.28983i 0.0722304 0.125107i
\(336\) −11.4210 + 26.7689i −0.623064 + 1.46036i
\(337\) 17.1802 0.935868 0.467934 0.883764i \(-0.344999\pi\)
0.467934 + 0.883764i \(0.344999\pi\)
\(338\) 19.0218 14.8891i 1.03465 0.809862i
\(339\) 4.89627 + 8.48060i 0.265929 + 0.460603i
\(340\) −0.241220 −0.0130820
\(341\) −2.67841 4.63915i −0.145044 0.251224i
\(342\) −2.84175 4.92206i −0.153664 0.266155i
\(343\) −17.3266 + 6.54142i −0.935547 + 0.353203i
\(344\) 2.70879 + 4.69176i 0.146048 + 0.252963i
\(345\) 1.86320 0.100312
\(346\) 12.5358 + 21.7126i 0.673928 + 1.16728i
\(347\) 3.85139 6.67080i 0.206753 0.358107i −0.743937 0.668250i \(-0.767044\pi\)
0.950690 + 0.310143i \(0.100377\pi\)
\(348\) 13.7286 + 23.7786i 0.735928 + 1.27466i
\(349\) −11.1850 + 19.3730i −0.598721 + 1.03702i 0.394289 + 0.918986i \(0.370991\pi\)
−0.993010 + 0.118029i \(0.962343\pi\)
\(350\) 24.2133 2.92776i 1.29426 0.156495i
\(351\) 4.60409 + 3.99863i 0.245748 + 0.213431i
\(352\) −14.3806 + 24.9080i −0.766490 + 1.32760i
\(353\) −22.2623 −1.18490 −0.592451 0.805606i \(-0.701840\pi\)
−0.592451 + 0.805606i \(0.701840\pi\)
\(354\) 25.8242 1.37254
\(355\) 1.17833 0.0625393
\(356\) −17.4101 −0.922735
\(357\) −5.06941 + 0.612968i −0.268301 + 0.0324417i
\(358\) −9.72670 16.8471i −0.514072 0.890399i
\(359\) 1.37921 2.38887i 0.0727920 0.126079i −0.827332 0.561713i \(-0.810142\pi\)
0.900124 + 0.435634i \(0.143476\pi\)
\(360\) −0.227054 + 0.393269i −0.0119668 + 0.0207271i
\(361\) −17.1728 −0.903830
\(362\) −11.6330 20.1489i −0.611415 1.05900i
\(363\) 14.9006 0.782081
\(364\) 11.4784 + 7.76553i 0.601632 + 0.407025i
\(365\) −0.766844 −0.0401385
\(366\) 24.2246 + 41.9582i 1.26624 + 2.19319i
\(367\) −14.1497 −0.738609 −0.369304 0.929308i \(-0.620404\pi\)
−0.369304 + 0.929308i \(0.620404\pi\)
\(368\) −9.86618 + 17.0887i −0.514310 + 0.890812i
\(369\) −6.10597 + 10.5759i −0.317864 + 0.550557i
\(370\) 0.558320 + 0.967039i 0.0290257 + 0.0502740i
\(371\) 4.82580 11.3109i 0.250543 0.587233i
\(372\) −4.26823 −0.221298
\(373\) −5.04284 −0.261109 −0.130554 0.991441i \(-0.541676\pi\)
−0.130554 + 0.991441i \(0.541676\pi\)
\(374\) −6.53879 −0.338113
\(375\) 4.50999 0.232895
\(376\) −5.93034 + 10.2716i −0.305834 + 0.529720i
\(377\) −28.0820 + 9.68358i −1.44630 + 0.498730i
\(378\) −3.26297 + 7.64787i −0.167829 + 0.393364i
\(379\) 3.02982 5.24780i 0.155631 0.269561i −0.777657 0.628688i \(-0.783592\pi\)
0.933289 + 0.359127i \(0.116925\pi\)
\(380\) 0.193787 + 0.335650i 0.00994109 + 0.0172185i
\(381\) 2.51228 4.35139i 0.128708 0.222929i
\(382\) −12.1837 21.1028i −0.623371 1.07971i
\(383\) −4.54105 −0.232037 −0.116018 0.993247i \(-0.537013\pi\)
−0.116018 + 0.993247i \(0.537013\pi\)
\(384\) −8.98165 15.5567i −0.458343 0.793873i
\(385\) −2.16831 + 0.262182i −0.110507 + 0.0133620i
\(386\) −0.967705 1.67611i −0.0492549 0.0853120i
\(387\) −6.02771 10.4403i −0.306406 0.530710i
\(388\) 28.2893 1.43617
\(389\) −2.25383 3.90374i −0.114273 0.197927i 0.803216 0.595688i \(-0.203121\pi\)
−0.917489 + 0.397761i \(0.869787\pi\)
\(390\) 2.29021 + 1.98904i 0.115969 + 0.100719i
\(391\) −3.46213 −0.175088
\(392\) 1.98718 6.83498i 0.100368 0.345218i
\(393\) −2.61078 + 4.52201i −0.131697 + 0.228105i
\(394\) 2.74698 0.138391
\(395\) −1.05918 1.83456i −0.0532932 0.0923065i
\(396\) 6.87482 11.9075i 0.345473 0.598376i
\(397\) 4.00349 0.200929 0.100465 0.994941i \(-0.467967\pi\)
0.100465 + 0.994941i \(0.467967\pi\)
\(398\) 26.1998 1.31328
\(399\) 4.92552 + 6.56149i 0.246584 + 0.328485i
\(400\) −11.8941 + 20.6012i −0.594706 + 1.03006i
\(401\) −6.30674 10.9236i −0.314944 0.545498i 0.664482 0.747304i \(-0.268652\pi\)
−0.979426 + 0.201806i \(0.935319\pi\)
\(402\) −28.5541 49.4571i −1.42415 2.46670i
\(403\) 0.879041 4.53318i 0.0437882 0.225814i
\(404\) 12.3005 21.3051i 0.611972 1.05997i
\(405\) −1.05275 + 1.82342i −0.0523116 + 0.0906064i
\(406\) −24.3157 32.3919i −1.20677 1.60758i
\(407\) 6.36790 + 11.0295i 0.315645 + 0.546713i
\(408\) 0.981272 1.69961i 0.0485802 0.0841434i
\(409\) −10.3476 + 17.9226i −0.511657 + 0.886216i 0.488252 + 0.872703i \(0.337635\pi\)
−0.999909 + 0.0135128i \(0.995699\pi\)
\(410\) 0.989615 1.71406i 0.0488736 0.0846516i
\(411\) −15.4253 + 26.7174i −0.760873 + 1.31787i
\(412\) 5.25482 + 9.10162i 0.258886 + 0.448404i
\(413\) −15.9123 + 1.92404i −0.782995 + 0.0946760i
\(414\) 8.65126 14.9844i 0.425186 0.736444i
\(415\) 0.303336 0.525393i 0.0148902 0.0257905i
\(416\) −23.4381 + 8.08219i −1.14915 + 0.396262i
\(417\) −4.64021 8.03708i −0.227232 0.393577i
\(418\) 5.25304 + 9.09854i 0.256935 + 0.445024i
\(419\) 10.9088 18.8945i 0.532928 0.923058i −0.466333 0.884609i \(-0.654425\pi\)
0.999261 0.0384484i \(-0.0122415\pi\)
\(420\) −0.682923 + 1.60066i −0.0333232 + 0.0781043i
\(421\) 9.42727 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(422\) 49.1841 2.39424
\(423\) 13.1964 22.8569i 0.641632 1.11134i
\(424\) 2.36315 + 4.09310i 0.114765 + 0.198779i
\(425\) −4.17376 −0.202457
\(426\) 12.7251 22.0406i 0.616535 1.06787i
\(427\) −18.0528 24.0489i −0.873636 1.16381i
\(428\) −14.3133 −0.691861
\(429\) 26.1209 + 22.6859i 1.26113 + 1.09529i
\(430\) 0.976930 + 1.69209i 0.0471118 + 0.0816000i
\(431\) 20.4275 0.983960 0.491980 0.870607i \(-0.336273\pi\)
0.491980 + 0.870607i \(0.336273\pi\)
\(432\) −4.05491 7.02332i −0.195092 0.337909i
\(433\) −13.1743 22.8186i −0.633117 1.09659i −0.986911 0.161267i \(-0.948442\pi\)
0.353794 0.935323i \(-0.384891\pi\)
\(434\) 6.25069 0.755803i 0.300043 0.0362797i
\(435\) −1.86507 3.23039i −0.0894231 0.154885i
\(436\) −20.0712 −0.961238
\(437\) 2.78136 + 4.81745i 0.133050 + 0.230450i
\(438\) −8.28138 + 14.3438i −0.395700 + 0.685372i
\(439\) −12.5655 21.7641i −0.599720 1.03875i −0.992862 0.119267i \(-0.961945\pi\)
0.393142 0.919478i \(-0.371388\pi\)
\(440\) 0.419714 0.726967i 0.0200091 0.0346568i
\(441\) −4.42195 + 15.2095i −0.210569 + 0.724260i
\(442\) −4.25558 3.69595i −0.202417 0.175799i
\(443\) −9.25995 + 16.0387i −0.439953 + 0.762022i −0.997685 0.0679994i \(-0.978338\pi\)
0.557732 + 0.830021i \(0.311672\pi\)
\(444\) 10.1477 0.481587
\(445\) 2.36522 0.112122
\(446\) −1.35283 −0.0640584
\(447\) 35.2184 1.66577
\(448\) −5.06216 6.74353i −0.239165 0.318602i
\(449\) −5.82155 10.0832i −0.274736 0.475856i 0.695333 0.718688i \(-0.255257\pi\)
−0.970068 + 0.242832i \(0.921924\pi\)
\(450\) 10.4295 18.0644i 0.491651 0.851564i
\(451\) 11.2870 19.5497i 0.531485 0.920559i
\(452\) −6.20132 −0.291685
\(453\) −7.02109 12.1609i −0.329880 0.571368i
\(454\) −5.29939 −0.248713
\(455\) −1.55938 1.05497i −0.0731047 0.0494578i
\(456\) −3.15328 −0.147666
\(457\) −10.2592 17.7695i −0.479906 0.831222i 0.519828 0.854271i \(-0.325996\pi\)
−0.999734 + 0.0230490i \(0.992663\pi\)
\(458\) 5.89691 0.275544
\(459\) 0.711453 1.23227i 0.0332078 0.0575176i
\(460\) −0.589955 + 1.02183i −0.0275068 + 0.0476431i
\(461\) −1.02038 1.76734i −0.0475236 0.0823134i 0.841285 0.540592i \(-0.181800\pi\)
−0.888809 + 0.458278i \(0.848466\pi\)
\(462\) −18.5122 + 43.3895i −0.861264 + 2.01866i
\(463\) 3.03155 0.140888 0.0704441 0.997516i \(-0.477558\pi\)
0.0704441 + 0.997516i \(0.477558\pi\)
\(464\) 39.5042 1.83394
\(465\) 0.579853 0.0268900
\(466\) 24.9125 1.15405
\(467\) 6.46371 11.1955i 0.299105 0.518065i −0.676827 0.736142i \(-0.736645\pi\)
0.975931 + 0.218078i \(0.0699787\pi\)
\(468\) 11.2048 3.86378i 0.517943 0.178603i
\(469\) 21.2793 + 28.3470i 0.982585 + 1.30894i
\(470\) −2.13879 + 3.70449i −0.0986549 + 0.170875i
\(471\) −5.20373 9.01312i −0.239775 0.415303i
\(472\) 3.08011 5.33491i 0.141774 0.245559i
\(473\) 11.1423 + 19.2991i 0.512326 + 0.887374i
\(474\) −45.7537 −2.10153
\(475\) 3.35305 + 5.80766i 0.153849 + 0.266474i
\(476\) 1.26898 2.97429i 0.0581637 0.136326i
\(477\) −5.25858 9.10814i −0.240774 0.417033i
\(478\) 14.4507 + 25.0294i 0.660962 + 1.14482i
\(479\) 36.5821 1.67148 0.835740 0.549126i \(-0.185039\pi\)
0.835740 + 0.549126i \(0.185039\pi\)
\(480\) −1.55664 2.69618i −0.0710505 0.123063i
\(481\) −2.08991 + 10.7776i −0.0952918 + 0.491416i
\(482\) −14.0769 −0.641187
\(483\) −9.80174 + 22.9737i −0.445995 + 1.04534i
\(484\) −4.71806 + 8.17191i −0.214457 + 0.371451i
\(485\) −3.84318 −0.174510
\(486\) 18.0239 + 31.2183i 0.817580 + 1.41609i
\(487\) −18.3748 + 31.8261i −0.832642 + 1.44218i 0.0632939 + 0.997995i \(0.479839\pi\)
−0.895936 + 0.444183i \(0.853494\pi\)
\(488\) 11.5573 0.523173
\(489\) 4.18103 0.189073
\(490\) 0.716679 2.46505i 0.0323763 0.111359i
\(491\) 4.09899 7.09965i 0.184985 0.320403i −0.758587 0.651572i \(-0.774110\pi\)
0.943571 + 0.331169i \(0.107443\pi\)
\(492\) −8.99331 15.5769i −0.405450 0.702260i
\(493\) 3.46560 + 6.00259i 0.156083 + 0.270343i
\(494\) −1.72402 + 8.89071i −0.0775673 + 0.400012i
\(495\) −0.933965 + 1.61768i −0.0419786 + 0.0727091i
\(496\) −3.07048 + 5.31823i −0.137869 + 0.238795i
\(497\) −6.19883 + 14.5291i −0.278056 + 0.651718i
\(498\) −6.55163 11.3478i −0.293585 0.508505i
\(499\) 21.6266 37.4584i 0.968141 1.67687i 0.267211 0.963638i \(-0.413898\pi\)
0.700929 0.713231i \(-0.252769\pi\)
\(500\) −1.42802 + 2.47340i −0.0638629 + 0.110614i
\(501\) 12.2824 21.2737i 0.548736 0.950439i
\(502\) −1.18436 + 2.05137i −0.0528605 + 0.0915571i
\(503\) −0.00909609 0.0157549i −0.000405575 0.000702476i 0.865823 0.500351i \(-0.166796\pi\)
−0.866228 + 0.499649i \(0.833462\pi\)
\(504\) −3.65463 4.86849i −0.162790 0.216860i
\(505\) −1.67106 + 2.89436i −0.0743612 + 0.128797i
\(506\) −15.9920 + 27.6990i −0.710933 + 1.23137i
\(507\) 4.17717 + 29.5289i 0.185515 + 1.31142i
\(508\) 1.59095 + 2.75560i 0.0705869 + 0.122260i
\(509\) −21.5503 37.3262i −0.955200 1.65446i −0.733909 0.679248i \(-0.762306\pi\)
−0.221292 0.975208i \(-0.571027\pi\)
\(510\) 0.353897 0.612968i 0.0156708 0.0271427i
\(511\) 4.03413 9.45535i 0.178459 0.418280i
\(512\) 23.2197 1.02617
\(513\) −2.28623 −0.100939
\(514\) 7.87878 13.6464i 0.347518 0.601919i
\(515\) −0.713884 1.23648i −0.0314575 0.0544859i
\(516\) 17.7561 0.781668
\(517\) −24.3939 + 42.2514i −1.07284 + 1.85822i
\(518\) −14.8609 + 1.79691i −0.652952 + 0.0789519i
\(519\) −30.9531 −1.35869
\(520\) 0.684065 0.235888i 0.0299983 0.0103444i
\(521\) −10.4770 18.1467i −0.459006 0.795022i 0.539903 0.841727i \(-0.318461\pi\)
−0.998909 + 0.0467056i \(0.985128\pi\)
\(522\) −34.6397 −1.51614
\(523\) 17.3701 + 30.0860i 0.759543 + 1.31557i 0.943084 + 0.332555i \(0.107911\pi\)
−0.183541 + 0.983012i \(0.558756\pi\)
\(524\) −1.65333 2.86365i −0.0722260 0.125099i
\(525\) −11.8164 + 27.6958i −0.515712 + 1.20875i
\(526\) −11.8814 20.5791i −0.518052 0.897292i
\(527\) −1.07746 −0.0469349
\(528\) −23.0052 39.8462i −1.00117 1.73408i
\(529\) 3.03260 5.25262i 0.131852 0.228375i
\(530\) 0.852276 + 1.47619i 0.0370205 + 0.0641214i
\(531\) −6.85398 + 11.8714i −0.297438 + 0.515177i
\(532\) −5.15809 + 0.623691i −0.223631 + 0.0270404i
\(533\) 18.3960 6.34352i 0.796819 0.274769i
\(534\) 25.5427 44.2413i 1.10534 1.91451i
\(535\) 1.94451 0.0840685
\(536\) −13.6228 −0.588417
\(537\) 24.0170 1.03641
\(538\) −8.75513 −0.377460
\(539\) 8.17406 28.1150i 0.352082 1.21100i
\(540\) −0.242466 0.419964i −0.0104341 0.0180724i
\(541\) 1.64923 2.85655i 0.0709059 0.122813i −0.828393 0.560148i \(-0.810744\pi\)
0.899299 + 0.437335i \(0.144078\pi\)
\(542\) 16.7339 28.9839i 0.718782 1.24497i
\(543\) 28.7239 1.23266
\(544\) 2.89249 + 5.00993i 0.124014 + 0.214799i
\(545\) 2.72674 0.116801
\(546\) −36.5733 + 17.7751i −1.56519 + 0.760703i
\(547\) 21.9417 0.938161 0.469080 0.883155i \(-0.344585\pi\)
0.469080 + 0.883155i \(0.344585\pi\)
\(548\) −9.76836 16.9193i −0.417284 0.722756i
\(549\) −25.7177 −1.09761
\(550\) −19.2791 + 33.3924i −0.822065 + 1.42386i
\(551\) 5.56828 9.64455i 0.237217 0.410871i
\(552\) −4.79983 8.31354i −0.204294 0.353848i
\(553\) 28.1925 3.40890i 1.19887 0.144961i
\(554\) −48.5368 −2.06213
\(555\) −1.37859 −0.0585180
\(556\) 5.87700 0.249240
\(557\) −14.2866 −0.605342 −0.302671 0.953095i \(-0.597878\pi\)
−0.302671 + 0.953095i \(0.597878\pi\)
\(558\) 2.69238 4.66334i 0.113978 0.197415i
\(559\) −3.65686 + 18.8583i −0.154669 + 0.797621i
\(560\) 1.50315 + 2.00241i 0.0635196 + 0.0846172i
\(561\) 4.03637 6.99119i 0.170416 0.295168i
\(562\) 3.40226 + 5.89289i 0.143516 + 0.248577i
\(563\) −3.39392 + 5.87844i −0.143037 + 0.247747i −0.928639 0.370985i \(-0.879020\pi\)
0.785602 + 0.618732i \(0.212353\pi\)
\(564\) 19.4366 + 33.6652i 0.818430 + 1.41756i
\(565\) 0.842468 0.0354429
\(566\) −7.10307 12.3029i −0.298564 0.517128i
\(567\) −16.9449 22.5731i −0.711621 0.947981i
\(568\) −3.03552 5.25767i −0.127367 0.220607i
\(569\) 8.66061 + 15.0006i 0.363072 + 0.628859i 0.988465 0.151451i \(-0.0483947\pi\)
−0.625393 + 0.780310i \(0.715061\pi\)
\(570\) −1.13724 −0.0476336
\(571\) 6.50581 + 11.2684i 0.272260 + 0.471568i 0.969440 0.245328i \(-0.0788957\pi\)
−0.697180 + 0.716896i \(0.745562\pi\)
\(572\) −20.7124 + 7.14228i −0.866027 + 0.298634i
\(573\) 30.0837 1.25676
\(574\) 15.9287 + 21.2193i 0.664851 + 0.885677i
\(575\) −10.2078 + 17.6805i −0.425696 + 0.737327i
\(576\) −7.21147 −0.300478
\(577\) 0.365767 + 0.633528i 0.0152271 + 0.0263741i 0.873539 0.486755i \(-0.161820\pi\)
−0.858311 + 0.513129i \(0.828486\pi\)
\(578\) 15.1368 26.2177i 0.629607 1.09051i
\(579\) 2.38944 0.0993017
\(580\) 2.36218 0.0980842
\(581\) 4.88245 + 6.50412i 0.202558 + 0.269837i
\(582\) −41.5037 + 71.8865i −1.72038 + 2.97979i
\(583\) 9.72061 + 16.8366i 0.402586 + 0.697300i
\(584\) 1.97548 + 3.42163i 0.0817459 + 0.141588i
\(585\) −1.52221 + 0.524907i −0.0629356 + 0.0217022i
\(586\) 15.9369 27.6035i 0.658347 1.14029i
\(587\) 4.26142 7.38099i 0.175888 0.304646i −0.764581 0.644528i \(-0.777054\pi\)
0.940468 + 0.339882i \(0.110387\pi\)
\(588\) −16.1439 16.8412i −0.665761 0.694518i
\(589\) 0.865594 + 1.49925i 0.0356662 + 0.0617756i
\(590\) 1.11085 1.92404i 0.0457329 0.0792117i
\(591\) −1.69570 + 2.93704i −0.0697517 + 0.120814i
\(592\) 7.30004 12.6440i 0.300030 0.519667i
\(593\) 15.6547 27.1147i 0.642860 1.11347i −0.341932 0.939725i \(-0.611081\pi\)
0.984791 0.173741i \(-0.0555854\pi\)
\(594\) −6.57259 11.3841i −0.269677 0.467093i
\(595\) −0.172395 + 0.404066i −0.00706751 + 0.0165651i
\(596\) −11.1514 + 19.3147i −0.456777 + 0.791161i
\(597\) −16.1730 + 28.0125i −0.661917 + 1.14647i
\(598\) −26.0644 + 8.98784i −1.06585 + 0.367540i
\(599\) 0.375116 + 0.649720i 0.0153268 + 0.0265468i 0.873587 0.486668i \(-0.161788\pi\)
−0.858260 + 0.513215i \(0.828454\pi\)
\(600\) −5.78641 10.0224i −0.236229 0.409161i
\(601\) 4.77652 8.27318i 0.194838 0.337470i −0.752009 0.659153i \(-0.770915\pi\)
0.946848 + 0.321683i \(0.104248\pi\)
\(602\) −26.0032 + 3.14418i −1.05981 + 0.128147i
\(603\) 30.3141 1.23449
\(604\) 8.89248 0.361830
\(605\) 0.640963 1.11018i 0.0260588 0.0451352i
\(606\) 36.0925 + 62.5141i 1.46616 + 2.53946i
\(607\) 22.2395 0.902672 0.451336 0.892354i \(-0.350948\pi\)
0.451336 + 0.892354i \(0.350948\pi\)
\(608\) 4.64745 8.04961i 0.188479 0.326455i
\(609\) 49.6430 6.00259i 2.01163 0.243237i
\(610\) 4.16815 0.168764
\(611\) −39.7580 + 13.7098i −1.60844 + 0.554640i
\(612\) −1.38278 2.39505i −0.0558957 0.0968143i
\(613\) −8.27987 −0.334421 −0.167210 0.985921i \(-0.553476\pi\)
−0.167210 + 0.985921i \(0.553476\pi\)
\(614\) 26.0789 + 45.1699i 1.05246 + 1.82291i
\(615\) 1.22177 + 2.11617i 0.0492665 + 0.0853321i
\(616\) 6.75567 + 8.99952i 0.272194 + 0.362601i
\(617\) −10.1656 17.6073i −0.409252 0.708845i 0.585554 0.810633i \(-0.300877\pi\)
−0.994806 + 0.101789i \(0.967543\pi\)
\(618\) −30.8378 −1.24048
\(619\) −2.67049 4.62542i −0.107336 0.185911i 0.807354 0.590067i \(-0.200899\pi\)
−0.914690 + 0.404156i \(0.867565\pi\)
\(620\) −0.183601 + 0.318007i −0.00737361 + 0.0127715i
\(621\) −3.48003 6.02758i −0.139649 0.241879i
\(622\) 21.8651 37.8714i 0.876709 1.51850i
\(623\) −12.4427 + 29.1636i −0.498506 + 1.16842i
\(624\) 7.55018 38.9360i 0.302249 1.55869i
\(625\) −12.2086 + 21.1459i −0.488345 + 0.845838i
\(626\) −6.22224 −0.248691
\(627\) −12.9707 −0.518000
\(628\) 6.59072 0.262998
\(629\) 2.56165 0.102140
\(630\) −1.31805 1.75583i −0.0525124 0.0699540i
\(631\) −3.23331 5.60026i −0.128716 0.222943i 0.794463 0.607312i \(-0.207752\pi\)
−0.923179 + 0.384369i \(0.874419\pi\)
\(632\) −5.45714 + 9.45205i −0.217074 + 0.375982i
\(633\) −30.3611 + 52.5870i −1.20675 + 2.09014i
\(634\) −13.5243 −0.537120
\(635\) −0.216135 0.374357i −0.00857707 0.0148559i
\(636\) 15.4904 0.614236
\(637\) 21.2114 13.6776i 0.840427 0.541925i
\(638\) 64.0322 2.53506
\(639\) 6.75475 + 11.6996i 0.267214 + 0.462828i
\(640\) −1.54541 −0.0610877
\(641\) −11.6644 + 20.2034i −0.460717 + 0.797985i −0.998997 0.0447808i \(-0.985741\pi\)
0.538280 + 0.842766i \(0.319074\pi\)
\(642\) 20.9993 36.3719i 0.828778 1.43549i
\(643\) 1.79439 + 3.10797i 0.0707637 + 0.122566i 0.899236 0.437463i \(-0.144123\pi\)
−0.828472 + 0.560030i \(0.810790\pi\)
\(644\) −9.49583 12.6498i −0.374188 0.498472i
\(645\) −2.41222 −0.0949810
\(646\) 2.11317 0.0831415
\(647\) −39.6524 −1.55890 −0.779448 0.626467i \(-0.784500\pi\)
−0.779448 + 0.626467i \(0.784500\pi\)
\(648\) 10.8480 0.426151
\(649\) 12.6697 21.9446i 0.497331 0.861402i
\(650\) −31.4218 + 10.8352i −1.23246 + 0.424993i
\(651\) −3.05042 + 7.14970i −0.119556 + 0.280219i
\(652\) −1.32386 + 2.29299i −0.0518464 + 0.0898005i
\(653\) −9.06777 15.7058i −0.354849 0.614617i 0.632243 0.774770i \(-0.282135\pi\)
−0.987092 + 0.160153i \(0.948801\pi\)
\(654\) 29.4469 51.0035i 1.15146 1.99439i
\(655\) 0.224610 + 0.389035i 0.00877623 + 0.0152009i
\(656\) −25.8784 −1.01038
\(657\) −4.39592 7.61395i −0.171501 0.297048i
\(658\) −34.4256 45.8599i −1.34205 1.78780i
\(659\) −6.74052 11.6749i −0.262573 0.454791i 0.704352 0.709851i \(-0.251238\pi\)
−0.966925 + 0.255061i \(0.917905\pi\)
\(660\) −1.37561 2.38263i −0.0535456 0.0927437i
\(661\) 10.3122 0.401099 0.200549 0.979684i \(-0.435727\pi\)
0.200549 + 0.979684i \(0.435727\pi\)
\(662\) 13.3076 + 23.0494i 0.517213 + 0.895839i
\(663\) 6.57861 2.26852i 0.255492 0.0881018i
\(664\) −3.12571 −0.121301
\(665\) 0.700742 0.0847304i 0.0271736 0.00328570i
\(666\) −6.40111 + 11.0870i −0.248038 + 0.429614i
\(667\) 33.9035 1.31275
\(668\) 7.77805 + 13.4720i 0.300942 + 0.521247i
\(669\) 0.835096 1.44643i 0.0322867 0.0559222i
\(670\) −4.91310 −0.189810
\(671\) 47.5397 1.83525
\(672\) 41.4334 5.00993i 1.59833 0.193262i
\(673\) 4.61528 7.99390i 0.177906 0.308142i −0.763257 0.646095i \(-0.776401\pi\)
0.941163 + 0.337953i \(0.109734\pi\)
\(674\) −15.9618 27.6467i −0.614827 1.06491i
\(675\) −4.19533 7.26652i −0.161478 0.279689i
\(676\) −17.5171 7.05900i −0.673734 0.271500i
\(677\) 10.5467 18.2674i 0.405343 0.702075i −0.589018 0.808120i \(-0.700485\pi\)
0.994361 + 0.106045i \(0.0338187\pi\)
\(678\) 9.09807 15.7583i 0.349409 0.605194i
\(679\) 20.2178 47.3873i 0.775888 1.81856i
\(680\) −0.0844203 0.146220i −0.00323737 0.00560729i
\(681\) 3.27129 5.66604i 0.125356 0.217123i
\(682\) −4.97693 + 8.62029i −0.190576 + 0.330088i
\(683\) 19.1106 33.1005i 0.731246 1.26656i −0.225104 0.974335i \(-0.572272\pi\)
0.956351 0.292221i \(-0.0943944\pi\)
\(684\) −2.22176 + 3.84821i −0.0849512 + 0.147140i
\(685\) 1.32706 + 2.29854i 0.0507044 + 0.0878226i
\(686\) 26.6243 + 21.8047i 1.01652 + 0.832506i
\(687\) −3.64013 + 6.30490i −0.138880 + 0.240547i
\(688\) 12.7734 22.1241i 0.486980 0.843474i
\(689\) −3.19025 + 16.4520i −0.121539 + 0.626772i
\(690\) −1.73107 2.99830i −0.0659006 0.114143i
\(691\) 13.1161 + 22.7178i 0.498960 + 0.864224i 0.999999 0.00120019i \(-0.000382034\pi\)
−0.501039 + 0.865425i \(0.667049\pi\)
\(692\) 9.80084 16.9755i 0.372572 0.645313i
\(693\) −15.0330 20.0261i −0.571056 0.760728i
\(694\) −14.3130 −0.543314
\(695\) −0.798409 −0.0302854
\(696\) −9.60925 + 16.6437i −0.364238 + 0.630878i
\(697\) −2.27024 3.93218i −0.0859916 0.148942i
\(698\) 41.5672 1.57334
\(699\) −15.3784 + 26.6361i −0.581664 + 1.00747i
\(700\) −11.4477 15.2499i −0.432681 0.576393i
\(701\) −46.7346 −1.76514 −0.882570 0.470180i \(-0.844189\pi\)
−0.882570 + 0.470180i \(0.844189\pi\)
\(702\) 2.15709 11.1240i 0.0814140 0.419849i
\(703\) −2.05794 3.56446i −0.0776167 0.134436i
\(704\) 13.3306 0.502414
\(705\) −2.64053 4.57353i −0.0994480 0.172249i
\(706\) 20.6835 + 35.8248i 0.778433 + 1.34828i
\(707\) −26.8972 35.8309i −1.01157 1.34756i
\(708\) −10.0950 17.4851i −0.379395 0.657131i
\(709\) −47.4464 −1.78189 −0.890944 0.454113i \(-0.849956\pi\)
−0.890944 + 0.454113i \(0.849956\pi\)
\(710\) −1.09476 1.89619i −0.0410858 0.0711626i
\(711\) 12.1435 21.0331i 0.455415 0.788802i
\(712\) −6.09307 10.5535i −0.228348 0.395510i
\(713\) −2.63516 + 4.56423i −0.0986876 + 0.170932i
\(714\) 5.69629 + 7.58827i 0.213178 + 0.283984i
\(715\) 2.81384 0.970301i 0.105232 0.0362872i
\(716\) −7.60461 + 13.1716i −0.284197 + 0.492244i
\(717\) −35.6815 −1.33255
\(718\) −5.12560 −0.191286
\(719\) −49.2380 −1.83627 −0.918133 0.396273i \(-0.870304\pi\)
−0.918133 + 0.396273i \(0.870304\pi\)
\(720\) 2.14136 0.0798037
\(721\) 19.0016 2.29758i 0.707657 0.0855665i
\(722\) 15.9549 + 27.6347i 0.593779 + 1.02846i
\(723\) 8.68963 15.0509i 0.323171 0.559748i
\(724\) −9.09498 + 15.7530i −0.338012 + 0.585454i
\(725\) 40.8722 1.51795
\(726\) −13.8439 23.9783i −0.513795 0.889919i
\(727\) −32.0495 −1.18865 −0.594325 0.804225i \(-0.702581\pi\)
−0.594325 + 0.804225i \(0.702581\pi\)
\(728\) −0.690112 + 9.67560i −0.0255773 + 0.358602i
\(729\) −12.4996 −0.462947
\(730\) 0.712460 + 1.23402i 0.0263693 + 0.0456730i
\(731\) 4.48229 0.165783
\(732\) 18.9394 32.8041i 0.700022 1.21247i
\(733\) −14.1005 + 24.4228i −0.520813 + 0.902075i 0.478894 + 0.877873i \(0.341038\pi\)
−0.999707 + 0.0242025i \(0.992295\pi\)
\(734\) 13.1462 + 22.7699i 0.485236 + 0.840453i
\(735\) 2.19319 + 2.28793i 0.0808971 + 0.0843914i
\(736\) 28.2968 1.04303
\(737\) −56.0362 −2.06412
\(738\) 22.6918 0.835295
\(739\) −42.5370 −1.56475 −0.782375 0.622808i \(-0.785992\pi\)
−0.782375 + 0.622808i \(0.785992\pi\)
\(740\) 0.436510 0.756058i 0.0160464 0.0277932i
\(741\) −8.44160 7.33149i −0.310110 0.269329i
\(742\) −22.6852 + 2.74299i −0.832801 + 0.100698i
\(743\) −7.95711 + 13.7821i −0.291918 + 0.505617i −0.974263 0.225413i \(-0.927627\pi\)
0.682345 + 0.731030i \(0.260960\pi\)
\(744\) −1.49377 2.58728i −0.0547641 0.0948543i
\(745\) 1.51495 2.62396i 0.0555033 0.0961346i
\(746\) 4.68521 + 8.11502i 0.171538 + 0.297112i
\(747\) 6.95546 0.254487
\(748\) 2.55611 + 4.42731i 0.0934605 + 0.161878i
\(749\) −10.2295 + 23.9762i −0.373777 + 0.876072i
\(750\) −4.19014 7.25754i −0.153002 0.265008i
\(751\) −9.09981 15.7613i −0.332057 0.575139i 0.650858 0.759199i \(-0.274409\pi\)
−0.982915 + 0.184060i \(0.941076\pi\)
\(752\) 55.9293 2.03953
\(753\) −1.46220 2.53260i −0.0532855 0.0922931i
\(754\) 41.6734 + 36.1932i 1.51766 + 1.31808i
\(755\) −1.20807 −0.0439662
\(756\) 6.45378 0.780360i 0.234722 0.0283814i
\(757\) 22.4502 38.8849i 0.815967 1.41330i −0.0926649 0.995697i \(-0.529539\pi\)
0.908632 0.417598i \(-0.137128\pi\)
\(758\) −11.2598 −0.408974
\(759\) −19.7436 34.1970i −0.716648 1.24127i
\(760\) −0.135641 + 0.234937i −0.00492021 + 0.00852205i
\(761\) −26.4888 −0.960217 −0.480108 0.877209i \(-0.659403\pi\)
−0.480108 + 0.877209i \(0.659403\pi\)
\(762\) −9.33644 −0.338223
\(763\) −14.3445 + 33.6213i −0.519307 + 1.21717i
\(764\) −9.52554 + 16.4987i −0.344622 + 0.596903i
\(765\) 0.187856 + 0.325375i 0.00679193 + 0.0117640i
\(766\) 4.21900 + 7.30752i 0.152439 + 0.264031i
\(767\) 20.6496 7.12064i 0.745613 0.257111i
\(768\) −24.0006 + 41.5703i −0.866049 + 1.50004i
\(769\) −6.98127 + 12.0919i −0.251751 + 0.436045i −0.964008 0.265873i \(-0.914340\pi\)
0.712257 + 0.701919i \(0.247673\pi\)
\(770\) 2.43644 + 3.24569i 0.0878033 + 0.116967i
\(771\) 9.72707 + 16.8478i 0.350312 + 0.606758i
\(772\) −0.756579 + 1.31043i −0.0272299 + 0.0471635i
\(773\) −6.40564 + 11.0949i −0.230395 + 0.399056i −0.957924 0.287021i \(-0.907335\pi\)
0.727529 + 0.686077i \(0.240668\pi\)
\(774\) −11.2005 + 19.3998i −0.402592 + 0.697310i
\(775\) −3.17681 + 5.50239i −0.114114 + 0.197652i
\(776\) 9.90048 + 17.1481i 0.355406 + 0.615582i