Newspace parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.726638658394\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -12\nu^{7} - 7\nu^{6} - 76\nu^{5} - 44\nu^{4} - 602\nu^{3} - 36\nu^{2} - 8\nu + 1249 ) / 458 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 57\nu^{7} - 24\nu^{6} + 361\nu^{5} + 209\nu^{4} + 2287\nu^{3} + 171\nu^{2} + 38\nu + 193 ) / 916 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 193\nu^{7} - 250\nu^{6} + 1375\nu^{5} - 361\nu^{4} + 7125\nu^{3} - 5375\nu^{2} + 2724\nu - 375 ) / 916 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 174\nu^{7} - 242\nu^{6} + 1331\nu^{5} - 507\nu^{4} + 6897\nu^{3} - 5203\nu^{2} + 5383\nu - 363 ) / 458 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -375\nu^{7} + 182\nu^{6} - 2375\nu^{5} - 1375\nu^{4} - 13889\nu^{3} - 1125\nu^{2} - 250\nu - 2933 ) / 916 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -273\nu^{7} + 356\nu^{6} - 1958\nu^{5} + 602\nu^{4} - 10146\nu^{3} + 7654\nu^{2} - 3617\nu + 534 ) / 458 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( -\beta_{7} - 3\beta_{4} + \beta_{3} + \beta_{2} + \beta _1 - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{6} + 7\beta_{3} + \beta_{2} - 1 \)
|
\(\nu^{4}\) | \(=\) |
\( 7\beta_{7} + \beta_{5} + 18\beta_{4} - 10\beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( 10\beta_{7} - 7\beta_{6} + 7\beta_{5} + 15\beta_{4} - 48\beta_{3} - 10\beta_{2} - 48\beta _1 + 15 \)
|
\(\nu^{6}\) | \(=\) |
\( -10\beta_{6} - 86\beta_{3} - 48\beta_{2} + 117 \)
|
\(\nu^{7}\) | \(=\) |
\( -86\beta_{7} - 48\beta_{5} - 152\beta_{4} + 337\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).
\(n\) | \(15\) | \(66\) |
\(\chi(n)\) | \(-1 - \beta_{4}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 |
|
−1.11000 | + | 1.92258i | −0.274776 | + | 0.475925i | −1.46422 | − | 2.53610i | −4.22001 | −0.610004 | − | 1.05656i | 0.500000 | + | 0.866025i | 2.06113 | 1.34900 | + | 2.33653i | 4.68423 | − | 8.11332i | ||||||||||||||||||||||||||||
22.2 | −0.115680 | + | 0.200364i | 1.66113 | − | 2.87716i | 0.973236 | + | 1.68569i | −2.23136 | 0.384320 | + | 0.665661i | 0.500000 | + | 0.866025i | −0.913059 | −4.01868 | − | 6.96056i | 0.258125 | − | 0.447085i | |||||||||||||||||||||||||||||
22.3 | 0.355143 | − | 0.615126i | −1.20394 | + | 2.08529i | 0.747746 | + | 1.29513i | −1.28971 | 0.855143 | + | 1.48115i | 0.500000 | + | 0.866025i | 2.48280 | −1.39895 | − | 2.42305i | −0.458033 | + | 0.793337i | |||||||||||||||||||||||||||||
22.4 | 1.37054 | − | 2.37385i | −0.682410 | + | 1.18197i | −2.75677 | − | 4.77486i | 0.741082 | 1.87054 | + | 3.23987i | 0.500000 | + | 0.866025i | −9.63087 | 0.568634 | + | 0.984903i | 1.01568 | − | 1.75921i | |||||||||||||||||||||||||||||
29.1 | −1.11000 | − | 1.92258i | −0.274776 | − | 0.475925i | −1.46422 | + | 2.53610i | −4.22001 | −0.610004 | + | 1.05656i | 0.500000 | − | 0.866025i | 2.06113 | 1.34900 | − | 2.33653i | 4.68423 | + | 8.11332i | |||||||||||||||||||||||||||||
29.2 | −0.115680 | − | 0.200364i | 1.66113 | + | 2.87716i | 0.973236 | − | 1.68569i | −2.23136 | 0.384320 | − | 0.665661i | 0.500000 | − | 0.866025i | −0.913059 | −4.01868 | + | 6.96056i | 0.258125 | + | 0.447085i | |||||||||||||||||||||||||||||
29.3 | 0.355143 | + | 0.615126i | −1.20394 | − | 2.08529i | 0.747746 | − | 1.29513i | −1.28971 | 0.855143 | − | 1.48115i | 0.500000 | − | 0.866025i | 2.48280 | −1.39895 | + | 2.42305i | −0.458033 | − | 0.793337i | |||||||||||||||||||||||||||||
29.4 | 1.37054 | + | 2.37385i | −0.682410 | − | 1.18197i | −2.75677 | + | 4.77486i | 0.741082 | 1.87054 | − | 3.23987i | 0.500000 | − | 0.866025i | −9.63087 | 0.568634 | − | 0.984903i | 1.01568 | + | 1.75921i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 91.2.f.c | ✓ | 8 |
3.b | odd | 2 | 1 | 819.2.o.h | 8 | ||
4.b | odd | 2 | 1 | 1456.2.s.q | 8 | ||
7.b | odd | 2 | 1 | 637.2.f.i | 8 | ||
7.c | even | 3 | 1 | 637.2.g.k | 8 | ||
7.c | even | 3 | 1 | 637.2.h.h | 8 | ||
7.d | odd | 6 | 1 | 637.2.g.j | 8 | ||
7.d | odd | 6 | 1 | 637.2.h.i | 8 | ||
13.c | even | 3 | 1 | inner | 91.2.f.c | ✓ | 8 |
13.c | even | 3 | 1 | 1183.2.a.k | 4 | ||
13.e | even | 6 | 1 | 1183.2.a.l | 4 | ||
13.f | odd | 12 | 2 | 1183.2.c.g | 8 | ||
39.i | odd | 6 | 1 | 819.2.o.h | 8 | ||
52.j | odd | 6 | 1 | 1456.2.s.q | 8 | ||
91.g | even | 3 | 1 | 637.2.h.h | 8 | ||
91.h | even | 3 | 1 | 637.2.g.k | 8 | ||
91.m | odd | 6 | 1 | 637.2.h.i | 8 | ||
91.n | odd | 6 | 1 | 637.2.f.i | 8 | ||
91.n | odd | 6 | 1 | 8281.2.a.bp | 4 | ||
91.t | odd | 6 | 1 | 8281.2.a.bt | 4 | ||
91.v | odd | 6 | 1 | 637.2.g.j | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.f.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
91.2.f.c | ✓ | 8 | 13.c | even | 3 | 1 | inner |
637.2.f.i | 8 | 7.b | odd | 2 | 1 | ||
637.2.f.i | 8 | 91.n | odd | 6 | 1 | ||
637.2.g.j | 8 | 7.d | odd | 6 | 1 | ||
637.2.g.j | 8 | 91.v | odd | 6 | 1 | ||
637.2.g.k | 8 | 7.c | even | 3 | 1 | ||
637.2.g.k | 8 | 91.h | even | 3 | 1 | ||
637.2.h.h | 8 | 7.c | even | 3 | 1 | ||
637.2.h.h | 8 | 91.g | even | 3 | 1 | ||
637.2.h.i | 8 | 7.d | odd | 6 | 1 | ||
637.2.h.i | 8 | 91.m | odd | 6 | 1 | ||
819.2.o.h | 8 | 3.b | odd | 2 | 1 | ||
819.2.o.h | 8 | 39.i | odd | 6 | 1 | ||
1183.2.a.k | 4 | 13.c | even | 3 | 1 | ||
1183.2.a.l | 4 | 13.e | even | 6 | 1 | ||
1183.2.c.g | 8 | 13.f | odd | 12 | 2 | ||
1456.2.s.q | 8 | 4.b | odd | 2 | 1 | ||
1456.2.s.q | 8 | 52.j | odd | 6 | 1 | ||
8281.2.a.bp | 4 | 91.n | odd | 6 | 1 | ||
8281.2.a.bt | 4 | 91.t | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - T_{2}^{7} + 7T_{2}^{6} + 38T_{2}^{4} - 16T_{2}^{3} + 15T_{2}^{2} + 3T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(91, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - T^{7} + 7 T^{6} + 38 T^{4} + \cdots + 1 \)
$3$
\( T^{8} + T^{7} + 10 T^{6} + 23 T^{5} + \cdots + 36 \)
$5$
\( (T^{4} + 7 T^{3} + 12 T^{2} - T - 9)^{2} \)
$7$
\( (T^{2} - T + 1)^{4} \)
$11$
\( T^{8} - T^{7} + 10 T^{6} - 23 T^{5} + \cdots + 36 \)
$13$
\( T^{8} - 4 T^{7} + 16 T^{6} + \cdots + 28561 \)
$17$
\( T^{8} - 4 T^{7} + 28 T^{6} + \cdots + 2809 \)
$19$
\( T^{8} + T^{7} + 56 T^{6} + \cdots + 250000 \)
$23$
\( T^{8} - 2 T^{7} + 42 T^{6} + \cdots + 5184 \)
$29$
\( T^{8} + T^{7} + 23 T^{6} - 64 T^{5} + \cdots + 25 \)
$31$
\( (T^{4} + 4 T^{3} - 13 T^{2} - 26 T + 54)^{2} \)
$37$
\( T^{8} - 10 T^{7} + 83 T^{6} + \cdots + 256 \)
$41$
\( T^{8} - 22 T^{7} + 335 T^{6} + \cdots + 318096 \)
$43$
\( T^{8} + 3 T^{7} + 12 T^{6} + 7 T^{5} + \cdots + 4 \)
$47$
\( (T^{4} - 2 T^{3} - 51 T^{2} - 12 T + 100)^{2} \)
$53$
\( (T^{4} - 2 T^{3} - 140 T^{2} + 890 T - 1389)^{2} \)
$59$
\( T^{8} - 8 T^{7} + 141 T^{6} + \cdots + 498436 \)
$61$
\( T^{8} + 8 T^{7} + 79 T^{6} + \cdots + 10000 \)
$67$
\( T^{8} - 6 T^{7} + 247 T^{6} + \cdots + 121220100 \)
$71$
\( T^{8} - 14 T^{7} + 212 T^{6} + \cdots + 4129024 \)
$73$
\( (T^{4} + 8 T^{3} - 119 T^{2} - 88 T + 1772)^{2} \)
$79$
\( (T^{4} + 26 T^{3} + 134 T^{2} - 1024 T - 7680)^{2} \)
$83$
\( (T^{4} - 97 T^{2} - 442 T - 426)^{2} \)
$89$
\( T^{8} - T^{7} + 72 T^{6} - 297 T^{5} + \cdots + 11664 \)
$97$
\( T^{8} + 3 T^{7} + 314 T^{6} + \cdots + 246238864 \)
show more
show less