Properties

 Label 91.2.g.a.81.1 Level $91$ Weight $2$ Character 91.81 Analytic conductor $0.727$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$91 = 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 91.g (of order $$3$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$0.726638658394$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

 Embedding label 81.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 91.81 Dual form 91.2.g.a.9.1

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 + 0.866025i) q^{2} -3.00000 q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.50000 - 2.59808i) q^{5} +(1.50000 - 2.59808i) q^{6} +(-2.50000 - 0.866025i) q^{7} -3.00000 q^{8} +6.00000 q^{9} +O(q^{10})$$ $$q+(-0.500000 + 0.866025i) q^{2} -3.00000 q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.50000 - 2.59808i) q^{5} +(1.50000 - 2.59808i) q^{6} +(-2.50000 - 0.866025i) q^{7} -3.00000 q^{8} +6.00000 q^{9} +3.00000 q^{10} -3.00000 q^{11} +(-1.50000 - 2.59808i) q^{12} +(-1.00000 + 3.46410i) q^{13} +(2.00000 - 1.73205i) q^{14} +(4.50000 + 7.79423i) q^{15} +(0.500000 - 0.866025i) q^{16} +(1.00000 + 1.73205i) q^{17} +(-3.00000 + 5.19615i) q^{18} -1.00000 q^{19} +(1.50000 - 2.59808i) q^{20} +(7.50000 + 2.59808i) q^{21} +(1.50000 - 2.59808i) q^{22} +9.00000 q^{24} +(-2.00000 + 3.46410i) q^{25} +(-2.50000 - 2.59808i) q^{26} -9.00000 q^{27} +(-0.500000 - 2.59808i) q^{28} +(-3.50000 - 6.06218i) q^{29} -9.00000 q^{30} +(-1.50000 + 2.59808i) q^{31} +(-2.50000 - 4.33013i) q^{32} +9.00000 q^{33} -2.00000 q^{34} +(1.50000 + 7.79423i) q^{35} +(3.00000 + 5.19615i) q^{36} +(-1.00000 + 1.73205i) q^{37} +(0.500000 - 0.866025i) q^{38} +(3.00000 - 10.3923i) q^{39} +(4.50000 + 7.79423i) q^{40} +(-1.50000 - 2.59808i) q^{41} +(-6.00000 + 5.19615i) q^{42} +(3.50000 - 6.06218i) q^{43} +(-1.50000 - 2.59808i) q^{44} +(-9.00000 - 15.5885i) q^{45} +(-0.500000 - 0.866025i) q^{47} +(-1.50000 + 2.59808i) q^{48} +(5.50000 + 4.33013i) q^{49} +(-2.00000 - 3.46410i) q^{50} +(-3.00000 - 5.19615i) q^{51} +(-3.50000 + 0.866025i) q^{52} +(-1.50000 + 2.59808i) q^{53} +(4.50000 - 7.79423i) q^{54} +(4.50000 + 7.79423i) q^{55} +(7.50000 + 2.59808i) q^{56} +3.00000 q^{57} +7.00000 q^{58} +(2.00000 + 3.46410i) q^{59} +(-4.50000 + 7.79423i) q^{60} -13.0000 q^{61} +(-1.50000 - 2.59808i) q^{62} +(-15.0000 - 5.19615i) q^{63} +7.00000 q^{64} +(10.5000 - 2.59808i) q^{65} +(-4.50000 + 7.79423i) q^{66} -3.00000 q^{67} +(-1.00000 + 1.73205i) q^{68} +(-7.50000 - 2.59808i) q^{70} +(-6.50000 + 11.2583i) q^{71} -18.0000 q^{72} +(6.50000 - 11.2583i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(6.00000 - 10.3923i) q^{75} +(-0.500000 - 0.866025i) q^{76} +(7.50000 + 2.59808i) q^{77} +(7.50000 + 7.79423i) q^{78} +(1.50000 + 2.59808i) q^{79} -3.00000 q^{80} +9.00000 q^{81} +3.00000 q^{82} +(1.50000 + 7.79423i) q^{84} +(3.00000 - 5.19615i) q^{85} +(3.50000 + 6.06218i) q^{86} +(10.5000 + 18.1865i) q^{87} +9.00000 q^{88} +(-3.00000 + 5.19615i) q^{89} +18.0000 q^{90} +(5.50000 - 7.79423i) q^{91} +(4.50000 - 7.79423i) q^{93} +1.00000 q^{94} +(1.50000 + 2.59808i) q^{95} +(7.50000 + 12.9904i) q^{96} +(2.50000 - 4.33013i) q^{97} +(-6.50000 + 2.59808i) q^{98} -18.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} - 6 q^{3} + q^{4} - 3 q^{5} + 3 q^{6} - 5 q^{7} - 6 q^{8} + 12 q^{9}+O(q^{10})$$ 2 * q - q^2 - 6 * q^3 + q^4 - 3 * q^5 + 3 * q^6 - 5 * q^7 - 6 * q^8 + 12 * q^9 $$2 q - q^{2} - 6 q^{3} + q^{4} - 3 q^{5} + 3 q^{6} - 5 q^{7} - 6 q^{8} + 12 q^{9} + 6 q^{10} - 6 q^{11} - 3 q^{12} - 2 q^{13} + 4 q^{14} + 9 q^{15} + q^{16} + 2 q^{17} - 6 q^{18} - 2 q^{19} + 3 q^{20} + 15 q^{21} + 3 q^{22} + 18 q^{24} - 4 q^{25} - 5 q^{26} - 18 q^{27} - q^{28} - 7 q^{29} - 18 q^{30} - 3 q^{31} - 5 q^{32} + 18 q^{33} - 4 q^{34} + 3 q^{35} + 6 q^{36} - 2 q^{37} + q^{38} + 6 q^{39} + 9 q^{40} - 3 q^{41} - 12 q^{42} + 7 q^{43} - 3 q^{44} - 18 q^{45} - q^{47} - 3 q^{48} + 11 q^{49} - 4 q^{50} - 6 q^{51} - 7 q^{52} - 3 q^{53} + 9 q^{54} + 9 q^{55} + 15 q^{56} + 6 q^{57} + 14 q^{58} + 4 q^{59} - 9 q^{60} - 26 q^{61} - 3 q^{62} - 30 q^{63} + 14 q^{64} + 21 q^{65} - 9 q^{66} - 6 q^{67} - 2 q^{68} - 15 q^{70} - 13 q^{71} - 36 q^{72} + 13 q^{73} - 2 q^{74} + 12 q^{75} - q^{76} + 15 q^{77} + 15 q^{78} + 3 q^{79} - 6 q^{80} + 18 q^{81} + 6 q^{82} + 3 q^{84} + 6 q^{85} + 7 q^{86} + 21 q^{87} + 18 q^{88} - 6 q^{89} + 36 q^{90} + 11 q^{91} + 9 q^{93} + 2 q^{94} + 3 q^{95} + 15 q^{96} + 5 q^{97} - 13 q^{98} - 36 q^{99}+O(q^{100})$$ 2 * q - q^2 - 6 * q^3 + q^4 - 3 * q^5 + 3 * q^6 - 5 * q^7 - 6 * q^8 + 12 * q^9 + 6 * q^10 - 6 * q^11 - 3 * q^12 - 2 * q^13 + 4 * q^14 + 9 * q^15 + q^16 + 2 * q^17 - 6 * q^18 - 2 * q^19 + 3 * q^20 + 15 * q^21 + 3 * q^22 + 18 * q^24 - 4 * q^25 - 5 * q^26 - 18 * q^27 - q^28 - 7 * q^29 - 18 * q^30 - 3 * q^31 - 5 * q^32 + 18 * q^33 - 4 * q^34 + 3 * q^35 + 6 * q^36 - 2 * q^37 + q^38 + 6 * q^39 + 9 * q^40 - 3 * q^41 - 12 * q^42 + 7 * q^43 - 3 * q^44 - 18 * q^45 - q^47 - 3 * q^48 + 11 * q^49 - 4 * q^50 - 6 * q^51 - 7 * q^52 - 3 * q^53 + 9 * q^54 + 9 * q^55 + 15 * q^56 + 6 * q^57 + 14 * q^58 + 4 * q^59 - 9 * q^60 - 26 * q^61 - 3 * q^62 - 30 * q^63 + 14 * q^64 + 21 * q^65 - 9 * q^66 - 6 * q^67 - 2 * q^68 - 15 * q^70 - 13 * q^71 - 36 * q^72 + 13 * q^73 - 2 * q^74 + 12 * q^75 - q^76 + 15 * q^77 + 15 * q^78 + 3 * q^79 - 6 * q^80 + 18 * q^81 + 6 * q^82 + 3 * q^84 + 6 * q^85 + 7 * q^86 + 21 * q^87 + 18 * q^88 - 6 * q^89 + 36 * q^90 + 11 * q^91 + 9 * q^93 + 2 * q^94 + 3 * q^95 + 15 * q^96 + 5 * q^97 - 13 * q^98 - 36 * q^99

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/91\mathbb{Z}\right)^\times$$.

 $$n$$ $$15$$ $$66$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i $$-0.948360\pi$$
0.633316 + 0.773893i $$0.281693\pi$$
$$3$$ −3.00000 −1.73205 −0.866025 0.500000i $$-0.833333\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i $$-0.932609\pi$$
0.306851 0.951757i $$-0.400725\pi$$
$$6$$ 1.50000 2.59808i 0.612372 1.06066i
$$7$$ −2.50000 0.866025i −0.944911 0.327327i
$$8$$ −3.00000 −1.06066
$$9$$ 6.00000 2.00000
$$10$$ 3.00000 0.948683
$$11$$ −3.00000 −0.904534 −0.452267 0.891883i $$-0.649385\pi$$
−0.452267 + 0.891883i $$0.649385\pi$$
$$12$$ −1.50000 2.59808i −0.433013 0.750000i
$$13$$ −1.00000 + 3.46410i −0.277350 + 0.960769i
$$14$$ 2.00000 1.73205i 0.534522 0.462910i
$$15$$ 4.50000 + 7.79423i 1.16190 + 2.01246i
$$16$$ 0.500000 0.866025i 0.125000 0.216506i
$$17$$ 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i $$-0.0886875\pi$$
−0.718900 + 0.695113i $$0.755354\pi$$
$$18$$ −3.00000 + 5.19615i −0.707107 + 1.22474i
$$19$$ −1.00000 −0.229416 −0.114708 0.993399i $$-0.536593\pi$$
−0.114708 + 0.993399i $$0.536593\pi$$
$$20$$ 1.50000 2.59808i 0.335410 0.580948i
$$21$$ 7.50000 + 2.59808i 1.63663 + 0.566947i
$$22$$ 1.50000 2.59808i 0.319801 0.553912i
$$23$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$24$$ 9.00000 1.83712
$$25$$ −2.00000 + 3.46410i −0.400000 + 0.692820i
$$26$$ −2.50000 2.59808i −0.490290 0.509525i
$$27$$ −9.00000 −1.73205
$$28$$ −0.500000 2.59808i −0.0944911 0.490990i
$$29$$ −3.50000 6.06218i −0.649934 1.12572i −0.983138 0.182864i $$-0.941463\pi$$
0.333205 0.942855i $$-0.391870\pi$$
$$30$$ −9.00000 −1.64317
$$31$$ −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i $$-0.920161\pi$$
0.699301 + 0.714827i $$0.253495\pi$$
$$32$$ −2.50000 4.33013i −0.441942 0.765466i
$$33$$ 9.00000 1.56670
$$34$$ −2.00000 −0.342997
$$35$$ 1.50000 + 7.79423i 0.253546 + 1.31747i
$$36$$ 3.00000 + 5.19615i 0.500000 + 0.866025i
$$37$$ −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i $$-0.885902\pi$$
0.772043 + 0.635571i $$0.219235\pi$$
$$38$$ 0.500000 0.866025i 0.0811107 0.140488i
$$39$$ 3.00000 10.3923i 0.480384 1.66410i
$$40$$ 4.50000 + 7.79423i 0.711512 + 1.23238i
$$41$$ −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i $$-0.241934\pi$$
−0.959058 + 0.283211i $$0.908600\pi$$
$$42$$ −6.00000 + 5.19615i −0.925820 + 0.801784i
$$43$$ 3.50000 6.06218i 0.533745 0.924473i −0.465478 0.885059i $$-0.654118\pi$$
0.999223 0.0394140i $$-0.0125491\pi$$
$$44$$ −1.50000 2.59808i −0.226134 0.391675i
$$45$$ −9.00000 15.5885i −1.34164 2.32379i
$$46$$ 0 0
$$47$$ −0.500000 0.866025i −0.0729325 0.126323i 0.827253 0.561830i $$-0.189902\pi$$
−0.900185 + 0.435507i $$0.856569\pi$$
$$48$$ −1.50000 + 2.59808i −0.216506 + 0.375000i
$$49$$ 5.50000 + 4.33013i 0.785714 + 0.618590i
$$50$$ −2.00000 3.46410i −0.282843 0.489898i
$$51$$ −3.00000 5.19615i −0.420084 0.727607i
$$52$$ −3.50000 + 0.866025i −0.485363 + 0.120096i
$$53$$ −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i $$-0.899391\pi$$
0.744423 + 0.667708i $$0.232725\pi$$
$$54$$ 4.50000 7.79423i 0.612372 1.06066i
$$55$$ 4.50000 + 7.79423i 0.606780 + 1.05097i
$$56$$ 7.50000 + 2.59808i 1.00223 + 0.347183i
$$57$$ 3.00000 0.397360
$$58$$ 7.00000 0.919145
$$59$$ 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i $$-0.0828195\pi$$
−0.705965 + 0.708247i $$0.749486\pi$$
$$60$$ −4.50000 + 7.79423i −0.580948 + 1.00623i
$$61$$ −13.0000 −1.66448 −0.832240 0.554416i $$-0.812942\pi$$
−0.832240 + 0.554416i $$0.812942\pi$$
$$62$$ −1.50000 2.59808i −0.190500 0.329956i
$$63$$ −15.0000 5.19615i −1.88982 0.654654i
$$64$$ 7.00000 0.875000
$$65$$ 10.5000 2.59808i 1.30236 0.322252i
$$66$$ −4.50000 + 7.79423i −0.553912 + 0.959403i
$$67$$ −3.00000 −0.366508 −0.183254 0.983066i $$-0.558663\pi$$
−0.183254 + 0.983066i $$0.558663\pi$$
$$68$$ −1.00000 + 1.73205i −0.121268 + 0.210042i
$$69$$ 0 0
$$70$$ −7.50000 2.59808i −0.896421 0.310530i
$$71$$ −6.50000 + 11.2583i −0.771408 + 1.33612i 0.165383 + 0.986229i $$0.447114\pi$$
−0.936791 + 0.349889i $$0.886219\pi$$
$$72$$ −18.0000 −2.12132
$$73$$ 6.50000 11.2583i 0.760767 1.31769i −0.181688 0.983356i $$-0.558156\pi$$
0.942455 0.334332i $$-0.108511\pi$$
$$74$$ −1.00000 1.73205i −0.116248 0.201347i
$$75$$ 6.00000 10.3923i 0.692820 1.20000i
$$76$$ −0.500000 0.866025i −0.0573539 0.0993399i
$$77$$ 7.50000 + 2.59808i 0.854704 + 0.296078i
$$78$$ 7.50000 + 7.79423i 0.849208 + 0.882523i
$$79$$ 1.50000 + 2.59808i 0.168763 + 0.292306i 0.937985 0.346675i $$-0.112689\pi$$
−0.769222 + 0.638982i $$0.779356\pi$$
$$80$$ −3.00000 −0.335410
$$81$$ 9.00000 1.00000
$$82$$ 3.00000 0.331295
$$83$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$84$$ 1.50000 + 7.79423i 0.163663 + 0.850420i
$$85$$ 3.00000 5.19615i 0.325396 0.563602i
$$86$$ 3.50000 + 6.06218i 0.377415 + 0.653701i
$$87$$ 10.5000 + 18.1865i 1.12572 + 1.94980i
$$88$$ 9.00000 0.959403
$$89$$ −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i $$-0.936344\pi$$
0.662071 + 0.749441i $$0.269678\pi$$
$$90$$ 18.0000 1.89737
$$91$$ 5.50000 7.79423i 0.576557 0.817057i
$$92$$ 0 0
$$93$$ 4.50000 7.79423i 0.466628 0.808224i
$$94$$ 1.00000 0.103142
$$95$$ 1.50000 + 2.59808i 0.153897 + 0.266557i
$$96$$ 7.50000 + 12.9904i 0.765466 + 1.32583i
$$97$$ 2.50000 4.33013i 0.253837 0.439658i −0.710742 0.703452i $$-0.751641\pi$$
0.964579 + 0.263795i $$0.0849741\pi$$
$$98$$ −6.50000 + 2.59808i −0.656599 + 0.262445i
$$99$$ −18.0000 −1.80907
$$100$$ −4.00000 −0.400000
$$101$$ −5.00000 −0.497519 −0.248759 0.968565i $$-0.580023\pi$$
−0.248759 + 0.968565i $$0.580023\pi$$
$$102$$ 6.00000 0.594089
$$103$$ −2.50000 4.33013i −0.246332 0.426660i 0.716173 0.697923i $$-0.245892\pi$$
−0.962505 + 0.271263i $$0.912559\pi$$
$$104$$ 3.00000 10.3923i 0.294174 1.01905i
$$105$$ −4.50000 23.3827i −0.439155 2.28192i
$$106$$ −1.50000 2.59808i −0.145693 0.252347i
$$107$$ −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i $$-0.959717\pi$$
0.605308 + 0.795991i $$0.293050\pi$$
$$108$$ −4.50000 7.79423i −0.433013 0.750000i
$$109$$ −3.50000 + 6.06218i −0.335239 + 0.580651i −0.983531 0.180741i $$-0.942150\pi$$
0.648292 + 0.761392i $$0.275484\pi$$
$$110$$ −9.00000 −0.858116
$$111$$ 3.00000 5.19615i 0.284747 0.493197i
$$112$$ −2.00000 + 1.73205i −0.188982 + 0.163663i
$$113$$ −7.50000 + 12.9904i −0.705541 + 1.22203i 0.260955 + 0.965351i $$0.415962\pi$$
−0.966496 + 0.256681i $$0.917371\pi$$
$$114$$ −1.50000 + 2.59808i −0.140488 + 0.243332i
$$115$$ 0 0
$$116$$ 3.50000 6.06218i 0.324967 0.562859i
$$117$$ −6.00000 + 20.7846i −0.554700 + 1.92154i
$$118$$ −4.00000 −0.368230
$$119$$ −1.00000 5.19615i −0.0916698 0.476331i
$$120$$ −13.5000 23.3827i −1.23238 2.13454i
$$121$$ −2.00000 −0.181818
$$122$$ 6.50000 11.2583i 0.588482 1.01928i
$$123$$ 4.50000 + 7.79423i 0.405751 + 0.702782i
$$124$$ −3.00000 −0.269408
$$125$$ −3.00000 −0.268328
$$126$$ 12.0000 10.3923i 1.06904 0.925820i
$$127$$ −5.50000 9.52628i −0.488046 0.845321i 0.511859 0.859069i $$-0.328957\pi$$
−0.999905 + 0.0137486i $$0.995624\pi$$
$$128$$ 1.50000 2.59808i 0.132583 0.229640i
$$129$$ −10.5000 + 18.1865i −0.924473 + 1.60123i
$$130$$ −3.00000 + 10.3923i −0.263117 + 0.911465i
$$131$$ −2.50000 4.33013i −0.218426 0.378325i 0.735901 0.677089i $$-0.236759\pi$$
−0.954327 + 0.298764i $$0.903426\pi$$
$$132$$ 4.50000 + 7.79423i 0.391675 + 0.678401i
$$133$$ 2.50000 + 0.866025i 0.216777 + 0.0750939i
$$134$$ 1.50000 2.59808i 0.129580 0.224440i
$$135$$ 13.5000 + 23.3827i 1.16190 + 2.01246i
$$136$$ −3.00000 5.19615i −0.257248 0.445566i
$$137$$ −5.00000 8.66025i −0.427179 0.739895i 0.569442 0.822031i $$-0.307159\pi$$
−0.996621 + 0.0821359i $$0.973826\pi$$
$$138$$ 0 0
$$139$$ 7.50000 12.9904i 0.636142 1.10183i −0.350130 0.936701i $$-0.613863\pi$$
0.986272 0.165129i $$-0.0528040\pi$$
$$140$$ −6.00000 + 5.19615i −0.507093 + 0.439155i
$$141$$ 1.50000 + 2.59808i 0.126323 + 0.218797i
$$142$$ −6.50000 11.2583i −0.545468 0.944778i
$$143$$ 3.00000 10.3923i 0.250873 0.869048i
$$144$$ 3.00000 5.19615i 0.250000 0.433013i
$$145$$ −10.5000 + 18.1865i −0.871978 + 1.51031i
$$146$$ 6.50000 + 11.2583i 0.537944 + 0.931746i
$$147$$ −16.5000 12.9904i −1.36090 1.07143i
$$148$$ −2.00000 −0.164399
$$149$$ 15.0000 1.22885 0.614424 0.788976i $$-0.289388\pi$$
0.614424 + 0.788976i $$0.289388\pi$$
$$150$$ 6.00000 + 10.3923i 0.489898 + 0.848528i
$$151$$ 10.5000 18.1865i 0.854478 1.48000i −0.0226507 0.999743i $$-0.507211\pi$$
0.877129 0.480256i $$-0.159456\pi$$
$$152$$ 3.00000 0.243332
$$153$$ 6.00000 + 10.3923i 0.485071 + 0.840168i
$$154$$ −6.00000 + 5.19615i −0.483494 + 0.418718i
$$155$$ 9.00000 0.722897
$$156$$ 10.5000 2.59808i 0.840673 0.208013i
$$157$$ −9.50000 + 16.4545i −0.758183 + 1.31321i 0.185594 + 0.982627i $$0.440579\pi$$
−0.943777 + 0.330584i $$0.892754\pi$$
$$158$$ −3.00000 −0.238667
$$159$$ 4.50000 7.79423i 0.356873 0.618123i
$$160$$ −7.50000 + 12.9904i −0.592927 + 1.02698i
$$161$$ 0 0
$$162$$ −4.50000 + 7.79423i −0.353553 + 0.612372i
$$163$$ −1.00000 −0.0783260 −0.0391630 0.999233i $$-0.512469\pi$$
−0.0391630 + 0.999233i $$0.512469\pi$$
$$164$$ 1.50000 2.59808i 0.117130 0.202876i
$$165$$ −13.5000 23.3827i −1.05097 1.82034i
$$166$$ 0 0
$$167$$ 6.50000 + 11.2583i 0.502985 + 0.871196i 0.999994 + 0.00345033i $$0.00109828\pi$$
−0.497009 + 0.867745i $$0.665568\pi$$
$$168$$ −22.5000 7.79423i −1.73591 0.601338i
$$169$$ −11.0000 6.92820i −0.846154 0.532939i
$$170$$ 3.00000 + 5.19615i 0.230089 + 0.398527i
$$171$$ −6.00000 −0.458831
$$172$$ 7.00000 0.533745
$$173$$ 19.0000 1.44454 0.722272 0.691609i $$-0.243098\pi$$
0.722272 + 0.691609i $$0.243098\pi$$
$$174$$ −21.0000 −1.59201
$$175$$ 8.00000 6.92820i 0.604743 0.523723i
$$176$$ −1.50000 + 2.59808i −0.113067 + 0.195837i
$$177$$ −6.00000 10.3923i −0.450988 0.781133i
$$178$$ −3.00000 5.19615i −0.224860 0.389468i
$$179$$ 17.0000 1.27064 0.635320 0.772249i $$-0.280868\pi$$
0.635320 + 0.772249i $$0.280868\pi$$
$$180$$ 9.00000 15.5885i 0.670820 1.16190i
$$181$$ −22.0000 −1.63525 −0.817624 0.575753i $$-0.804709\pi$$
−0.817624 + 0.575753i $$0.804709\pi$$
$$182$$ 4.00000 + 8.66025i 0.296500 + 0.641941i
$$183$$ 39.0000 2.88296
$$184$$ 0 0
$$185$$ 6.00000 0.441129
$$186$$ 4.50000 + 7.79423i 0.329956 + 0.571501i
$$187$$ −3.00000 5.19615i −0.219382 0.379980i
$$188$$ 0.500000 0.866025i 0.0364662 0.0631614i
$$189$$ 22.5000 + 7.79423i 1.63663 + 0.566947i
$$190$$ −3.00000 −0.217643
$$191$$ −17.0000 −1.23008 −0.615038 0.788497i $$-0.710860\pi$$
−0.615038 + 0.788497i $$0.710860\pi$$
$$192$$ −21.0000 −1.51554
$$193$$ 7.00000 0.503871 0.251936 0.967744i $$-0.418933\pi$$
0.251936 + 0.967744i $$0.418933\pi$$
$$194$$ 2.50000 + 4.33013i 0.179490 + 0.310885i
$$195$$ −31.5000 + 7.79423i −2.25576 + 0.558156i
$$196$$ −1.00000 + 6.92820i −0.0714286 + 0.494872i
$$197$$ 0.500000 + 0.866025i 0.0356235 + 0.0617018i 0.883287 0.468832i $$-0.155325\pi$$
−0.847664 + 0.530534i $$0.821992\pi$$
$$198$$ 9.00000 15.5885i 0.639602 1.10782i
$$199$$ 10.0000 + 17.3205i 0.708881 + 1.22782i 0.965272 + 0.261245i $$0.0841331\pi$$
−0.256391 + 0.966573i $$0.582534\pi$$
$$200$$ 6.00000 10.3923i 0.424264 0.734847i
$$201$$ 9.00000 0.634811
$$202$$ 2.50000 4.33013i 0.175899 0.304667i
$$203$$ 3.50000 + 18.1865i 0.245652 + 1.27644i
$$204$$ 3.00000 5.19615i 0.210042 0.363803i
$$205$$ −4.50000 + 7.79423i −0.314294 + 0.544373i
$$206$$ 5.00000 0.348367
$$207$$ 0 0
$$208$$ 2.50000 + 2.59808i 0.173344 + 0.180144i
$$209$$ 3.00000 0.207514
$$210$$ 22.5000 + 7.79423i 1.55265 + 0.537853i
$$211$$ −3.50000 6.06218i −0.240950 0.417338i 0.720035 0.693938i $$-0.244126\pi$$
−0.960985 + 0.276600i $$0.910792\pi$$
$$212$$ −3.00000 −0.206041
$$213$$ 19.5000 33.7750i 1.33612 2.31422i
$$214$$ −4.00000 6.92820i −0.273434 0.473602i
$$215$$ −21.0000 −1.43219
$$216$$ 27.0000 1.83712
$$217$$ 6.00000 5.19615i 0.407307 0.352738i
$$218$$ −3.50000 6.06218i −0.237050 0.410582i
$$219$$ −19.5000 + 33.7750i −1.31769 + 2.28230i
$$220$$ −4.50000 + 7.79423i −0.303390 + 0.525487i
$$221$$ −7.00000 + 1.73205i −0.470871 + 0.116510i
$$222$$ 3.00000 + 5.19615i 0.201347 + 0.348743i
$$223$$ 4.50000 + 7.79423i 0.301342 + 0.521940i 0.976440 0.215788i $$-0.0692320\pi$$
−0.675098 + 0.737728i $$0.735899\pi$$
$$224$$ 2.50000 + 12.9904i 0.167038 + 0.867956i
$$225$$ −12.0000 + 20.7846i −0.800000 + 1.38564i
$$226$$ −7.50000 12.9904i −0.498893 0.864107i
$$227$$ 2.00000 + 3.46410i 0.132745 + 0.229920i 0.924734 0.380615i $$-0.124288\pi$$
−0.791989 + 0.610535i $$0.790954\pi$$
$$228$$ 1.50000 + 2.59808i 0.0993399 + 0.172062i
$$229$$ 6.50000 + 11.2583i 0.429532 + 0.743971i 0.996832 0.0795401i $$-0.0253452\pi$$
−0.567300 + 0.823511i $$0.692012\pi$$
$$230$$ 0 0
$$231$$ −22.5000 7.79423i −1.48039 0.512823i
$$232$$ 10.5000 + 18.1865i 0.689359 + 1.19400i
$$233$$ 10.5000 + 18.1865i 0.687878 + 1.19144i 0.972523 + 0.232806i $$0.0747909\pi$$
−0.284645 + 0.958633i $$0.591876\pi$$
$$234$$ −15.0000 15.5885i −0.980581 1.01905i
$$235$$ −1.50000 + 2.59808i −0.0978492 + 0.169480i
$$236$$ −2.00000 + 3.46410i −0.130189 + 0.225494i
$$237$$ −4.50000 7.79423i −0.292306 0.506290i
$$238$$ 5.00000 + 1.73205i 0.324102 + 0.112272i
$$239$$ −4.00000 −0.258738 −0.129369 0.991596i $$-0.541295\pi$$
−0.129369 + 0.991596i $$0.541295\pi$$
$$240$$ 9.00000 0.580948
$$241$$ 13.0000 + 22.5167i 0.837404 + 1.45043i 0.892058 + 0.451920i $$0.149261\pi$$
−0.0546547 + 0.998505i $$0.517406\pi$$
$$242$$ 1.00000 1.73205i 0.0642824 0.111340i
$$243$$ 0 0
$$244$$ −6.50000 11.2583i −0.416120 0.720741i
$$245$$ 3.00000 20.7846i 0.191663 1.32788i
$$246$$ −9.00000 −0.573819
$$247$$ 1.00000 3.46410i 0.0636285 0.220416i
$$248$$ 4.50000 7.79423i 0.285750 0.494934i
$$249$$ 0 0
$$250$$ 1.50000 2.59808i 0.0948683 0.164317i
$$251$$ 11.5000 19.9186i 0.725874 1.25725i −0.232740 0.972539i $$-0.574769\pi$$
0.958613 0.284711i $$-0.0918976\pi$$
$$252$$ −3.00000 15.5885i −0.188982 0.981981i
$$253$$ 0 0
$$254$$ 11.0000 0.690201
$$255$$ −9.00000 + 15.5885i −0.563602 + 0.976187i
$$256$$ 8.50000 + 14.7224i 0.531250 + 0.920152i
$$257$$ 1.00000 1.73205i 0.0623783 0.108042i −0.833150 0.553047i $$-0.813465\pi$$
0.895528 + 0.445005i $$0.146798\pi$$
$$258$$ −10.5000 18.1865i −0.653701 1.13224i
$$259$$ 4.00000 3.46410i 0.248548 0.215249i
$$260$$ 7.50000 + 7.79423i 0.465130 + 0.483378i
$$261$$ −21.0000 36.3731i −1.29987 2.25144i
$$262$$ 5.00000 0.308901
$$263$$ −27.0000 −1.66489 −0.832446 0.554107i $$-0.813060\pi$$
−0.832446 + 0.554107i $$0.813060\pi$$
$$264$$ −27.0000 −1.66174
$$265$$ 9.00000 0.552866
$$266$$ −2.00000 + 1.73205i −0.122628 + 0.106199i
$$267$$ 9.00000 15.5885i 0.550791 0.953998i
$$268$$ −1.50000 2.59808i −0.0916271 0.158703i
$$269$$ −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i $$-0.981774\pi$$
0.449622 0.893219i $$-0.351559\pi$$
$$270$$ −27.0000 −1.64317
$$271$$ 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i $$-0.671801\pi$$
0.999870 + 0.0161307i $$0.00513477\pi$$
$$272$$ 2.00000 0.121268
$$273$$ −16.5000 + 23.3827i −0.998625 + 1.41518i
$$274$$ 10.0000 0.604122
$$275$$ 6.00000 10.3923i 0.361814 0.626680i
$$276$$ 0 0
$$277$$ −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i $$-0.936830\pi$$
0.319447 0.947604i $$-0.396503\pi$$
$$278$$ 7.50000 + 12.9904i 0.449820 + 0.779111i
$$279$$ −9.00000 + 15.5885i −0.538816 + 0.933257i
$$280$$ −4.50000 23.3827i −0.268926 1.39738i
$$281$$ −18.0000 −1.07379 −0.536895 0.843649i $$-0.680403\pi$$
−0.536895 + 0.843649i $$0.680403\pi$$
$$282$$ −3.00000 −0.178647
$$283$$ 1.00000 0.0594438 0.0297219 0.999558i $$-0.490538\pi$$
0.0297219 + 0.999558i $$0.490538\pi$$
$$284$$ −13.0000 −0.771408
$$285$$ −4.50000 7.79423i −0.266557 0.461690i
$$286$$ 7.50000 + 7.79423i 0.443484 + 0.460882i
$$287$$ 1.50000 + 7.79423i 0.0885422 + 0.460079i
$$288$$ −15.0000 25.9808i −0.883883 1.53093i
$$289$$ 6.50000 11.2583i 0.382353 0.662255i
$$290$$ −10.5000 18.1865i −0.616581 1.06795i
$$291$$ −7.50000 + 12.9904i −0.439658 + 0.761510i
$$292$$ 13.0000 0.760767
$$293$$ −5.50000 + 9.52628i −0.321313 + 0.556531i −0.980759 0.195221i $$-0.937458\pi$$
0.659446 + 0.751752i $$0.270791\pi$$
$$294$$ 19.5000 7.79423i 1.13726 0.454569i
$$295$$ 6.00000 10.3923i 0.349334 0.605063i
$$296$$ 3.00000 5.19615i 0.174371 0.302020i
$$297$$ 27.0000 1.56670
$$298$$ −7.50000 + 12.9904i −0.434463 + 0.752513i
$$299$$ 0 0
$$300$$ 12.0000 0.692820
$$301$$ −14.0000 + 12.1244i −0.806947 + 0.698836i
$$302$$ 10.5000 + 18.1865i 0.604207 + 1.04652i
$$303$$ 15.0000 0.861727
$$304$$ −0.500000 + 0.866025i −0.0286770 + 0.0496700i
$$305$$ 19.5000 + 33.7750i 1.11657 + 1.93395i
$$306$$ −12.0000 −0.685994
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ 1.50000 + 7.79423i 0.0854704 + 0.444117i
$$309$$ 7.50000 + 12.9904i 0.426660 + 0.738997i
$$310$$ −4.50000 + 7.79423i −0.255583 + 0.442682i
$$311$$ 4.50000 7.79423i 0.255172 0.441970i −0.709771 0.704433i $$-0.751201\pi$$
0.964942 + 0.262463i $$0.0845347\pi$$
$$312$$ −9.00000 + 31.1769i −0.509525 + 1.76505i
$$313$$ −9.50000 16.4545i −0.536972 0.930062i −0.999065 0.0432311i $$-0.986235\pi$$
0.462093 0.886831i $$-0.347098\pi$$
$$314$$ −9.50000 16.4545i −0.536116 0.928580i
$$315$$ 9.00000 + 46.7654i 0.507093 + 2.63493i
$$316$$ −1.50000 + 2.59808i −0.0843816 + 0.146153i
$$317$$ 4.50000 + 7.79423i 0.252745 + 0.437767i 0.964281 0.264883i $$-0.0853332\pi$$
−0.711535 + 0.702650i $$0.752000\pi$$
$$318$$ 4.50000 + 7.79423i 0.252347 + 0.437079i
$$319$$ 10.5000 + 18.1865i 0.587887 + 1.01825i
$$320$$ −10.5000 18.1865i −0.586968 1.01666i
$$321$$ 12.0000 20.7846i 0.669775 1.16008i
$$322$$ 0 0
$$323$$ −1.00000 1.73205i −0.0556415 0.0963739i
$$324$$ 4.50000 + 7.79423i 0.250000 + 0.433013i
$$325$$ −10.0000 10.3923i −0.554700 0.576461i
$$326$$ 0.500000 0.866025i 0.0276924 0.0479647i
$$327$$ 10.5000 18.1865i 0.580651 1.00572i
$$328$$ 4.50000 + 7.79423i 0.248471 + 0.430364i
$$329$$ 0.500000 + 2.59808i 0.0275659 + 0.143237i
$$330$$ 27.0000 1.48630
$$331$$ −29.0000 −1.59398 −0.796992 0.603990i $$-0.793577\pi$$
−0.796992 + 0.603990i $$0.793577\pi$$
$$332$$ 0 0
$$333$$ −6.00000 + 10.3923i −0.328798 + 0.569495i
$$334$$ −13.0000 −0.711328
$$335$$ 4.50000 + 7.79423i 0.245861 + 0.425844i
$$336$$ 6.00000 5.19615i 0.327327 0.283473i
$$337$$ 14.0000 0.762629 0.381314 0.924445i $$-0.375472\pi$$
0.381314 + 0.924445i $$0.375472\pi$$
$$338$$ 11.5000 6.06218i 0.625518 0.329739i
$$339$$ 22.5000 38.9711i 1.22203 2.11662i
$$340$$ 6.00000 0.325396
$$341$$ 4.50000 7.79423i 0.243689 0.422081i
$$342$$ 3.00000 5.19615i 0.162221 0.280976i
$$343$$ −10.0000 15.5885i −0.539949 0.841698i
$$344$$ −10.5000 + 18.1865i −0.566122 + 0.980552i
$$345$$ 0 0
$$346$$ −9.50000 + 16.4545i −0.510723 + 0.884598i
$$347$$ 4.00000 + 6.92820i 0.214731 + 0.371925i 0.953189 0.302374i $$-0.0977791\pi$$
−0.738458 + 0.674299i $$0.764446\pi$$
$$348$$ −10.5000 + 18.1865i −0.562859 + 0.974901i
$$349$$ −11.5000 19.9186i −0.615581 1.06622i −0.990282 0.139072i $$-0.955588\pi$$
0.374701 0.927146i $$-0.377745\pi$$
$$350$$ 2.00000 + 10.3923i 0.106904 + 0.555492i
$$351$$ 9.00000 31.1769i 0.480384 1.66410i
$$352$$ 7.50000 + 12.9904i 0.399751 + 0.692390i
$$353$$ −25.0000 −1.33062 −0.665308 0.746569i $$-0.731700\pi$$
−0.665308 + 0.746569i $$0.731700\pi$$
$$354$$ 12.0000 0.637793
$$355$$ 39.0000 2.06991
$$356$$ −6.00000 −0.317999
$$357$$ 3.00000 + 15.5885i 0.158777 + 0.825029i
$$358$$ −8.50000 + 14.7224i −0.449239 + 0.778105i
$$359$$ −8.50000 14.7224i −0.448613 0.777020i 0.549683 0.835373i $$-0.314748\pi$$
−0.998296 + 0.0583530i $$0.981415\pi$$
$$360$$ 27.0000 + 46.7654i 1.42302 + 2.46475i
$$361$$ −18.0000 −0.947368
$$362$$ 11.0000 19.0526i 0.578147 1.00138i
$$363$$ 6.00000 0.314918
$$364$$ 9.50000 + 0.866025i 0.497935 + 0.0453921i
$$365$$ −39.0000 −2.04135
$$366$$ −19.5000 + 33.7750i −1.01928 + 1.76545i
$$367$$ −31.0000 −1.61819 −0.809093 0.587680i $$-0.800041\pi$$
−0.809093 + 0.587680i $$0.800041\pi$$
$$368$$ 0 0
$$369$$ −9.00000 15.5885i −0.468521 0.811503i
$$370$$ −3.00000 + 5.19615i −0.155963 + 0.270135i
$$371$$ 6.00000 5.19615i 0.311504 0.269771i
$$372$$ 9.00000 0.466628
$$373$$ −9.00000 −0.466002 −0.233001 0.972476i $$-0.574855\pi$$
−0.233001 + 0.972476i $$0.574855\pi$$
$$374$$ 6.00000 0.310253
$$375$$ 9.00000 0.464758
$$376$$ 1.50000 + 2.59808i 0.0773566 + 0.133986i
$$377$$ 24.5000 6.06218i 1.26181 0.312218i
$$378$$ −18.0000 + 15.5885i −0.925820 + 0.801784i
$$379$$ 16.5000 + 28.5788i 0.847548 + 1.46800i 0.883390 + 0.468639i $$0.155255\pi$$
−0.0358418 + 0.999357i $$0.511411\pi$$
$$380$$ −1.50000 + 2.59808i −0.0769484 + 0.133278i
$$381$$ 16.5000 + 28.5788i 0.845321 + 1.46414i
$$382$$ 8.50000 14.7224i 0.434898 0.753265i
$$383$$ −21.0000 −1.07305 −0.536525 0.843884i $$-0.680263\pi$$
−0.536525 + 0.843884i $$0.680263\pi$$
$$384$$ −4.50000 + 7.79423i −0.229640 + 0.397748i
$$385$$ −4.50000 23.3827i −0.229341 1.19169i
$$386$$ −3.50000 + 6.06218i −0.178145 + 0.308557i
$$387$$ 21.0000 36.3731i 1.06749 1.84895i
$$388$$ 5.00000 0.253837
$$389$$ 16.5000 28.5788i 0.836583 1.44900i −0.0561516 0.998422i $$-0.517883\pi$$
0.892735 0.450582i $$-0.148784\pi$$
$$390$$ 9.00000 31.1769i 0.455733 1.57870i
$$391$$ 0 0
$$392$$ −16.5000 12.9904i −0.833376 0.656113i
$$393$$ 7.50000 + 12.9904i 0.378325 + 0.655278i
$$394$$ −1.00000 −0.0503793
$$395$$ 4.50000 7.79423i 0.226420 0.392170i
$$396$$ −9.00000 15.5885i −0.452267 0.783349i
$$397$$ −1.00000 −0.0501886 −0.0250943 0.999685i $$-0.507989\pi$$
−0.0250943 + 0.999685i $$0.507989\pi$$
$$398$$ −20.0000 −1.00251
$$399$$ −7.50000 2.59808i −0.375470 0.130066i
$$400$$ 2.00000 + 3.46410i 0.100000 + 0.173205i
$$401$$ 1.00000 1.73205i 0.0499376 0.0864945i −0.839976 0.542623i $$-0.817431\pi$$
0.889914 + 0.456129i $$0.150764\pi$$
$$402$$ −4.50000 + 7.79423i −0.224440 + 0.388741i
$$403$$ −7.50000 7.79423i −0.373602 0.388258i
$$404$$ −2.50000 4.33013i −0.124380 0.215432i
$$405$$ −13.5000 23.3827i −0.670820 1.16190i
$$406$$ −17.5000 6.06218i −0.868510 0.300861i
$$407$$ 3.00000 5.19615i 0.148704 0.257564i
$$408$$ 9.00000 + 15.5885i 0.445566 + 0.771744i
$$409$$ −7.00000 12.1244i −0.346128 0.599511i 0.639430 0.768849i $$-0.279170\pi$$
−0.985558 + 0.169338i $$0.945837\pi$$
$$410$$ −4.50000 7.79423i −0.222239 0.384930i
$$411$$ 15.0000 + 25.9808i 0.739895 + 1.28154i
$$412$$ 2.50000 4.33013i 0.123166 0.213330i
$$413$$ −2.00000 10.3923i −0.0984136 0.511372i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 17.5000 4.33013i 0.858008 0.212302i
$$417$$ −22.5000 + 38.9711i −1.10183 + 1.90843i
$$418$$ −1.50000 + 2.59808i −0.0733674 + 0.127076i
$$419$$ 12.5000 + 21.6506i 0.610665 + 1.05770i 0.991129 + 0.132907i $$0.0424311\pi$$
−0.380464 + 0.924796i $$0.624236\pi$$
$$420$$ 18.0000 15.5885i 0.878310 0.760639i
$$421$$ 18.0000 0.877266 0.438633 0.898666i $$-0.355463\pi$$
0.438633 + 0.898666i $$0.355463\pi$$
$$422$$ 7.00000 0.340755
$$423$$ −3.00000 5.19615i −0.145865 0.252646i
$$424$$ 4.50000 7.79423i 0.218539 0.378521i
$$425$$ −8.00000 −0.388057
$$426$$ 19.5000 + 33.7750i 0.944778 + 1.63640i
$$427$$ 32.5000 + 11.2583i 1.57279 + 0.544829i
$$428$$ −8.00000 −0.386695
$$429$$ −9.00000 + 31.1769i −0.434524 + 1.50524i
$$430$$ 10.5000 18.1865i 0.506355 0.877033i
$$431$$ 9.00000 0.433515 0.216757 0.976226i $$-0.430452\pi$$
0.216757 + 0.976226i $$0.430452\pi$$
$$432$$ −4.50000 + 7.79423i −0.216506 + 0.375000i
$$433$$ −13.5000 + 23.3827i −0.648769 + 1.12370i 0.334649 + 0.942343i $$0.391382\pi$$
−0.983417 + 0.181357i $$0.941951\pi$$
$$434$$ 1.50000 + 7.79423i 0.0720023 + 0.374135i
$$435$$ 31.5000 54.5596i 1.51031 2.61593i
$$436$$ −7.00000 −0.335239
$$437$$ 0 0
$$438$$ −19.5000 33.7750i −0.931746 1.61383i
$$439$$ 8.00000 13.8564i 0.381819 0.661330i −0.609503 0.792784i $$-0.708631\pi$$
0.991322 + 0.131453i $$0.0419644\pi$$
$$440$$ −13.5000 23.3827i −0.643587 1.11473i
$$441$$ 33.0000 + 25.9808i 1.57143 + 1.23718i
$$442$$ 2.00000 6.92820i 0.0951303 0.329541i
$$443$$ 5.50000 + 9.52628i 0.261313 + 0.452607i 0.966591 0.256323i $$-0.0825112\pi$$
−0.705278 + 0.708931i $$0.749178\pi$$
$$444$$ 6.00000 0.284747
$$445$$ 18.0000 0.853282
$$446$$ −9.00000 −0.426162
$$447$$ −45.0000 −2.12843
$$448$$ −17.5000 6.06218i −0.826797 0.286411i
$$449$$ −7.50000 + 12.9904i −0.353947 + 0.613054i −0.986937 0.161106i $$-0.948494\pi$$
0.632990 + 0.774160i $$0.281827\pi$$
$$450$$ −12.0000 20.7846i −0.565685 0.979796i
$$451$$ 4.50000 + 7.79423i 0.211897 + 0.367016i
$$452$$ −15.0000 −0.705541
$$453$$ −31.5000 + 54.5596i −1.48000 + 2.56343i
$$454$$ −4.00000 −0.187729
$$455$$ −28.5000 2.59808i −1.33610 0.121800i
$$456$$ −9.00000 −0.421464
$$457$$ 9.00000 15.5885i 0.421002 0.729197i −0.575036 0.818128i $$-0.695012\pi$$
0.996038 + 0.0889312i $$0.0283451\pi$$
$$458$$ −13.0000 −0.607450
$$459$$ −9.00000 15.5885i −0.420084 0.727607i
$$460$$ 0 0
$$461$$ −17.5000 + 30.3109i −0.815056 + 1.41172i 0.0942312 + 0.995550i $$0.469961\pi$$
−0.909288 + 0.416169i $$0.863373\pi$$
$$462$$ 18.0000 15.5885i 0.837436 0.725241i
$$463$$ −8.00000 −0.371792 −0.185896 0.982569i $$-0.559519\pi$$
−0.185896 + 0.982569i $$0.559519\pi$$
$$464$$ −7.00000 −0.324967
$$465$$ −27.0000 −1.25210
$$466$$ −21.0000 −0.972806
$$467$$ 3.50000 + 6.06218i 0.161961 + 0.280524i 0.935572 0.353137i $$-0.114885\pi$$
−0.773611 + 0.633661i $$0.781552\pi$$
$$468$$ −21.0000 + 5.19615i −0.970725 + 0.240192i
$$469$$ 7.50000 + 2.59808i 0.346318 + 0.119968i
$$470$$ −1.50000 2.59808i −0.0691898 0.119840i
$$471$$ 28.5000 49.3634i 1.31321 2.27455i
$$472$$ −6.00000 10.3923i −0.276172 0.478345i
$$473$$ −10.5000 + 18.1865i −0.482791 + 0.836218i
$$474$$ 9.00000 0.413384
$$475$$ 2.00000 3.46410i 0.0917663 0.158944i
$$476$$ 4.00000 3.46410i 0.183340 0.158777i
$$477$$ −9.00000 + 15.5885i −0.412082 + 0.713746i
$$478$$ 2.00000 3.46410i 0.0914779 0.158444i
$$479$$ −35.0000 −1.59919 −0.799595 0.600539i $$-0.794953\pi$$
−0.799595 + 0.600539i $$0.794953\pi$$
$$480$$ 22.5000 38.9711i 1.02698 1.77878i
$$481$$ −5.00000 5.19615i −0.227980 0.236924i
$$482$$ −26.0000 −1.18427
$$483$$ 0 0
$$484$$ −1.00000 1.73205i −0.0454545 0.0787296i
$$485$$ −15.0000 −0.681115
$$486$$ 0 0
$$487$$ −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i $$-0.284748\pi$$
−0.988374 + 0.152042i $$0.951415\pi$$
$$488$$ 39.0000 1.76545
$$489$$ 3.00000 0.135665
$$490$$ 16.5000 + 12.9904i 0.745394 + 0.586846i
$$491$$ −7.50000 12.9904i −0.338470 0.586248i 0.645675 0.763612i $$-0.276576\pi$$
−0.984145 + 0.177365i $$0.943243\pi$$
$$492$$ −4.50000 + 7.79423i −0.202876 + 0.351391i
$$493$$ 7.00000 12.1244i 0.315264 0.546054i
$$494$$ 2.50000 + 2.59808i 0.112480 + 0.116893i
$$495$$ 27.0000 + 46.7654i 1.21356 + 2.10195i
$$496$$ 1.50000 + 2.59808i 0.0673520 + 0.116657i
$$497$$ 26.0000 22.5167i 1.16626 1.01001i
$$498$$ 0 0
$$499$$ 15.5000 + 26.8468i 0.693875 + 1.20183i 0.970558 + 0.240866i $$0.0774314\pi$$
−0.276683 + 0.960961i $$0.589235\pi$$
$$500$$ −1.50000 2.59808i −0.0670820 0.116190i
$$501$$ −19.5000 33.7750i −0.871196 1.50896i
$$502$$ 11.5000 + 19.9186i 0.513270 + 0.889010i
$$503$$ 15.5000 26.8468i 0.691111 1.19704i −0.280363 0.959894i $$-0.590455\pi$$
0.971474 0.237145i $$-0.0762117\pi$$
$$504$$ 45.0000 + 15.5885i 2.00446 + 0.694365i
$$505$$ 7.50000 + 12.9904i 0.333746 + 0.578064i
$$506$$ 0 0
$$507$$ 33.0000 + 20.7846i 1.46558 + 0.923077i
$$508$$ 5.50000 9.52628i 0.244023 0.422660i
$$509$$ 17.0000 29.4449i 0.753512 1.30512i −0.192599 0.981278i $$-0.561692\pi$$
0.946111 0.323843i $$-0.104975\pi$$
$$510$$ −9.00000 15.5885i −0.398527 0.690268i
$$511$$ −26.0000 + 22.5167i −1.15017 + 0.996078i
$$512$$ −11.0000 −0.486136
$$513$$ 9.00000 0.397360
$$514$$ 1.00000 + 1.73205i 0.0441081 + 0.0763975i
$$515$$ −7.50000 + 12.9904i −0.330489 + 0.572425i
$$516$$ −21.0000 −0.924473
$$517$$ 1.50000 + 2.59808i 0.0659699 + 0.114263i
$$518$$ 1.00000 + 5.19615i 0.0439375 + 0.228306i
$$519$$ −57.0000 −2.50202
$$520$$ −31.5000 + 7.79423i −1.38137 + 0.341800i
$$521$$ 8.50000 14.7224i 0.372392 0.645001i −0.617541 0.786539i $$-0.711871\pi$$
0.989933 + 0.141537i $$0.0452044\pi$$
$$522$$ 42.0000 1.83829
$$523$$ −2.00000 + 3.46410i −0.0874539 + 0.151475i −0.906434 0.422347i $$-0.861206\pi$$
0.818980 + 0.573822i $$0.194540\pi$$
$$524$$ 2.50000 4.33013i 0.109213 0.189162i
$$525$$ −24.0000 + 20.7846i −1.04745 + 0.907115i
$$526$$ 13.5000 23.3827i 0.588628 1.01953i
$$527$$ −6.00000 −0.261364
$$528$$ 4.50000 7.79423i 0.195837 0.339200i
$$529$$ 11.5000 + 19.9186i 0.500000 + 0.866025i
$$530$$ −4.50000 + 7.79423i −0.195468 + 0.338560i
$$531$$ 12.0000 + 20.7846i 0.520756 + 0.901975i
$$532$$ 0.500000 + 2.59808i 0.0216777 + 0.112641i
$$533$$ 10.5000 2.59808i 0.454805 0.112535i
$$534$$ 9.00000 + 15.5885i 0.389468 + 0.674579i
$$535$$ 24.0000 1.03761
$$536$$ 9.00000 0.388741
$$537$$ −51.0000 −2.20081
$$538$$ 18.0000 0.776035
$$539$$ −16.5000 12.9904i −0.710705 0.559535i
$$540$$ −13.5000 + 23.3827i −0.580948 + 1.00623i
$$541$$ 18.5000 + 32.0429i 0.795377 + 1.37763i 0.922599 + 0.385759i $$0.126061\pi$$
−0.127222 + 0.991874i $$0.540606\pi$$
$$542$$ 8.00000 + 13.8564i 0.343629 + 0.595184i
$$543$$ 66.0000 2.83233
$$544$$ 5.00000 8.66025i 0.214373 0.371305i
$$545$$ 21.0000 0.899541
$$546$$ −12.0000 25.9808i −0.513553 1.11187i
$$547$$ −28.0000 −1.19719 −0.598597 0.801050i $$-0.704275\pi$$
−0.598597 + 0.801050i $$0.704275\pi$$
$$548$$ 5.00000 8.66025i 0.213589 0.369948i
$$549$$ −78.0000 −3.32896
$$550$$ 6.00000 + 10.3923i 0.255841 + 0.443129i
$$551$$ 3.50000 + 6.06218i 0.149105 + 0.258257i
$$552$$ 0 0
$$553$$ −1.50000 7.79423i −0.0637865 0.331444i
$$554$$ 22.0000 0.934690
$$555$$ −18.0000 −0.764057
$$556$$ 15.0000 0.636142
$$557$$ 3.00000 0.127114 0.0635570 0.997978i $$-0.479756\pi$$
0.0635570 + 0.997978i $$0.479756\pi$$
$$558$$ −9.00000 15.5885i −0.381000 0.659912i
$$559$$ 17.5000 + 18.1865i 0.740171 + 0.769208i
$$560$$ 7.50000 + 2.59808i 0.316933 + 0.109789i
$$561$$ 9.00000 + 15.5885i 0.379980 + 0.658145i
$$562$$ 9.00000 15.5885i 0.379642 0.657559i
$$563$$ −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i $$-0.193529\pi$$
−0.905088 + 0.425223i $$0.860196\pi$$
$$564$$ −1.50000 + 2.59808i −0.0631614 + 0.109399i
$$565$$ 45.0000 1.89316
$$566$$ −0.500000 + 0.866025i −0.0210166 + 0.0364018i
$$567$$ −22.5000 7.79423i −0.944911 0.327327i
$$568$$ 19.5000 33.7750i 0.818202 1.41717i
$$569$$ −5.00000 + 8.66025i −0.209611 + 0.363057i −0.951592 0.307364i $$-0.900553\pi$$
0.741981 + 0.670421i $$0.233886\pi$$
$$570$$ 9.00000 0.376969
$$571$$ −21.5000 + 37.2391i −0.899747 + 1.55841i −0.0719297 + 0.997410i $$0.522916\pi$$
−0.827817 + 0.560998i $$0.810418\pi$$
$$572$$ 10.5000 2.59808i 0.439027 0.108631i
$$573$$ 51.0000 2.13056
$$574$$ −7.50000 2.59808i −0.313044 0.108442i
$$575$$ 0 0
$$576$$ 42.0000 1.75000
$$577$$ 0.500000 0.866025i 0.0208153 0.0360531i −0.855430 0.517918i $$-0.826707\pi$$
0.876245 + 0.481865i $$0.160040\pi$$
$$578$$ 6.50000 + 11.2583i 0.270364 + 0.468285i
$$579$$ −21.0000 −0.872730
$$580$$ −21.0000 −0.871978
$$581$$ 0 0
$$582$$ −7.50000 12.9904i −0.310885 0.538469i
$$583$$ 4.50000 7.79423i 0.186371 0.322804i
$$584$$ −19.5000 + 33.7750i −0.806916 + 1.39762i
$$585$$ 63.0000 15.5885i 2.60473 0.644503i
$$586$$ −5.50000 9.52628i −0.227203 0.393527i
$$587$$ 16.5000 + 28.5788i 0.681028 + 1.17957i 0.974668 + 0.223659i $$0.0718001\pi$$
−0.293640 + 0.955916i $$0.594867\pi$$
$$588$$ 3.00000 20.7846i 0.123718 0.857143i
$$589$$ 1.50000 2.59808i 0.0618064 0.107052i
$$590$$ 6.00000 + 10.3923i 0.247016 + 0.427844i
$$591$$ −1.50000 2.59808i −0.0617018 0.106871i
$$592$$ 1.00000 + 1.73205i 0.0410997 + 0.0711868i
$$593$$ −13.5000 23.3827i −0.554379 0.960212i −0.997952 0.0639736i $$-0.979623\pi$$
0.443573 0.896238i $$-0.353711\pi$$
$$594$$ −13.5000 + 23.3827i −0.553912 + 0.959403i
$$595$$ −12.0000 + 10.3923i −0.491952 + 0.426043i
$$596$$ 7.50000 + 12.9904i 0.307212 + 0.532107i
$$597$$ −30.0000 51.9615i −1.22782 2.12664i
$$598$$ 0 0
$$599$$ 12.5000 21.6506i 0.510736 0.884621i −0.489186 0.872179i $$-0.662706\pi$$
0.999923 0.0124417i $$-0.00396043\pi$$
$$600$$ −18.0000 + 31.1769i −0.734847 + 1.27279i
$$601$$ −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i $$-0.913621\pi$$
0.249565 0.968358i $$-0.419712\pi$$
$$602$$ −3.50000 18.1865i −0.142649 0.741228i
$$603$$ −18.0000 −0.733017
$$604$$ 21.0000 0.854478
$$605$$ 3.00000 + 5.19615i 0.121967 + 0.211254i
$$606$$ −7.50000 + 12.9904i −0.304667 + 0.527698i
$$607$$ 11.0000 0.446476 0.223238 0.974764i $$-0.428337\pi$$
0.223238 + 0.974764i $$0.428337\pi$$
$$608$$ 2.50000 + 4.33013i 0.101388 + 0.175610i
$$609$$ −10.5000 54.5596i −0.425481 2.21087i
$$610$$ −39.0000 −1.57906
$$611$$ 3.50000 0.866025i 0.141595 0.0350356i
$$612$$ −6.00000 + 10.3923i −0.242536 + 0.420084i
$$613$$ −25.0000 −1.00974 −0.504870 0.863195i $$-0.668460\pi$$
−0.504870 + 0.863195i $$0.668460\pi$$
$$614$$ −6.00000 + 10.3923i −0.242140 + 0.419399i
$$615$$ 13.5000 23.3827i 0.544373 0.942881i
$$616$$ −22.5000 7.79423i −0.906551 0.314038i
$$617$$ 16.5000 28.5788i 0.664265 1.15054i −0.315219 0.949019i $$-0.602078\pi$$
0.979484 0.201522i $$-0.0645887\pi$$
$$618$$ −15.0000 −0.603388
$$619$$ −5.50000 + 9.52628i −0.221064 + 0.382893i −0.955131 0.296183i $$-0.904286\pi$$
0.734068 + 0.679076i $$0.237620\pi$$
$$620$$ 4.50000 + 7.79423i 0.180724 + 0.313024i
$$621$$ 0 0
$$622$$ 4.50000 + 7.79423i 0.180434 + 0.312520i
$$623$$ 12.0000 10.3923i 0.480770 0.416359i
$$624$$ −7.50000 7.79423i −0.300240 0.312019i
$$625$$ 14.5000 + 25.1147i 0.580000 + 1.00459i
$$626$$ 19.0000 0.759393
$$627$$ −9.00000 −0.359425
$$628$$ −19.0000 −0.758183
$$629$$ −4.00000 −0.159490
$$630$$ −45.0000 15.5885i −1.79284 0.621059i
$$631$$ −12.5000 + 21.6506i −0.497617 + 0.861898i −0.999996 0.00274930i $$-0.999125\pi$$
0.502379 + 0.864647i $$0.332458\pi$$
$$632$$ −4.50000 7.79423i −0.179000 0.310038i
$$633$$ 10.5000 + 18.1865i 0.417338 + 0.722850i
$$634$$ −9.00000 −0.357436
$$635$$ −16.5000 + 28.5788i −0.654783 + 1.13412i
$$636$$ 9.00000 0.356873
$$637$$ −20.5000 + 14.7224i −0.812240 + 0.583324i
$$638$$ −21.0000 −0.831398
$$639$$ −39.0000 + 67.5500i −1.54282 + 2.67224i
$$640$$ −9.00000 −0.355756
$$641$$ 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i $$-0.0509845\pi$$
−0.631721 + 0.775196i $$0.717651\pi$$
$$642$$ 12.0000 + 20.7846i 0.473602 + 0.820303i
$$643$$ 9.50000 16.4545i 0.374643 0.648901i −0.615630 0.788035i $$-0.711098\pi$$
0.990274 + 0.139134i $$0.0444318\pi$$
$$644$$ 0 0
$$645$$ 63.0000 2.48062
$$646$$ 2.00000 0.0786889
$$647$$ 9.00000 0.353827 0.176913 0.984226i $$-0.443389\pi$$
0.176913 + 0.984226i $$0.443389\pi$$
$$648$$ −27.0000 −1.06066
$$649$$ −6.00000 10.3923i −0.235521 0.407934i
$$650$$ 14.0000 3.46410i 0.549125 0.135873i
$$651$$ −18.0000 + 15.5885i −0.705476 + 0.610960i
$$652$$ −0.500000 0.866025i −0.0195815 0.0339162i
$$653$$ −9.00000 + 15.5885i −0.352197 + 0.610023i −0.986634 0.162951i $$-0.947899\pi$$
0.634437 + 0.772975i $$0.281232\pi$$
$$654$$ 10.5000 + 18.1865i 0.410582 + 0.711150i
$$655$$ −7.50000 + 12.9904i −0.293049 + 0.507576i
$$656$$ −3.00000 −0.117130
$$657$$ 39.0000 67.5500i 1.52153 2.63538i
$$658$$ −2.50000 0.866025i −0.0974601 0.0337612i
$$659$$ −14.5000 + 25.1147i −0.564840 + 0.978331i 0.432225 + 0.901766i $$0.357729\pi$$
−0.997065 + 0.0765653i $$0.975605\pi$$
$$660$$ 13.5000 23.3827i 0.525487 0.910170i
$$661$$ −9.00000 −0.350059 −0.175030 0.984563i $$-0.556002\pi$$
−0.175030 + 0.984563i $$0.556002\pi$$
$$662$$ 14.5000 25.1147i 0.563559 0.976112i
$$663$$ 21.0000 5.19615i 0.815572 0.201802i
$$664$$ 0 0
$$665$$ −1.50000 7.79423i −0.0581675 0.302247i
$$666$$ −6.00000 10.3923i −0.232495 0.402694i
$$667$$ 0 0
$$668$$ −6.50000 + 11.2583i −0.251493 + 0.435598i
$$669$$ −13.5000 23.3827i −0.521940 0.904027i
$$670$$ −9.00000 −0.347700
$$671$$ 39.0000 1.50558
$$672$$ −7.50000 38.9711i −0.289319 1.50334i
$$673$$ 20.5000 + 35.5070i 0.790217 + 1.36870i 0.925832 + 0.377934i $$0.123365\pi$$
−0.135615 + 0.990762i $$0.543301\pi$$
$$674$$ −7.00000 + 12.1244i −0.269630 + 0.467013i
$$675$$ 18.0000 31.1769i 0.692820 1.20000i
$$676$$ 0.500000 12.9904i 0.0192308 0.499630i
$$677$$ −3.50000 6.06218i −0.134516 0.232988i 0.790897 0.611950i $$-0.209615\pi$$
−0.925412 + 0.378962i $$0.876281\pi$$
$$678$$ 22.5000 + 38.9711i 0.864107 + 1.49668i
$$679$$ −10.0000 + 8.66025i −0.383765 + 0.332350i
$$680$$ −9.00000 + 15.5885i −0.345134 + 0.597790i
$$681$$ −6.00000 10.3923i −0.229920 0.398234i
$$682$$ 4.50000 + 7.79423i 0.172314 + 0.298456i
$$683$$ −6.00000 10.3923i −0.229584 0.397650i 0.728101 0.685470i $$-0.240403\pi$$
−0.957685 + 0.287819i $$0.907070\pi$$
$$684$$ −3.00000 5.19615i −0.114708 0.198680i
$$685$$ −15.0000 + 25.9808i −0.573121 + 0.992674i
$$686$$ 18.5000 0.866025i 0.706333 0.0330650i
$$687$$ −19.5000 33.7750i −0.743971 1.28860i
$$688$$ −3.50000 6.06218i −0.133436 0.231118i
$$689$$ −7.50000 7.79423i −0.285727 0.296936i
$$690$$ 0 0
$$691$$ 2.00000 3.46410i 0.0760836 0.131781i −0.825473 0.564441i $$-0.809092\pi$$
0.901557 + 0.432660i $$0.142425\pi$$
$$692$$ 9.50000 + 16.4545i 0.361136 + 0.625506i
$$693$$ 45.0000 + 15.5885i 1.70941 + 0.592157i
$$694$$ −8.00000 −0.303676
$$695$$ −45.0000 −1.70695
$$696$$ −31.5000 54.5596i −1.19400 2.06808i
$$697$$ 3.00000 5.19615i 0.113633 0.196818i
$$698$$ 23.0000 0.870563
$$699$$ −31.5000 54.5596i −1.19144 2.06363i
$$700$$ 10.0000 + 3.46410i 0.377964 + 0.130931i
$$701$$ 42.0000 1.58632 0.793159 0.609015i $$-0.208435\pi$$
0.793159 + 0.609015i $$0.208435\pi$$
$$702$$ 22.5000 + 23.3827i 0.849208 + 0.882523i
$$703$$ 1.00000 1.73205i 0.0377157 0.0653255i
$$704$$ −21.0000 −0.791467
$$705$$ 4.50000 7.79423i 0.169480 0.293548i
$$706$$ 12.5000 21.6506i 0.470444 0.814832i
$$707$$ 12.5000 + 4.33013i 0.470111 + 0.162851i
$$708$$ 6.00000 10.3923i 0.225494 0.390567i
$$709$$ 11.0000 0.413114 0.206557 0.978435i $$-0.433774\pi$$
0.206557 + 0.978435i $$0.433774\pi$$
$$710$$ −19.5000 + 33.7750i −0.731822 + 1.26755i
$$711$$ 9.00000 + 15.5885i 0.337526 + 0.584613i
$$712$$ 9.00000 15.5885i 0.337289 0.584202i
$$713$$ 0 0
$$714$$ −15.0000 5.19615i −0.561361 0.194461i
$$715$$ −31.5000 + 7.79423i −1.17803 + 0.291488i
$$716$$ 8.50000 + 14.7224i 0.317660 + 0.550203i
$$717$$ 12.0000 0.448148
$$718$$ 17.0000 0.634434
$$719$$ −9.00000 −0.335643 −0.167822 0.985817i $$-0.553673\pi$$
−0.167822 + 0.985817i $$0.553673\pi$$
$$720$$ −18.0000 −0.670820
$$721$$ 2.50000 + 12.9904i 0.0931049 + 0.483787i
$$722$$ 9.00000 15.5885i 0.334945 0.580142i
$$723$$ −39.0000 67.5500i −1.45043 2.51221i
$$724$$ −11.0000 19.0526i −0.408812 0.708083i
$$725$$ 28.0000 1.03989
$$726$$ −3.00000 + 5.19615i −0.111340 + 0.192847i
$$727$$ −8.00000 −0.296704 −0.148352 0.988935i $$-0.547397\pi$$
−0.148352 + 0.988935i $$0.547397\pi$$
$$728$$ −16.5000 + 23.3827i −0.611531 + 0.866620i
$$729$$ −27.0000 −1.00000
$$730$$ 19.5000 33.7750i 0.721727 1.25007i
$$731$$ 14.0000 0.517809
$$732$$ 19.5000 + 33.7750i 0.720741 + 1.24836i
$$733$$ 4.50000 + 7.79423i 0.166211 + 0.287886i 0.937085 0.349102i $$-0.113513\pi$$
−0.770873 + 0.636988i $$0.780180\pi$$
$$734$$ 15.5000 26.8468i 0.572115 0.990933i
$$735$$ −9.00000 + 62.3538i −0.331970 + 2.29996i
$$736$$ 0 0
$$737$$ 9.00000 0.331519
$$738$$ 18.0000 0.662589
$$739$$ 1.00000 0.0367856 0.0183928 0.999831i $$-0.494145\pi$$
0.0183928 + 0.999831i $$0.494145\pi$$
$$740$$ 3.00000 + 5.19615i 0.110282 + 0.191014i
$$741$$ −3.00000 + 10.3923i −0.110208 + 0.381771i
$$742$$ 1.50000 + 7.79423i 0.0550667 + 0.286135i
$$743$$ −25.5000 44.1673i −0.935504 1.62034i −0.773732 0.633513i $$-0.781612\pi$$
−0.161772 0.986828i $$-0.551721\pi$$
$$744$$ −13.5000 + 23.3827i −0.494934 + 0.857251i
$$745$$ −22.5000 38.9711i −0.824336 1.42779i
$$746$$ 4.50000 7.79423i 0.164757 0.285367i
$$747$$ 0 0
$$748$$ 3.00000 5.19615i 0.109691 0.189990i
$$749$$ 16.0000 13.8564i 0.584627 0.506302i
$$750$$ −4.50000 + 7.79423i −0.164317 + 0.284605i
$$751$$ −14.0000 + 24.2487i −0.510867 + 0.884848i 0.489053 + 0.872254i $$0.337342\pi$$
−0.999921 + 0.0125942i $$0.995991\pi$$
$$752$$ −1.00000 −0.0364662
$$753$$ −34.5000 + 59.7558i −1.25725 + 2.17762i
$$754$$ −7.00000 + 24.2487i −0.254925 + 0.883086i
$$755$$ −63.0000 −2.29280
$$756$$ 4.50000 + 23.3827i 0.163663 + 0.850420i
$$757$$ −1.50000 2.59808i −0.0545184 0.0944287i 0.837478 0.546471i $$-0.184029\pi$$
−0.891997 + 0.452042i $$0.850696\pi$$
$$758$$ −33.0000 −1.19861
$$759$$ 0 0
$$760$$ −4.50000 7.79423i −0.163232 0.282726i
$$761$$ −9.00000 −0.326250 −0.163125 0.986605i $$-0.552157\pi$$
−0.163125 + 0.986605i $$0.552157\pi$$
$$762$$ −33.0000 −1.19546
$$763$$ 14.0000 12.1244i 0.506834 0.438931i
$$764$$ −8.50000 14.7224i −0.307519 0.532639i
$$765$$ 18.0000 31.1769i 0.650791 1.12720i
$$766$$ 10.5000 18.1865i 0.379380 0.657106i
$$767$$ −14.0000 + 3.46410i −0.505511 + 0.125081i
$$768$$ −25.5000 44.1673i −0.920152 1.59375i
$$769$$ −9.50000 16.4545i −0.342579 0.593364i 0.642332 0.766426i $$-0.277967\pi$$
−0.984911 + 0.173063i $$0.944634\pi$$
$$770$$ 22.5000 + 7.79423i 0.810844 + 0.280885i
$$771$$ −3.00000 + 5.19615i −0.108042 + 0.187135i
$$772$$ 3.50000 + 6.06218i 0.125968 + 0.218183i
$$773$$ 3.00000 + 5.19615i 0.107903 + 0.186893i 0.914920 0.403634i $$-0.132253\pi$$
−0.807018 + 0.590527i $$0.798920\pi$$