Newspace parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.726638658394\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{12}^{2} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{12}^{3} + \zeta_{12} \)
|
\(\beta_{3}\) | \(=\) |
\( -\zeta_{12}^{3} + 2\zeta_{12} \)
|
\(\zeta_{12}\) | \(=\) |
\( ( \beta_{3} + \beta_{2} ) / 3 \)
|
\(\zeta_{12}^{2}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{12}^{3}\) | \(=\) |
\( ( -\beta_{3} + 2\beta_{2} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).
\(n\) | \(15\) | \(66\) |
\(\chi(n)\) | \(-1 + \beta_{1}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 |
|
−0.866025 | + | 1.50000i | −1.36603 | + | 2.36603i | −0.500000 | − | 0.866025i | 1.73205 | −2.36603 | − | 4.09808i | −0.500000 | − | 0.866025i | −1.73205 | −2.23205 | − | 3.86603i | −1.50000 | + | 2.59808i | ||||||||||||||||
22.2 | 0.866025 | − | 1.50000i | 0.366025 | − | 0.633975i | −0.500000 | − | 0.866025i | −1.73205 | −0.633975 | − | 1.09808i | −0.500000 | − | 0.866025i | 1.73205 | 1.23205 | + | 2.13397i | −1.50000 | + | 2.59808i | |||||||||||||||||
29.1 | −0.866025 | − | 1.50000i | −1.36603 | − | 2.36603i | −0.500000 | + | 0.866025i | 1.73205 | −2.36603 | + | 4.09808i | −0.500000 | + | 0.866025i | −1.73205 | −2.23205 | + | 3.86603i | −1.50000 | − | 2.59808i | |||||||||||||||||
29.2 | 0.866025 | + | 1.50000i | 0.366025 | + | 0.633975i | −0.500000 | + | 0.866025i | −1.73205 | −0.633975 | + | 1.09808i | −0.500000 | + | 0.866025i | 1.73205 | 1.23205 | − | 2.13397i | −1.50000 | − | 2.59808i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 91.2.f.b | ✓ | 4 |
3.b | odd | 2 | 1 | 819.2.o.b | 4 | ||
4.b | odd | 2 | 1 | 1456.2.s.o | 4 | ||
7.b | odd | 2 | 1 | 637.2.f.d | 4 | ||
7.c | even | 3 | 1 | 637.2.g.e | 4 | ||
7.c | even | 3 | 1 | 637.2.h.d | 4 | ||
7.d | odd | 6 | 1 | 637.2.g.d | 4 | ||
7.d | odd | 6 | 1 | 637.2.h.e | 4 | ||
13.c | even | 3 | 1 | inner | 91.2.f.b | ✓ | 4 |
13.c | even | 3 | 1 | 1183.2.a.f | 2 | ||
13.e | even | 6 | 1 | 1183.2.a.e | 2 | ||
13.f | odd | 12 | 2 | 1183.2.c.e | 4 | ||
39.i | odd | 6 | 1 | 819.2.o.b | 4 | ||
52.j | odd | 6 | 1 | 1456.2.s.o | 4 | ||
91.g | even | 3 | 1 | 637.2.h.d | 4 | ||
91.h | even | 3 | 1 | 637.2.g.e | 4 | ||
91.m | odd | 6 | 1 | 637.2.h.e | 4 | ||
91.n | odd | 6 | 1 | 637.2.f.d | 4 | ||
91.n | odd | 6 | 1 | 8281.2.a.r | 2 | ||
91.t | odd | 6 | 1 | 8281.2.a.t | 2 | ||
91.v | odd | 6 | 1 | 637.2.g.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.f.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
91.2.f.b | ✓ | 4 | 13.c | even | 3 | 1 | inner |
637.2.f.d | 4 | 7.b | odd | 2 | 1 | ||
637.2.f.d | 4 | 91.n | odd | 6 | 1 | ||
637.2.g.d | 4 | 7.d | odd | 6 | 1 | ||
637.2.g.d | 4 | 91.v | odd | 6 | 1 | ||
637.2.g.e | 4 | 7.c | even | 3 | 1 | ||
637.2.g.e | 4 | 91.h | even | 3 | 1 | ||
637.2.h.d | 4 | 7.c | even | 3 | 1 | ||
637.2.h.d | 4 | 91.g | even | 3 | 1 | ||
637.2.h.e | 4 | 7.d | odd | 6 | 1 | ||
637.2.h.e | 4 | 91.m | odd | 6 | 1 | ||
819.2.o.b | 4 | 3.b | odd | 2 | 1 | ||
819.2.o.b | 4 | 39.i | odd | 6 | 1 | ||
1183.2.a.e | 2 | 13.e | even | 6 | 1 | ||
1183.2.a.f | 2 | 13.c | even | 3 | 1 | ||
1183.2.c.e | 4 | 13.f | odd | 12 | 2 | ||
1456.2.s.o | 4 | 4.b | odd | 2 | 1 | ||
1456.2.s.o | 4 | 52.j | odd | 6 | 1 | ||
8281.2.a.r | 2 | 91.n | odd | 6 | 1 | ||
8281.2.a.t | 2 | 91.t | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 3T_{2}^{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(91, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 3T^{2} + 9 \)
$3$
\( T^{4} + 2 T^{3} + 6 T^{2} - 4 T + 4 \)
$5$
\( (T^{2} - 3)^{2} \)
$7$
\( (T^{2} + T + 1)^{2} \)
$11$
\( T^{4} + 6 T^{3} + 30 T^{2} + 36 T + 36 \)
$13$
\( T^{4} - 4 T^{3} + 3 T^{2} - 52 T + 169 \)
$17$
\( T^{4} - 12 T^{3} + 111 T^{2} + \cdots + 1089 \)
$19$
\( (T^{2} + 2 T + 4)^{2} \)
$23$
\( T^{4} + 6 T^{3} + 30 T^{2} + 36 T + 36 \)
$29$
\( (T^{2} - 3 T + 9)^{2} \)
$31$
\( (T^{2} + 2 T - 26)^{2} \)
$37$
\( (T^{2} - 7 T + 49)^{2} \)
$41$
\( T^{4} + 27T^{2} + 729 \)
$43$
\( T^{4} + 10 T^{3} + 102 T^{2} - 20 T + 4 \)
$47$
\( (T^{2} - 12 T - 12)^{2} \)
$53$
\( (T^{2} + 6 T - 39)^{2} \)
$59$
\( T^{4} + 18 T^{3} + 246 T^{2} + \cdots + 6084 \)
$61$
\( T^{4} - 20 T^{3} + 327 T^{2} + \cdots + 5329 \)
$67$
\( T^{4} - 2 T^{3} + 30 T^{2} + 52 T + 676 \)
$71$
\( (T^{2} + 6 T + 36)^{2} \)
$73$
\( (T^{2} - 4 T - 23)^{2} \)
$79$
\( (T^{2} - 22 T + 94)^{2} \)
$83$
\( (T^{2} - 6 T - 18)^{2} \)
$89$
\( T^{4} + 12 T^{3} + 156 T^{2} + \cdots + 144 \)
$97$
\( T^{4} - 8 T^{3} + 156 T^{2} + \cdots + 8464 \)
show more
show less