Properties

Label 91.2.f.a.22.2
Level $91$
Weight $2$
Character 91.22
Analytic conductor $0.727$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [91,2,Mod(22,91)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(91, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("91.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.2
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 91.22
Dual form 91.2.f.a.29.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.190983 + 0.330792i) q^{2} +(0.190983 - 0.330792i) q^{3} +(0.927051 + 1.60570i) q^{4} +0.381966 q^{5} +(0.0729490 + 0.126351i) q^{6} +(-0.500000 - 0.866025i) q^{7} -1.47214 q^{8} +(1.42705 + 2.47172i) q^{9} +O(q^{10})\) \(q+(-0.190983 + 0.330792i) q^{2} +(0.190983 - 0.330792i) q^{3} +(0.927051 + 1.60570i) q^{4} +0.381966 q^{5} +(0.0729490 + 0.126351i) q^{6} +(-0.500000 - 0.866025i) q^{7} -1.47214 q^{8} +(1.42705 + 2.47172i) q^{9} +(-0.0729490 + 0.126351i) q^{10} +(2.42705 - 4.20378i) q^{11} +0.708204 q^{12} +(-2.50000 + 2.59808i) q^{13} +0.381966 q^{14} +(0.0729490 - 0.126351i) q^{15} +(-1.57295 + 2.72443i) q^{16} +(-3.73607 - 6.47106i) q^{17} -1.09017 q^{18} +(-2.42705 - 4.20378i) q^{19} +(0.354102 + 0.613323i) q^{20} -0.381966 q^{21} +(0.927051 + 1.60570i) q^{22} +(-2.23607 + 3.87298i) q^{23} +(-0.281153 + 0.486971i) q^{24} -4.85410 q^{25} +(-0.381966 - 1.32317i) q^{26} +2.23607 q^{27} +(0.927051 - 1.60570i) q^{28} +(2.04508 - 3.54219i) q^{29} +(0.0278640 + 0.0482619i) q^{30} +8.70820 q^{31} +(-2.07295 - 3.59045i) q^{32} +(-0.927051 - 1.60570i) q^{33} +2.85410 q^{34} +(-0.190983 - 0.330792i) q^{35} +(-2.64590 + 4.58283i) q^{36} +(-2.00000 + 3.46410i) q^{37} +1.85410 q^{38} +(0.381966 + 1.32317i) q^{39} -0.562306 q^{40} +(-2.61803 + 4.53457i) q^{41} +(0.0729490 - 0.126351i) q^{42} +(3.78115 + 6.54915i) q^{43} +9.00000 q^{44} +(0.545085 + 0.944115i) q^{45} +(-0.854102 - 1.47935i) q^{46} +2.23607 q^{47} +(0.600813 + 1.04064i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.927051 - 1.60570i) q^{50} -2.85410 q^{51} +(-6.48936 - 1.60570i) q^{52} +8.23607 q^{53} +(-0.427051 + 0.739674i) q^{54} +(0.927051 - 1.60570i) q^{55} +(0.736068 + 1.27491i) q^{56} -1.85410 q^{57} +(0.781153 + 1.35300i) q^{58} +(-1.11803 - 1.93649i) q^{59} +0.270510 q^{60} +(3.00000 + 5.19615i) q^{61} +(-1.66312 + 2.88061i) q^{62} +(1.42705 - 2.47172i) q^{63} -4.70820 q^{64} +(-0.954915 + 0.992377i) q^{65} +0.708204 q^{66} +(-0.354102 + 0.613323i) q^{67} +(6.92705 - 11.9980i) q^{68} +(0.854102 + 1.47935i) q^{69} +0.145898 q^{70} +(-4.09017 - 7.08438i) q^{71} +(-2.10081 - 3.63871i) q^{72} -2.00000 q^{73} +(-0.763932 - 1.32317i) q^{74} +(-0.927051 + 1.60570i) q^{75} +(4.50000 - 7.79423i) q^{76} -4.85410 q^{77} +(-0.510643 - 0.126351i) q^{78} +4.00000 q^{79} +(-0.600813 + 1.04064i) q^{80} +(-3.85410 + 6.67550i) q^{81} +(-1.00000 - 1.73205i) q^{82} -6.70820 q^{83} +(-0.354102 - 0.613323i) q^{84} +(-1.42705 - 2.47172i) q^{85} -2.88854 q^{86} +(-0.781153 - 1.35300i) q^{87} +(-3.57295 + 6.18853i) q^{88} +(-8.04508 + 13.9345i) q^{89} -0.416408 q^{90} +(3.50000 + 0.866025i) q^{91} -8.29180 q^{92} +(1.66312 - 2.88061i) q^{93} +(-0.427051 + 0.739674i) q^{94} +(-0.927051 - 1.60570i) q^{95} -1.58359 q^{96} +(-6.07295 - 10.5187i) q^{97} +(-0.190983 - 0.330792i) q^{98} +13.8541 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} + 3 q^{3} - 3 q^{4} + 6 q^{5} + 7 q^{6} - 2 q^{7} + 12 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 3 q^{2} + 3 q^{3} - 3 q^{4} + 6 q^{5} + 7 q^{6} - 2 q^{7} + 12 q^{8} - q^{9} - 7 q^{10} + 3 q^{11} - 24 q^{12} - 10 q^{13} + 6 q^{14} + 7 q^{15} - 13 q^{16} - 6 q^{17} + 18 q^{18} - 3 q^{19} - 12 q^{20} - 6 q^{21} - 3 q^{22} + 19 q^{24} - 6 q^{25} - 6 q^{26} - 3 q^{28} - 3 q^{29} + 18 q^{30} + 8 q^{31} - 15 q^{32} + 3 q^{33} - 2 q^{34} - 3 q^{35} - 24 q^{36} - 8 q^{37} - 6 q^{38} + 6 q^{39} + 38 q^{40} - 6 q^{41} + 7 q^{42} - 5 q^{43} + 36 q^{44} - 9 q^{45} + 10 q^{46} + 27 q^{48} - 2 q^{49} - 3 q^{50} + 2 q^{51} + 21 q^{52} + 24 q^{53} + 5 q^{54} - 3 q^{55} - 6 q^{56} + 6 q^{57} - 17 q^{58} - 66 q^{60} + 12 q^{61} + 9 q^{62} - q^{63} + 8 q^{64} - 15 q^{65} - 24 q^{66} + 12 q^{67} + 21 q^{68} - 10 q^{69} + 14 q^{70} + 6 q^{71} - 33 q^{72} - 8 q^{73} - 12 q^{74} + 3 q^{75} + 18 q^{76} - 6 q^{77} - 49 q^{78} + 16 q^{79} - 27 q^{80} - 2 q^{81} - 4 q^{82} + 12 q^{84} + q^{85} + 60 q^{86} + 17 q^{87} - 21 q^{88} - 21 q^{89} + 52 q^{90} + 14 q^{91} - 60 q^{92} - 9 q^{93} + 5 q^{94} + 3 q^{95} - 60 q^{96} - 31 q^{97} - 3 q^{98} + 42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.190983 + 0.330792i −0.135045 + 0.233905i −0.925615 0.378467i \(-0.876451\pi\)
0.790569 + 0.612372i \(0.209785\pi\)
\(3\) 0.190983 0.330792i 0.110264 0.190983i −0.805613 0.592443i \(-0.798164\pi\)
0.915877 + 0.401460i \(0.131497\pi\)
\(4\) 0.927051 + 1.60570i 0.463525 + 0.802850i
\(5\) 0.381966 0.170820 0.0854102 0.996346i \(-0.472780\pi\)
0.0854102 + 0.996346i \(0.472780\pi\)
\(6\) 0.0729490 + 0.126351i 0.0297813 + 0.0515827i
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −1.47214 −0.520479
\(9\) 1.42705 + 2.47172i 0.475684 + 0.823908i
\(10\) −0.0729490 + 0.126351i −0.0230685 + 0.0399558i
\(11\) 2.42705 4.20378i 0.731783 1.26749i −0.224337 0.974512i \(-0.572022\pi\)
0.956120 0.292974i \(-0.0946451\pi\)
\(12\) 0.708204 0.204441
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) 0.381966 0.102085
\(15\) 0.0729490 0.126351i 0.0188354 0.0326238i
\(16\) −1.57295 + 2.72443i −0.393237 + 0.681107i
\(17\) −3.73607 6.47106i −0.906130 1.56946i −0.819394 0.573231i \(-0.805690\pi\)
−0.0867359 0.996231i \(-0.527644\pi\)
\(18\) −1.09017 −0.256956
\(19\) −2.42705 4.20378i −0.556804 0.964412i −0.997761 0.0668841i \(-0.978694\pi\)
0.440957 0.897528i \(-0.354639\pi\)
\(20\) 0.354102 + 0.613323i 0.0791796 + 0.137143i
\(21\) −0.381966 −0.0833518
\(22\) 0.927051 + 1.60570i 0.197648 + 0.342336i
\(23\) −2.23607 + 3.87298i −0.466252 + 0.807573i −0.999257 0.0385394i \(-0.987729\pi\)
0.533005 + 0.846112i \(0.321063\pi\)
\(24\) −0.281153 + 0.486971i −0.0573901 + 0.0994026i
\(25\) −4.85410 −0.970820
\(26\) −0.381966 1.32317i −0.0749097 0.259495i
\(27\) 2.23607 0.430331
\(28\) 0.927051 1.60570i 0.175196 0.303449i
\(29\) 2.04508 3.54219i 0.379763 0.657768i −0.611265 0.791426i \(-0.709339\pi\)
0.991028 + 0.133658i \(0.0426723\pi\)
\(30\) 0.0278640 + 0.0482619i 0.00508726 + 0.00881138i
\(31\) 8.70820 1.56404 0.782020 0.623254i \(-0.214190\pi\)
0.782020 + 0.623254i \(0.214190\pi\)
\(32\) −2.07295 3.59045i −0.366449 0.634708i
\(33\) −0.927051 1.60570i −0.161379 0.279516i
\(34\) 2.85410 0.489474
\(35\) −0.190983 0.330792i −0.0322820 0.0559141i
\(36\) −2.64590 + 4.58283i −0.440983 + 0.763805i
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) 1.85410 0.300775
\(39\) 0.381966 + 1.32317i 0.0611635 + 0.211877i
\(40\) −0.562306 −0.0889084
\(41\) −2.61803 + 4.53457i −0.408868 + 0.708181i −0.994763 0.102206i \(-0.967410\pi\)
0.585895 + 0.810387i \(0.300743\pi\)
\(42\) 0.0729490 0.126351i 0.0112563 0.0194964i
\(43\) 3.78115 + 6.54915i 0.576620 + 0.998736i 0.995864 + 0.0908618i \(0.0289622\pi\)
−0.419243 + 0.907874i \(0.637704\pi\)
\(44\) 9.00000 1.35680
\(45\) 0.545085 + 0.944115i 0.0812565 + 0.140740i
\(46\) −0.854102 1.47935i −0.125930 0.218118i
\(47\) 2.23607 0.326164 0.163082 0.986613i \(-0.447856\pi\)
0.163082 + 0.986613i \(0.447856\pi\)
\(48\) 0.600813 + 1.04064i 0.0867199 + 0.150203i
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0.927051 1.60570i 0.131105 0.227080i
\(51\) −2.85410 −0.399654
\(52\) −6.48936 1.60570i −0.899912 0.222670i
\(53\) 8.23607 1.13131 0.565655 0.824642i \(-0.308623\pi\)
0.565655 + 0.824642i \(0.308623\pi\)
\(54\) −0.427051 + 0.739674i −0.0581143 + 0.100657i
\(55\) 0.927051 1.60570i 0.125004 0.216512i
\(56\) 0.736068 + 1.27491i 0.0983612 + 0.170367i
\(57\) −1.85410 −0.245582
\(58\) 0.781153 + 1.35300i 0.102570 + 0.177657i
\(59\) −1.11803 1.93649i −0.145556 0.252110i 0.784024 0.620730i \(-0.213164\pi\)
−0.929580 + 0.368620i \(0.879830\pi\)
\(60\) 0.270510 0.0349227
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) −1.66312 + 2.88061i −0.211216 + 0.365837i
\(63\) 1.42705 2.47172i 0.179792 0.311408i
\(64\) −4.70820 −0.588525
\(65\) −0.954915 + 0.992377i −0.118443 + 0.123089i
\(66\) 0.708204 0.0871739
\(67\) −0.354102 + 0.613323i −0.0432604 + 0.0749293i −0.886845 0.462067i \(-0.847108\pi\)
0.843584 + 0.536997i \(0.180441\pi\)
\(68\) 6.92705 11.9980i 0.840028 1.45497i
\(69\) 0.854102 + 1.47935i 0.102822 + 0.178093i
\(70\) 0.145898 0.0174382
\(71\) −4.09017 7.08438i −0.485414 0.840761i 0.514446 0.857523i \(-0.327998\pi\)
−0.999860 + 0.0167615i \(0.994664\pi\)
\(72\) −2.10081 3.63871i −0.247583 0.428827i
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) −0.763932 1.32317i −0.0888053 0.153815i
\(75\) −0.927051 + 1.60570i −0.107047 + 0.185410i
\(76\) 4.50000 7.79423i 0.516185 0.894059i
\(77\) −4.85410 −0.553176
\(78\) −0.510643 0.126351i −0.0578189 0.0143065i
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −0.600813 + 1.04064i −0.0671729 + 0.116347i
\(81\) −3.85410 + 6.67550i −0.428234 + 0.741722i
\(82\) −1.00000 1.73205i −0.110432 0.191273i
\(83\) −6.70820 −0.736321 −0.368161 0.929762i \(-0.620012\pi\)
−0.368161 + 0.929762i \(0.620012\pi\)
\(84\) −0.354102 0.613323i −0.0386357 0.0669190i
\(85\) −1.42705 2.47172i −0.154785 0.268096i
\(86\) −2.88854 −0.311480
\(87\) −0.781153 1.35300i −0.0837484 0.145056i
\(88\) −3.57295 + 6.18853i −0.380878 + 0.659699i
\(89\) −8.04508 + 13.9345i −0.852777 + 1.47705i 0.0259145 + 0.999664i \(0.491750\pi\)
−0.878692 + 0.477389i \(0.841583\pi\)
\(90\) −0.416408 −0.0438932
\(91\) 3.50000 + 0.866025i 0.366900 + 0.0907841i
\(92\) −8.29180 −0.864479
\(93\) 1.66312 2.88061i 0.172457 0.298705i
\(94\) −0.427051 + 0.739674i −0.0440469 + 0.0762915i
\(95\) −0.927051 1.60570i −0.0951134 0.164741i
\(96\) −1.58359 −0.161625
\(97\) −6.07295 10.5187i −0.616615 1.06801i −0.990099 0.140371i \(-0.955170\pi\)
0.373484 0.927636i \(-0.378163\pi\)
\(98\) −0.190983 0.330792i −0.0192922 0.0334151i
\(99\) 13.8541 1.39239
\(100\) −4.50000 7.79423i −0.450000 0.779423i
\(101\) −4.28115 + 7.41517i −0.425991 + 0.737837i −0.996512 0.0834451i \(-0.973408\pi\)
0.570522 + 0.821283i \(0.306741\pi\)
\(102\) 0.545085 0.944115i 0.0539715 0.0934813i
\(103\) 4.70820 0.463913 0.231957 0.972726i \(-0.425487\pi\)
0.231957 + 0.972726i \(0.425487\pi\)
\(104\) 3.68034 3.82472i 0.360887 0.375045i
\(105\) −0.145898 −0.0142382
\(106\) −1.57295 + 2.72443i −0.152778 + 0.264620i
\(107\) 2.80902 4.86536i 0.271558 0.470352i −0.697703 0.716387i \(-0.745794\pi\)
0.969261 + 0.246035i \(0.0791278\pi\)
\(108\) 2.07295 + 3.59045i 0.199470 + 0.345492i
\(109\) 10.7082 1.02566 0.512830 0.858490i \(-0.328597\pi\)
0.512830 + 0.858490i \(0.328597\pi\)
\(110\) 0.354102 + 0.613323i 0.0337623 + 0.0584780i
\(111\) 0.763932 + 1.32317i 0.0725092 + 0.125590i
\(112\) 3.14590 0.297259
\(113\) 3.73607 + 6.47106i 0.351460 + 0.608746i 0.986505 0.163728i \(-0.0523521\pi\)
−0.635046 + 0.772475i \(0.719019\pi\)
\(114\) 0.354102 0.613323i 0.0331647 0.0574429i
\(115\) −0.854102 + 1.47935i −0.0796454 + 0.137950i
\(116\) 7.58359 0.704119
\(117\) −9.98936 2.47172i −0.923516 0.228511i
\(118\) 0.854102 0.0786265
\(119\) −3.73607 + 6.47106i −0.342485 + 0.593201i
\(120\) −0.107391 + 0.186006i −0.00980340 + 0.0169800i
\(121\) −6.28115 10.8793i −0.571014 0.989025i
\(122\) −2.29180 −0.207489
\(123\) 1.00000 + 1.73205i 0.0901670 + 0.156174i
\(124\) 8.07295 + 13.9828i 0.724972 + 1.25569i
\(125\) −3.76393 −0.336656
\(126\) 0.545085 + 0.944115i 0.0485600 + 0.0841084i
\(127\) 7.07295 12.2507i 0.627623 1.08707i −0.360405 0.932796i \(-0.617361\pi\)
0.988027 0.154278i \(-0.0493053\pi\)
\(128\) 5.04508 8.73834i 0.445927 0.772368i
\(129\) 2.88854 0.254322
\(130\) −0.145898 0.505406i −0.0127961 0.0443270i
\(131\) 0.326238 0.0285035 0.0142518 0.999898i \(-0.495463\pi\)
0.0142518 + 0.999898i \(0.495463\pi\)
\(132\) 1.71885 2.97713i 0.149606 0.259126i
\(133\) −2.42705 + 4.20378i −0.210452 + 0.364514i
\(134\) −0.135255 0.234268i −0.0116842 0.0202377i
\(135\) 0.854102 0.0735094
\(136\) 5.50000 + 9.52628i 0.471621 + 0.816872i
\(137\) 0.190983 + 0.330792i 0.0163168 + 0.0282615i 0.874069 0.485803i \(-0.161473\pi\)
−0.857752 + 0.514064i \(0.828139\pi\)
\(138\) −0.652476 −0.0555424
\(139\) 7.78115 + 13.4774i 0.659989 + 1.14313i 0.980618 + 0.195929i \(0.0627723\pi\)
−0.320629 + 0.947205i \(0.603894\pi\)
\(140\) 0.354102 0.613323i 0.0299271 0.0518352i
\(141\) 0.427051 0.739674i 0.0359642 0.0622918i
\(142\) 3.12461 0.262212
\(143\) 4.85410 + 16.8151i 0.405920 + 1.40615i
\(144\) −8.97871 −0.748226
\(145\) 0.781153 1.35300i 0.0648712 0.112360i
\(146\) 0.381966 0.661585i 0.0316117 0.0547531i
\(147\) 0.190983 + 0.330792i 0.0157520 + 0.0272833i
\(148\) −7.41641 −0.609625
\(149\) 2.42705 + 4.20378i 0.198832 + 0.344387i 0.948150 0.317823i \(-0.102952\pi\)
−0.749318 + 0.662210i \(0.769619\pi\)
\(150\) −0.354102 0.613323i −0.0289123 0.0500776i
\(151\) −14.7082 −1.19694 −0.598468 0.801146i \(-0.704224\pi\)
−0.598468 + 0.801146i \(0.704224\pi\)
\(152\) 3.57295 + 6.18853i 0.289804 + 0.501956i
\(153\) 10.6631 18.4691i 0.862062 1.49314i
\(154\) 0.927051 1.60570i 0.0747039 0.129391i
\(155\) 3.32624 0.267170
\(156\) −1.77051 + 1.83997i −0.141754 + 0.147315i
\(157\) 8.14590 0.650113 0.325057 0.945695i \(-0.394617\pi\)
0.325057 + 0.945695i \(0.394617\pi\)
\(158\) −0.763932 + 1.32317i −0.0607752 + 0.105266i
\(159\) 1.57295 2.72443i 0.124743 0.216061i
\(160\) −0.791796 1.37143i −0.0625970 0.108421i
\(161\) 4.47214 0.352454
\(162\) −1.47214 2.54981i −0.115662 0.200332i
\(163\) −4.85410 8.40755i −0.380203 0.658530i 0.610888 0.791717i \(-0.290812\pi\)
−0.991091 + 0.133186i \(0.957479\pi\)
\(164\) −9.70820 −0.758083
\(165\) −0.354102 0.613323i −0.0275668 0.0477471i
\(166\) 1.28115 2.21902i 0.0994368 0.172230i
\(167\) −4.88197 + 8.45581i −0.377778 + 0.654330i −0.990739 0.135783i \(-0.956645\pi\)
0.612961 + 0.790113i \(0.289978\pi\)
\(168\) 0.562306 0.0433828
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 1.09017 0.0836122
\(171\) 6.92705 11.9980i 0.529725 0.917510i
\(172\) −7.01064 + 12.1428i −0.534557 + 0.925879i
\(173\) 4.50000 + 7.79423i 0.342129 + 0.592584i 0.984828 0.173534i \(-0.0555188\pi\)
−0.642699 + 0.766119i \(0.722185\pi\)
\(174\) 0.596748 0.0452393
\(175\) 2.42705 + 4.20378i 0.183468 + 0.317776i
\(176\) 7.63525 + 13.2246i 0.575529 + 0.996845i
\(177\) −0.854102 −0.0641982
\(178\) −3.07295 5.32250i −0.230327 0.398939i
\(179\) 4.50000 7.79423i 0.336346 0.582568i −0.647397 0.762153i \(-0.724142\pi\)
0.983742 + 0.179585i \(0.0574756\pi\)
\(180\) −1.01064 + 1.75049i −0.0753289 + 0.130473i
\(181\) −3.70820 −0.275629 −0.137814 0.990458i \(-0.544008\pi\)
−0.137814 + 0.990458i \(0.544008\pi\)
\(182\) −0.954915 + 0.992377i −0.0707830 + 0.0735599i
\(183\) 2.29180 0.169414
\(184\) 3.29180 5.70156i 0.242674 0.420324i
\(185\) −0.763932 + 1.32317i −0.0561654 + 0.0972813i
\(186\) 0.635255 + 1.10029i 0.0465792 + 0.0806775i
\(187\) −36.2705 −2.65236
\(188\) 2.07295 + 3.59045i 0.151185 + 0.261861i
\(189\) −1.11803 1.93649i −0.0813250 0.140859i
\(190\) 0.708204 0.0513785
\(191\) −11.8090 20.4538i −0.854470 1.47999i −0.877135 0.480243i \(-0.840548\pi\)
0.0226649 0.999743i \(-0.492785\pi\)
\(192\) −0.899187 + 1.55744i −0.0648932 + 0.112398i
\(193\) 3.00000 5.19615i 0.215945 0.374027i −0.737620 0.675216i \(-0.764050\pi\)
0.953564 + 0.301189i \(0.0973836\pi\)
\(194\) 4.63932 0.333084
\(195\) 0.145898 + 0.505406i 0.0104480 + 0.0361928i
\(196\) −1.85410 −0.132436
\(197\) −3.89919 + 6.75359i −0.277806 + 0.481173i −0.970839 0.239732i \(-0.922940\pi\)
0.693034 + 0.720905i \(0.256274\pi\)
\(198\) −2.64590 + 4.58283i −0.188036 + 0.325688i
\(199\) −1.20820 2.09267i −0.0856473 0.148345i 0.820020 0.572336i \(-0.193962\pi\)
−0.905667 + 0.423990i \(0.860629\pi\)
\(200\) 7.14590 0.505291
\(201\) 0.135255 + 0.234268i 0.00954015 + 0.0165240i
\(202\) −1.63525 2.83234i −0.115056 0.199283i
\(203\) −4.09017 −0.287074
\(204\) −2.64590 4.58283i −0.185250 0.320862i
\(205\) −1.00000 + 1.73205i −0.0698430 + 0.120972i
\(206\) −0.899187 + 1.55744i −0.0626493 + 0.108512i
\(207\) −12.7639 −0.887155
\(208\) −3.14590 10.8977i −0.218129 0.755620i
\(209\) −23.5623 −1.62984
\(210\) 0.0278640 0.0482619i 0.00192280 0.00333039i
\(211\) 4.35410 7.54153i 0.299749 0.519180i −0.676330 0.736599i \(-0.736430\pi\)
0.976078 + 0.217419i \(0.0697638\pi\)
\(212\) 7.63525 + 13.2246i 0.524391 + 0.908273i
\(213\) −3.12461 −0.214095
\(214\) 1.07295 + 1.85840i 0.0733453 + 0.127038i
\(215\) 1.44427 + 2.50155i 0.0984985 + 0.170604i
\(216\) −3.29180 −0.223978
\(217\) −4.35410 7.54153i −0.295576 0.511952i
\(218\) −2.04508 + 3.54219i −0.138511 + 0.239907i
\(219\) −0.381966 + 0.661585i −0.0258109 + 0.0447057i
\(220\) 3.43769 0.231769
\(221\) 26.1525 + 6.47106i 1.75921 + 0.435291i
\(222\) −0.583592 −0.0391681
\(223\) 6.63525 11.4926i 0.444330 0.769601i −0.553676 0.832732i \(-0.686775\pi\)
0.998005 + 0.0631310i \(0.0201086\pi\)
\(224\) −2.07295 + 3.59045i −0.138505 + 0.239897i
\(225\) −6.92705 11.9980i −0.461803 0.799867i
\(226\) −2.85410 −0.189852
\(227\) 3.73607 + 6.47106i 0.247972 + 0.429499i 0.962963 0.269634i \(-0.0869027\pi\)
−0.714991 + 0.699133i \(0.753569\pi\)
\(228\) −1.71885 2.97713i −0.113833 0.197165i
\(229\) 27.1246 1.79244 0.896222 0.443605i \(-0.146301\pi\)
0.896222 + 0.443605i \(0.146301\pi\)
\(230\) −0.326238 0.565061i −0.0215115 0.0372590i
\(231\) −0.927051 + 1.60570i −0.0609955 + 0.105647i
\(232\) −3.01064 + 5.21459i −0.197658 + 0.342354i
\(233\) 0.381966 0.0250234 0.0125117 0.999922i \(-0.496017\pi\)
0.0125117 + 0.999922i \(0.496017\pi\)
\(234\) 2.72542 2.83234i 0.178167 0.185156i
\(235\) 0.854102 0.0557155
\(236\) 2.07295 3.59045i 0.134937 0.233719i
\(237\) 0.763932 1.32317i 0.0496227 0.0859491i
\(238\) −1.42705 2.47172i −0.0925020 0.160218i
\(239\) −11.2918 −0.730406 −0.365203 0.930928i \(-0.619000\pi\)
−0.365203 + 0.930928i \(0.619000\pi\)
\(240\) 0.229490 + 0.397489i 0.0148135 + 0.0256578i
\(241\) −2.21885 3.84316i −0.142929 0.247559i 0.785670 0.618646i \(-0.212319\pi\)
−0.928598 + 0.371087i \(0.878985\pi\)
\(242\) 4.79837 0.308451
\(243\) 4.82624 + 8.35929i 0.309603 + 0.536249i
\(244\) −5.56231 + 9.63420i −0.356090 + 0.616766i
\(245\) −0.190983 + 0.330792i −0.0122015 + 0.0211335i
\(246\) −0.763932 −0.0487065
\(247\) 16.9894 + 4.20378i 1.08101 + 0.267480i
\(248\) −12.8197 −0.814049
\(249\) −1.28115 + 2.21902i −0.0811898 + 0.140625i
\(250\) 0.718847 1.24508i 0.0454639 0.0787457i
\(251\) −2.61803 4.53457i −0.165249 0.286219i 0.771495 0.636236i \(-0.219509\pi\)
−0.936744 + 0.350016i \(0.886176\pi\)
\(252\) 5.29180 0.333352
\(253\) 10.8541 + 18.7999i 0.682392 + 1.18194i
\(254\) 2.70163 + 4.67935i 0.169515 + 0.293609i
\(255\) −1.09017 −0.0682691
\(256\) −2.78115 4.81710i −0.173822 0.301069i
\(257\) 12.8713 22.2938i 0.802891 1.39065i −0.114815 0.993387i \(-0.536627\pi\)
0.917706 0.397261i \(-0.130039\pi\)
\(258\) −0.551663 + 0.955508i −0.0343450 + 0.0594873i
\(259\) 4.00000 0.248548
\(260\) −2.47871 0.613323i −0.153723 0.0380367i
\(261\) 11.6738 0.722588
\(262\) −0.0623059 + 0.107917i −0.00384927 + 0.00666713i
\(263\) −4.50000 + 7.79423i −0.277482 + 0.480613i −0.970758 0.240059i \(-0.922833\pi\)
0.693276 + 0.720672i \(0.256167\pi\)
\(264\) 1.36475 + 2.36381i 0.0839943 + 0.145482i
\(265\) 3.14590 0.193251
\(266\) −0.927051 1.60570i −0.0568411 0.0984517i
\(267\) 3.07295 + 5.32250i 0.188061 + 0.325732i
\(268\) −1.31308 −0.0802093
\(269\) −6.87132 11.9015i −0.418952 0.725646i 0.576882 0.816827i \(-0.304269\pi\)
−0.995834 + 0.0911812i \(0.970936\pi\)
\(270\) −0.163119 + 0.282530i −0.00992710 + 0.0171942i
\(271\) −9.20820 + 15.9491i −0.559359 + 0.968837i 0.438192 + 0.898882i \(0.355619\pi\)
−0.997550 + 0.0699558i \(0.977714\pi\)
\(272\) 23.5066 1.42530
\(273\) 0.954915 0.992377i 0.0577941 0.0600614i
\(274\) −0.145898 −0.00881402
\(275\) −11.7812 + 20.4056i −0.710430 + 1.23050i
\(276\) −1.58359 + 2.74286i −0.0953210 + 0.165101i
\(277\) 2.50000 + 4.33013i 0.150210 + 0.260172i 0.931305 0.364241i \(-0.118672\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) −5.94427 −0.356514
\(279\) 12.4271 + 21.5243i 0.743988 + 1.28863i
\(280\) 0.281153 + 0.486971i 0.0168021 + 0.0291021i
\(281\) −2.18034 −0.130068 −0.0650341 0.997883i \(-0.520716\pi\)
−0.0650341 + 0.997883i \(0.520716\pi\)
\(282\) 0.163119 + 0.282530i 0.00971359 + 0.0168244i
\(283\) 6.70820 11.6190i 0.398761 0.690675i −0.594812 0.803865i \(-0.702774\pi\)
0.993573 + 0.113190i \(0.0361069\pi\)
\(284\) 7.58359 13.1352i 0.450003 0.779429i
\(285\) −0.708204 −0.0419504
\(286\) −6.48936 1.60570i −0.383724 0.0949470i
\(287\) 5.23607 0.309075
\(288\) 5.91641 10.2475i 0.348628 0.603841i
\(289\) −19.4164 + 33.6302i −1.14214 + 1.97825i
\(290\) 0.298374 + 0.516799i 0.0175211 + 0.0303475i
\(291\) −4.63932 −0.271962
\(292\) −1.85410 3.21140i −0.108503 0.187933i
\(293\) 5.61803 + 9.73072i 0.328209 + 0.568475i 0.982157 0.188065i \(-0.0602216\pi\)
−0.653947 + 0.756540i \(0.726888\pi\)
\(294\) −0.145898 −0.00850895
\(295\) −0.427051 0.739674i −0.0248639 0.0430655i
\(296\) 2.94427 5.09963i 0.171132 0.296410i
\(297\) 5.42705 9.39993i 0.314909 0.545439i
\(298\) −1.85410 −0.107405
\(299\) −4.47214 15.4919i −0.258630 0.895922i
\(300\) −3.43769 −0.198475
\(301\) 3.78115 6.54915i 0.217942 0.377487i
\(302\) 2.80902 4.86536i 0.161641 0.279970i
\(303\) 1.63525 + 2.83234i 0.0939429 + 0.162714i
\(304\) 15.2705 0.875824
\(305\) 1.14590 + 1.98475i 0.0656139 + 0.113647i
\(306\) 4.07295 + 7.05455i 0.232835 + 0.403282i
\(307\) 1.85410 0.105819 0.0529096 0.998599i \(-0.483150\pi\)
0.0529096 + 0.998599i \(0.483150\pi\)
\(308\) −4.50000 7.79423i −0.256411 0.444117i
\(309\) 0.899187 1.55744i 0.0511530 0.0885995i
\(310\) −0.635255 + 1.10029i −0.0360801 + 0.0624925i
\(311\) −12.3262 −0.698957 −0.349478 0.936944i \(-0.613641\pi\)
−0.349478 + 0.936944i \(0.613641\pi\)
\(312\) −0.562306 1.94788i −0.0318343 0.110277i
\(313\) −15.1246 −0.854894 −0.427447 0.904041i \(-0.640587\pi\)
−0.427447 + 0.904041i \(0.640587\pi\)
\(314\) −1.55573 + 2.69460i −0.0877948 + 0.152065i
\(315\) 0.545085 0.944115i 0.0307121 0.0531948i
\(316\) 3.70820 + 6.42280i 0.208603 + 0.361311i
\(317\) 21.7639 1.22238 0.611192 0.791482i \(-0.290690\pi\)
0.611192 + 0.791482i \(0.290690\pi\)
\(318\) 0.600813 + 1.04064i 0.0336919 + 0.0583561i
\(319\) −9.92705 17.1942i −0.555808 0.962688i
\(320\) −1.79837 −0.100532
\(321\) −1.07295 1.85840i −0.0598862 0.103726i
\(322\) −0.854102 + 1.47935i −0.0475972 + 0.0824408i
\(323\) −18.1353 + 31.4112i −1.00907 + 1.74776i
\(324\) −14.2918 −0.793989
\(325\) 12.1353 12.6113i 0.673143 0.699551i
\(326\) 3.70820 0.205378
\(327\) 2.04508 3.54219i 0.113093 0.195884i
\(328\) 3.85410 6.67550i 0.212807 0.368593i
\(329\) −1.11803 1.93649i −0.0616392 0.106762i
\(330\) 0.270510 0.0148911
\(331\) 8.42705 + 14.5961i 0.463193 + 0.802273i 0.999118 0.0419923i \(-0.0133705\pi\)
−0.535925 + 0.844265i \(0.680037\pi\)
\(332\) −6.21885 10.7714i −0.341304 0.591155i
\(333\) −11.4164 −0.625615
\(334\) −1.86475 3.22983i −0.102034 0.176729i
\(335\) −0.135255 + 0.234268i −0.00738977 + 0.0127994i
\(336\) 0.600813 1.04064i 0.0327770 0.0567715i
\(337\) 8.56231 0.466419 0.233209 0.972427i \(-0.425077\pi\)
0.233209 + 0.972427i \(0.425077\pi\)
\(338\) 4.39261 + 2.31555i 0.238926 + 0.125949i
\(339\) 2.85410 0.155014
\(340\) 2.64590 4.58283i 0.143494 0.248539i
\(341\) 21.1353 36.6073i 1.14454 1.98240i
\(342\) 2.64590 + 4.58283i 0.143074 + 0.247811i
\(343\) 1.00000 0.0539949
\(344\) −5.56637 9.64124i −0.300119 0.519821i
\(345\) 0.326238 + 0.565061i 0.0175641 + 0.0304218i
\(346\) −3.43769 −0.184812
\(347\) −17.6180 30.5153i −0.945786 1.63815i −0.754171 0.656679i \(-0.771961\pi\)
−0.191615 0.981470i \(-0.561373\pi\)
\(348\) 1.44834 2.50859i 0.0776390 0.134475i
\(349\) −3.64590 + 6.31488i −0.195160 + 0.338028i −0.946953 0.321372i \(-0.895856\pi\)
0.751793 + 0.659400i \(0.229189\pi\)
\(350\) −1.85410 −0.0991059
\(351\) −5.59017 + 5.80948i −0.298381 + 0.310087i
\(352\) −20.1246 −1.07265
\(353\) −14.4271 + 24.9884i −0.767874 + 1.33000i 0.170839 + 0.985299i \(0.445352\pi\)
−0.938713 + 0.344699i \(0.887981\pi\)
\(354\) 0.163119 0.282530i 0.00866967 0.0150163i
\(355\) −1.56231 2.70599i −0.0829186 0.143619i
\(356\) −29.8328 −1.58114
\(357\) 1.42705 + 2.47172i 0.0755275 + 0.130818i
\(358\) 1.71885 + 2.97713i 0.0908439 + 0.157346i
\(359\) −10.9098 −0.575799 −0.287899 0.957661i \(-0.592957\pi\)
−0.287899 + 0.957661i \(0.592957\pi\)
\(360\) −0.802439 1.38987i −0.0422923 0.0732523i
\(361\) −2.28115 + 3.95107i −0.120061 + 0.207951i
\(362\) 0.708204 1.22665i 0.0372224 0.0644710i
\(363\) −4.79837 −0.251849
\(364\) 1.85410 + 6.42280i 0.0971813 + 0.336646i
\(365\) −0.763932 −0.0399860
\(366\) −0.437694 + 0.758108i −0.0228786 + 0.0396270i
\(367\) −12.7082 + 22.0113i −0.663363 + 1.14898i 0.316364 + 0.948638i \(0.397538\pi\)
−0.979726 + 0.200340i \(0.935795\pi\)
\(368\) −7.03444 12.1840i −0.366696 0.635135i
\(369\) −14.9443 −0.777968
\(370\) −0.291796 0.505406i −0.0151698 0.0262748i
\(371\) −4.11803 7.13264i −0.213798 0.370308i
\(372\) 6.16718 0.319754
\(373\) 0.218847 + 0.379054i 0.0113315 + 0.0196267i 0.871636 0.490155i \(-0.163060\pi\)
−0.860304 + 0.509781i \(0.829726\pi\)
\(374\) 6.92705 11.9980i 0.358189 0.620402i
\(375\) −0.718847 + 1.24508i −0.0371211 + 0.0642956i
\(376\) −3.29180 −0.169761
\(377\) 4.09017 + 14.1688i 0.210654 + 0.729728i
\(378\) 0.854102 0.0439303
\(379\) 6.42705 11.1320i 0.330135 0.571811i −0.652403 0.757872i \(-0.726239\pi\)
0.982538 + 0.186061i \(0.0595722\pi\)
\(380\) 1.71885 2.97713i 0.0881750 0.152724i
\(381\) −2.70163 4.67935i −0.138408 0.239731i
\(382\) 9.02129 0.461569
\(383\) −12.4894 21.6322i −0.638176 1.10535i −0.985833 0.167732i \(-0.946356\pi\)
0.347656 0.937622i \(-0.386978\pi\)
\(384\) −1.92705 3.33775i −0.0983394 0.170329i
\(385\) −1.85410 −0.0944938
\(386\) 1.14590 + 1.98475i 0.0583247 + 0.101021i
\(387\) −10.7918 + 18.6919i −0.548578 + 0.950165i
\(388\) 11.2599 19.5027i 0.571633 0.990098i
\(389\) 23.8885 1.21120 0.605599 0.795770i \(-0.292934\pi\)
0.605599 + 0.795770i \(0.292934\pi\)
\(390\) −0.195048 0.0482619i −0.00987666 0.00244384i
\(391\) 33.4164 1.68994
\(392\) 0.736068 1.27491i 0.0371770 0.0643925i
\(393\) 0.0623059 0.107917i 0.00314292 0.00544369i
\(394\) −1.48936 2.57964i −0.0750327 0.129960i
\(395\) 1.52786 0.0768752
\(396\) 12.8435 + 22.2455i 0.645408 + 1.11788i
\(397\) 12.7082 + 22.0113i 0.637806 + 1.10471i 0.985913 + 0.167258i \(0.0534914\pi\)
−0.348107 + 0.937455i \(0.613175\pi\)
\(398\) 0.922986 0.0462651
\(399\) 0.927051 + 1.60570i 0.0464106 + 0.0803855i
\(400\) 7.63525 13.2246i 0.381763 0.661232i
\(401\) 10.2254 17.7110i 0.510633 0.884443i −0.489291 0.872121i \(-0.662744\pi\)
0.999924 0.0123222i \(-0.00392237\pi\)
\(402\) −0.103326 −0.00515341
\(403\) −21.7705 + 22.6246i −1.08447 + 1.12701i
\(404\) −15.8754 −0.789830
\(405\) −1.47214 + 2.54981i −0.0731510 + 0.126701i
\(406\) 0.781153 1.35300i 0.0387680 0.0671481i
\(407\) 9.70820 + 16.8151i 0.481218 + 0.833494i
\(408\) 4.20163 0.208011
\(409\) −17.2812 29.9318i −0.854498 1.48003i −0.877110 0.480290i \(-0.840532\pi\)
0.0226119 0.999744i \(-0.492802\pi\)
\(410\) −0.381966 0.661585i −0.0188640 0.0326733i
\(411\) 0.145898 0.00719662
\(412\) 4.36475 + 7.55996i 0.215036 + 0.372453i
\(413\) −1.11803 + 1.93649i −0.0550149 + 0.0952885i
\(414\) 2.43769 4.22221i 0.119806 0.207510i
\(415\) −2.56231 −0.125779
\(416\) 14.5106 + 3.59045i 0.711443 + 0.176036i
\(417\) 5.94427 0.291092
\(418\) 4.50000 7.79423i 0.220102 0.381228i
\(419\) −2.97214 + 5.14789i −0.145198 + 0.251491i −0.929447 0.368956i \(-0.879715\pi\)
0.784249 + 0.620447i \(0.213049\pi\)
\(420\) −0.135255 0.234268i −0.00659976 0.0114311i
\(421\) −25.4164 −1.23872 −0.619360 0.785107i \(-0.712608\pi\)
−0.619360 + 0.785107i \(0.712608\pi\)
\(422\) 1.66312 + 2.88061i 0.0809594 + 0.140226i
\(423\) 3.19098 + 5.52694i 0.155151 + 0.268729i
\(424\) −12.1246 −0.588823
\(425\) 18.1353 + 31.4112i 0.879689 + 1.52367i
\(426\) 0.596748 1.03360i 0.0289125 0.0500780i
\(427\) 3.00000 5.19615i 0.145180 0.251459i
\(428\) 10.4164 0.503496
\(429\) 6.48936 + 1.60570i 0.313309 + 0.0775239i
\(430\) −1.10333 −0.0532071
\(431\) 8.39919 14.5478i 0.404575 0.700744i −0.589697 0.807624i \(-0.700753\pi\)
0.994272 + 0.106881i \(0.0340863\pi\)
\(432\) −3.51722 + 6.09201i −0.169222 + 0.293102i
\(433\) −0.500000 0.866025i −0.0240285 0.0416185i 0.853761 0.520665i \(-0.174316\pi\)
−0.877790 + 0.479046i \(0.840983\pi\)
\(434\) 3.32624 0.159665
\(435\) −0.298374 0.516799i −0.0143059 0.0247786i
\(436\) 9.92705 + 17.1942i 0.475420 + 0.823451i
\(437\) 21.7082 1.03844
\(438\) −0.145898 0.252703i −0.00697128 0.0120746i
\(439\) −4.07295 + 7.05455i −0.194391 + 0.336696i −0.946701 0.322114i \(-0.895606\pi\)
0.752310 + 0.658810i \(0.228940\pi\)
\(440\) −1.36475 + 2.36381i −0.0650617 + 0.112690i
\(441\) −2.85410 −0.135910
\(442\) −7.13525 + 7.41517i −0.339389 + 0.352704i
\(443\) −0.763932 −0.0362955 −0.0181478 0.999835i \(-0.505777\pi\)
−0.0181478 + 0.999835i \(0.505777\pi\)
\(444\) −1.41641 + 2.45329i −0.0672197 + 0.116428i
\(445\) −3.07295 + 5.32250i −0.145672 + 0.252311i
\(446\) 2.53444 + 4.38978i 0.120009 + 0.207862i
\(447\) 1.85410 0.0876960
\(448\) 2.35410 + 4.07742i 0.111221 + 0.192640i
\(449\) −14.2361 24.6576i −0.671842 1.16366i −0.977381 0.211484i \(-0.932170\pi\)
0.305540 0.952179i \(-0.401163\pi\)
\(450\) 5.29180 0.249458
\(451\) 12.7082 + 22.0113i 0.598406 + 1.03647i
\(452\) −6.92705 + 11.9980i −0.325821 + 0.564339i
\(453\) −2.80902 + 4.86536i −0.131979 + 0.228595i
\(454\) −2.85410 −0.133950
\(455\) 1.33688 + 0.330792i 0.0626739 + 0.0155078i
\(456\) 2.72949 0.127820
\(457\) 5.70820 9.88690i 0.267019 0.462490i −0.701072 0.713091i \(-0.747295\pi\)
0.968090 + 0.250601i \(0.0806282\pi\)
\(458\) −5.18034 + 8.97261i −0.242061 + 0.419263i
\(459\) −8.35410 14.4697i −0.389936 0.675389i
\(460\) −3.16718 −0.147671
\(461\) −19.6074 33.9610i −0.913207 1.58172i −0.809505 0.587113i \(-0.800264\pi\)
−0.103702 0.994608i \(-0.533069\pi\)
\(462\) −0.354102 0.613323i −0.0164743 0.0285343i
\(463\) −6.70820 −0.311757 −0.155878 0.987776i \(-0.549821\pi\)
−0.155878 + 0.987776i \(0.549821\pi\)
\(464\) 6.43363 + 11.1434i 0.298674 + 0.517318i
\(465\) 0.635255 1.10029i 0.0294592 0.0510249i
\(466\) −0.0729490 + 0.126351i −0.00337930 + 0.00585312i
\(467\) 33.6525 1.55725 0.778625 0.627489i \(-0.215917\pi\)
0.778625 + 0.627489i \(0.215917\pi\)
\(468\) −5.29180 18.3313i −0.244613 0.847366i
\(469\) 0.708204 0.0327018
\(470\) −0.163119 + 0.282530i −0.00752412 + 0.0130322i
\(471\) 1.55573 2.69460i 0.0716842 0.124161i
\(472\) 1.64590 + 2.85078i 0.0757586 + 0.131218i
\(473\) 36.7082 1.68785
\(474\) 0.291796 + 0.505406i 0.0134026 + 0.0232140i
\(475\) 11.7812 + 20.4056i 0.540556 + 0.936271i
\(476\) −13.8541 −0.635002
\(477\) 11.7533 + 20.3573i 0.538146 + 0.932096i
\(478\) 2.15654 3.73524i 0.0986379 0.170846i
\(479\) 10.9894 19.0341i 0.502117 0.869691i −0.497880 0.867246i \(-0.665888\pi\)
0.999997 0.00244569i \(-0.000778487\pi\)
\(480\) −0.604878 −0.0276088
\(481\) −4.00000 13.8564i −0.182384 0.631798i
\(482\) 1.69505 0.0772073
\(483\) 0.854102 1.47935i 0.0388630 0.0673127i
\(484\) 11.6459 20.1713i 0.529359 0.916877i
\(485\) −2.31966 4.01777i −0.105330 0.182438i
\(486\) −3.68692 −0.167242
\(487\) 8.48936 + 14.7040i 0.384689 + 0.666302i 0.991726 0.128372i \(-0.0409752\pi\)
−0.607037 + 0.794674i \(0.707642\pi\)
\(488\) −4.41641 7.64944i −0.199921 0.346274i
\(489\) −3.70820 −0.167691
\(490\) −0.0729490 0.126351i −0.00329550 0.00570797i
\(491\) −7.30902 + 12.6596i −0.329851 + 0.571319i −0.982482 0.186357i \(-0.940332\pi\)
0.652631 + 0.757676i \(0.273665\pi\)
\(492\) −1.85410 + 3.21140i −0.0835894 + 0.144781i
\(493\) −30.5623 −1.37646
\(494\) −4.63525 + 4.81710i −0.208550 + 0.216731i
\(495\) 5.29180 0.237849
\(496\) −13.6976 + 23.7249i −0.615039 + 1.06528i
\(497\) −4.09017 + 7.08438i −0.183469 + 0.317778i
\(498\) −0.489357 0.847591i −0.0219286 0.0379815i
\(499\) 8.14590 0.364660 0.182330 0.983237i \(-0.441636\pi\)
0.182330 + 0.983237i \(0.441636\pi\)
\(500\) −3.48936 6.04374i −0.156049 0.270284i
\(501\) 1.86475 + 3.22983i 0.0833107 + 0.144298i
\(502\) 2.00000 0.0892644
\(503\) −12.1910 21.1154i −0.543569 0.941489i −0.998695 0.0510624i \(-0.983739\pi\)
0.455126 0.890427i \(-0.349594\pi\)
\(504\) −2.10081 + 3.63871i −0.0935777 + 0.162081i
\(505\) −1.63525 + 2.83234i −0.0727679 + 0.126038i
\(506\) −8.29180 −0.368615
\(507\) −4.39261 2.31555i −0.195083 0.102837i
\(508\) 26.2279 1.16368
\(509\) −15.2984 + 26.4976i −0.678089 + 1.17448i 0.297467 + 0.954732i \(0.403858\pi\)
−0.975556 + 0.219752i \(0.929475\pi\)
\(510\) 0.208204 0.360620i 0.00921943 0.0159685i
\(511\) 1.00000 + 1.73205i 0.0442374 + 0.0766214i
\(512\) 22.3050 0.985749
\(513\) −5.42705 9.39993i −0.239610 0.415017i
\(514\) 4.91641 + 8.51547i 0.216853 + 0.375601i
\(515\) 1.79837 0.0792458
\(516\) 2.67783 + 4.63813i 0.117885 + 0.204182i
\(517\) 5.42705 9.39993i 0.238681 0.413408i
\(518\) −0.763932 + 1.32317i −0.0335652 + 0.0581367i
\(519\) 3.43769 0.150898
\(520\) 1.40576 1.46091i 0.0616469 0.0640653i
\(521\) −12.6525 −0.554315 −0.277158 0.960824i \(-0.589392\pi\)
−0.277158 + 0.960824i \(0.589392\pi\)
\(522\) −2.22949 + 3.86159i −0.0975821 + 0.169017i
\(523\) 19.5623 33.8829i 0.855400 1.48160i −0.0208736 0.999782i \(-0.506645\pi\)
0.876274 0.481814i \(-0.160022\pi\)
\(524\) 0.302439 + 0.523840i 0.0132121 + 0.0228841i
\(525\) 1.85410 0.0809196
\(526\) −1.71885 2.97713i −0.0749453 0.129809i
\(527\) −32.5344 56.3513i −1.41722 2.45470i
\(528\) 5.83282 0.253841
\(529\) 1.50000 + 2.59808i 0.0652174 + 0.112960i
\(530\) −0.600813 + 1.04064i −0.0260977 + 0.0452025i
\(531\) 3.19098 5.52694i 0.138477 0.239849i
\(532\) −9.00000 −0.390199
\(533\) −5.23607 18.1383i −0.226799 0.785656i
\(534\) −2.34752 −0.101587
\(535\) 1.07295 1.85840i 0.0463876 0.0803457i
\(536\) 0.521286 0.902894i 0.0225161 0.0389991i
\(537\) −1.71885 2.97713i −0.0741737 0.128473i
\(538\) 5.24922 0.226310
\(539\) 2.42705 + 4.20378i 0.104540 + 0.181069i
\(540\) 0.791796 + 1.37143i 0.0340735 + 0.0590170i
\(541\) 1.72949 0.0743566 0.0371783 0.999309i \(-0.488163\pi\)
0.0371783 + 0.999309i \(0.488163\pi\)
\(542\) −3.51722 6.09201i −0.151078 0.261674i
\(543\) −0.708204 + 1.22665i −0.0303919 + 0.0526404i
\(544\) −15.4894 + 26.8284i −0.664101 + 1.15026i
\(545\) 4.09017 0.175204
\(546\) 0.145898 + 0.505406i 0.00624386 + 0.0216294i
\(547\) −3.00000 −0.128271 −0.0641354 0.997941i \(-0.520429\pi\)
−0.0641354 + 0.997941i \(0.520429\pi\)
\(548\) −0.354102 + 0.613323i −0.0151265 + 0.0261998i
\(549\) −8.56231 + 14.8303i −0.365430 + 0.632944i
\(550\) −4.50000 7.79423i −0.191881 0.332347i
\(551\) −19.8541 −0.845813
\(552\) −1.25735 2.17780i −0.0535165 0.0926934i
\(553\) −2.00000 3.46410i −0.0850487 0.147309i
\(554\) −1.90983 −0.0811409
\(555\) 0.291796 + 0.505406i 0.0123861 + 0.0214533i
\(556\) −14.4271 + 24.9884i −0.611843 + 1.05974i
\(557\) −9.48936 + 16.4360i −0.402077 + 0.696418i −0.993976 0.109594i \(-0.965045\pi\)
0.591899 + 0.806012i \(0.298378\pi\)
\(558\) −9.49342 −0.401889
\(559\) −26.4681 6.54915i −1.11948 0.276999i
\(560\) 1.20163 0.0507780
\(561\) −6.92705 + 11.9980i −0.292460 + 0.506556i
\(562\) 0.416408 0.721240i 0.0175651 0.0304237i
\(563\) 19.4721 + 33.7267i 0.820653 + 1.42141i 0.905197 + 0.424992i \(0.139723\pi\)
−0.0845442 + 0.996420i \(0.526943\pi\)
\(564\) 1.58359 0.0666813
\(565\) 1.42705 + 2.47172i 0.0600365 + 0.103986i
\(566\) 2.56231 + 4.43804i 0.107702 + 0.186545i
\(567\) 7.70820 0.323714
\(568\) 6.02129 + 10.4292i 0.252648 + 0.437598i
\(569\) 1.47214 2.54981i 0.0617151 0.106894i −0.833517 0.552494i \(-0.813676\pi\)
0.895232 + 0.445600i \(0.147010\pi\)
\(570\) 0.135255 0.234268i 0.00566521 0.00981242i
\(571\) −35.6869 −1.49345 −0.746726 0.665132i \(-0.768375\pi\)
−0.746726 + 0.665132i \(0.768375\pi\)
\(572\) −22.5000 + 23.3827i −0.940772 + 0.977679i
\(573\) −9.02129 −0.376870
\(574\) −1.00000 + 1.73205i −0.0417392 + 0.0722944i
\(575\) 10.8541 18.7999i 0.452647 0.784008i
\(576\) −6.71885 11.6374i −0.279952 0.484891i
\(577\) 9.83282 0.409345 0.204673 0.978830i \(-0.434387\pi\)
0.204673 + 0.978830i \(0.434387\pi\)
\(578\) −7.41641 12.8456i −0.308482 0.534306i
\(579\) −1.14590 1.98475i −0.0476219 0.0824835i
\(580\) 2.89667 0.120278
\(581\) 3.35410 + 5.80948i 0.139152 + 0.241018i
\(582\) 0.886031 1.53465i 0.0367272 0.0636133i
\(583\) 19.9894 34.6226i 0.827875 1.43392i
\(584\) 2.94427 0.121835
\(585\) −3.81559 0.944115i −0.157755 0.0390343i
\(586\) −4.29180 −0.177292
\(587\) 15.5451 26.9249i 0.641614 1.11131i −0.343458 0.939168i \(-0.611598\pi\)
0.985072 0.172141i \(-0.0550683\pi\)
\(588\) −0.354102 + 0.613323i −0.0146029 + 0.0252930i
\(589\) −21.1353 36.6073i −0.870863 1.50838i
\(590\) 0.326238 0.0134310
\(591\) 1.48936 + 2.57964i 0.0612640 + 0.106112i
\(592\) −6.29180 10.8977i −0.258591 0.447893i
\(593\) 19.2016 0.788516 0.394258 0.919000i \(-0.371002\pi\)
0.394258 + 0.919000i \(0.371002\pi\)
\(594\) 2.07295 + 3.59045i 0.0850541 + 0.147318i
\(595\) −1.42705 + 2.47172i −0.0585034 + 0.101331i
\(596\) −4.50000 + 7.79423i −0.184327 + 0.319264i
\(597\) −0.922986 −0.0377753
\(598\) 5.97871 + 1.47935i 0.244488 + 0.0604950i
\(599\) −8.50658 −0.347569 −0.173785 0.984784i \(-0.555600\pi\)
−0.173785 + 0.984784i \(0.555600\pi\)
\(600\) 1.36475 2.36381i 0.0557155 0.0965021i
\(601\) 16.6976 28.9210i 0.681108 1.17971i −0.293535 0.955948i \(-0.594832\pi\)
0.974643 0.223765i \(-0.0718348\pi\)
\(602\) 1.44427 + 2.50155i 0.0588641 + 0.101956i
\(603\) −2.02129 −0.0823131
\(604\) −13.6353 23.6170i −0.554811 0.960960i
\(605\) −2.39919 4.15551i −0.0975408 0.168946i
\(606\) −1.24922 −0.0507462
\(607\) 11.5000 + 19.9186i 0.466771 + 0.808470i 0.999279 0.0379540i \(-0.0120840\pi\)
−0.532509 + 0.846424i \(0.678751\pi\)
\(608\) −10.0623 + 17.4284i −0.408080 + 0.706816i
\(609\) −0.781153 + 1.35300i −0.0316539 + 0.0548262i
\(610\) −0.875388 −0.0354434
\(611\) −5.59017 + 5.80948i −0.226154 + 0.235026i
\(612\) 39.5410 1.59835
\(613\) −7.21885 + 12.5034i −0.291566 + 0.505008i −0.974180 0.225771i \(-0.927510\pi\)
0.682614 + 0.730779i \(0.260843\pi\)
\(614\) −0.354102 + 0.613323i −0.0142904 + 0.0247517i
\(615\) 0.381966 + 0.661585i 0.0154024 + 0.0266777i
\(616\) 7.14590 0.287916
\(617\) −8.97214 15.5402i −0.361205 0.625625i 0.626955 0.779056i \(-0.284301\pi\)
−0.988159 + 0.153431i \(0.950968\pi\)
\(618\) 0.343459 + 0.594888i 0.0138159 + 0.0239299i
\(619\) −17.4164 −0.700025 −0.350012 0.936745i \(-0.613823\pi\)
−0.350012 + 0.936745i \(0.613823\pi\)
\(620\) 3.08359 + 5.34094i 0.123840 + 0.214497i
\(621\) −5.00000 + 8.66025i −0.200643 + 0.347524i
\(622\) 2.35410 4.07742i 0.0943909 0.163490i
\(623\) 16.0902 0.644639
\(624\) −4.20569 1.04064i −0.168362 0.0416589i
\(625\) 22.8328 0.913313
\(626\) 2.88854 5.00310i 0.115449 0.199964i
\(627\) −4.50000 + 7.79423i −0.179713 + 0.311272i
\(628\) 7.55166 + 13.0799i 0.301344 + 0.521943i
\(629\) 29.8885 1.19173
\(630\) 0.208204 + 0.360620i 0.00829504 + 0.0143674i
\(631\) 19.6976 + 34.1172i 0.784148 + 1.35818i 0.929507 + 0.368804i \(0.120233\pi\)
−0.145360 + 0.989379i \(0.546434\pi\)
\(632\) −5.88854 −0.234234
\(633\) −1.66312 2.88061i −0.0661030 0.114494i
\(634\) −4.15654 + 7.19934i −0.165077 + 0.285922i
\(635\) 2.70163 4.67935i 0.107211 0.185694i
\(636\) 5.83282 0.231286
\(637\) −1.00000 3.46410i −0.0396214 0.137253i
\(638\) 7.58359 0.300237
\(639\) 11.6738 20.2195i 0.461807 0.799873i
\(640\) 1.92705 3.33775i 0.0761734 0.131936i
\(641\) 4.74671 + 8.22154i 0.187484 + 0.324731i 0.944411 0.328768i \(-0.106633\pi\)
−0.756927 + 0.653500i \(0.773300\pi\)
\(642\) 0.819660 0.0323494
\(643\) 3.50000 + 6.06218i 0.138027 + 0.239069i 0.926750 0.375680i \(-0.122591\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) 4.14590 + 7.18091i 0.163371 + 0.282967i
\(645\) 1.10333 0.0434434
\(646\) −6.92705 11.9980i −0.272541 0.472055i
\(647\) −14.6180 + 25.3192i −0.574694 + 0.995400i 0.421381 + 0.906884i \(0.361546\pi\)
−0.996075 + 0.0885157i \(0.971788\pi\)
\(648\) 5.67376 9.82724i 0.222886 0.386051i
\(649\) −10.8541 −0.426061
\(650\) 1.85410 + 6.42280i 0.0727239 + 0.251923i
\(651\) −3.32624 −0.130366
\(652\) 9.00000 15.5885i 0.352467 0.610491i
\(653\) 1.30902 2.26728i 0.0512258 0.0887257i −0.839275 0.543706i \(-0.817021\pi\)
0.890501 + 0.454981i \(0.150354\pi\)
\(654\) 0.781153 + 1.35300i 0.0305455 + 0.0529064i
\(655\) 0.124612 0.00486899
\(656\) −8.23607 14.2653i −0.321564 0.556966i
\(657\) −2.85410 4.94345i −0.111349 0.192862i
\(658\) 0.854102 0.0332964
\(659\) −5.94427 10.2958i −0.231556 0.401067i 0.726710 0.686944i \(-0.241048\pi\)
−0.958266 + 0.285877i \(0.907715\pi\)
\(660\) 0.656541 1.13716i 0.0255558 0.0442640i
\(661\) −9.27051 + 16.0570i −0.360581 + 0.624545i −0.988057 0.154092i \(-0.950755\pi\)
0.627476 + 0.778636i \(0.284088\pi\)
\(662\) −6.43769 −0.250208
\(663\) 7.13525 7.41517i 0.277110 0.287982i
\(664\) 9.87539 0.383239
\(665\) −0.927051 + 1.60570i −0.0359495 + 0.0622664i
\(666\) 2.18034 3.77646i 0.0844865 0.146335i
\(667\) 9.14590 + 15.8412i 0.354131 + 0.613372i
\(668\) −18.1033 −0.700439
\(669\) −2.53444 4.38978i −0.0979872 0.169719i
\(670\) −0.0516628 0.0894826i −0.00199591 0.00345701i
\(671\) 29.1246 1.12434
\(672\) 0.791796 + 1.37143i 0.0305442 + 0.0529041i
\(673\) −20.6246 + 35.7229i −0.795020 + 1.37702i 0.127806 + 0.991799i \(0.459207\pi\)
−0.922826 + 0.385216i \(0.874127\pi\)
\(674\) −1.63525 + 2.83234i −0.0629877 + 0.109098i
\(675\) −10.8541 −0.417775
\(676\) 20.3951 12.8456i 0.784428 0.494061i
\(677\) 1.25735 0.0483240 0.0241620 0.999708i \(-0.492308\pi\)
0.0241620 + 0.999708i \(0.492308\pi\)
\(678\) −0.545085 + 0.944115i −0.0209339 + 0.0362585i
\(679\) −6.07295 + 10.5187i −0.233058 + 0.403669i
\(680\) 2.10081 + 3.63871i 0.0805625 + 0.139538i
\(681\) 2.85410 0.109369
\(682\) 8.07295 + 13.9828i 0.309129 + 0.535427i
\(683\) 3.73607 + 6.47106i 0.142957 + 0.247608i 0.928609 0.371060i \(-0.121006\pi\)
−0.785652 + 0.618669i \(0.787672\pi\)
\(684\) 25.6869 0.982164
\(685\) 0.0729490 + 0.126351i 0.00278724 + 0.00482764i
\(686\) −0.190983 + 0.330792i −0.00729177 + 0.0126297i
\(687\) 5.18034 8.97261i 0.197642 0.342326i
\(688\) −23.7902 −0.906995
\(689\) −20.5902 + 21.3979i −0.784423 + 0.815196i
\(690\) −0.249224 −0.00948778
\(691\) −0.427051 + 0.739674i −0.0162458 + 0.0281385i −0.874034 0.485865i \(-0.838505\pi\)
0.857788 + 0.514003i \(0.171838\pi\)
\(692\) −8.34346 + 14.4513i −0.317171 + 0.549356i
\(693\) −6.92705 11.9980i −0.263137 0.455766i
\(694\) 13.4590 0.510896
\(695\) 2.97214 + 5.14789i 0.112740 + 0.195271i
\(696\) 1.14996 + 1.99179i 0.0435892 + 0.0754988i
\(697\) 39.1246 1.48195
\(698\) −1.39261 2.41207i −0.0527110 0.0912982i
\(699\) 0.0729490 0.126351i 0.00275919 0.00477905i
\(700\) −4.50000 + 7.79423i −0.170084 + 0.294594i
\(701\) 6.76393 0.255470 0.127735 0.991808i \(-0.459229\pi\)
0.127735 + 0.991808i \(0.459229\pi\)
\(702\) −0.854102 2.95870i −0.0322360 0.111669i
\(703\) 19.4164 0.732304
\(704\) −11.4271 + 19.7922i −0.430673 + 0.745948i
\(705\) 0.163119 0.282530i 0.00614342 0.0106407i
\(706\) −5.51064 9.54471i −0.207396 0.359220i
\(707\) 8.56231 0.322019
\(708\) −0.791796 1.37143i −0.0297575 0.0515415i
\(709\) −1.71885 2.97713i −0.0645527 0.111808i 0.831943 0.554861i \(-0.187229\pi\)
−0.896495 + 0.443053i \(0.853895\pi\)
\(710\) 1.19350 0.0447911
\(711\) 5.70820 + 9.88690i 0.214074 + 0.370788i
\(712\) 11.8435 20.5135i 0.443852 0.768775i
\(713\) −19.4721 + 33.7267i −0.729237 + 1.26308i
\(714\) −1.09017 −0.0407986
\(715\) 1.85410 + 6.42280i 0.0693395 + 0.240199i
\(716\) 16.6869 0.623619
\(717\) −2.15654 + 3.73524i −0.0805375 + 0.139495i
\(718\) 2.08359 3.60889i 0.0777590 0.134682i
\(719\) 16.0623 + 27.8207i 0.599023 + 1.03754i 0.992966 + 0.118403i \(0.0377775\pi\)
−0.393943 + 0.919135i \(0.628889\pi\)
\(720\) −3.42956 −0.127812
\(721\) −2.35410 4.07742i −0.0876713 0.151851i
\(722\) −0.871323 1.50918i −0.0324273 0.0561657i
\(723\) −1.69505 −0.0630395
\(724\) −3.43769 5.95426i −0.127761 0.221288i
\(725\) −9.92705 + 17.1942i −0.368681 + 0.638575i
\(726\) 0.916408 1.58726i 0.0340111 0.0589089i
\(727\) −17.2918 −0.641317 −0.320659 0.947195i \(-0.603904\pi\)
−0.320659 + 0.947195i \(0.603904\pi\)
\(728\) −5.15248 1.27491i −0.190963 0.0472512i
\(729\) −19.4377 −0.719915
\(730\) 0.145898 0.252703i 0.00539993 0.00935295i
\(731\) 28.2533 48.9361i 1.04499 1.80997i
\(732\) 2.12461 + 3.67994i 0.0785279 + 0.136014i
\(733\) 1.27051 0.0469274 0.0234637 0.999725i \(-0.492531\pi\)
0.0234637 + 0.999725i \(0.492531\pi\)
\(734\) −4.85410 8.40755i −0.179168 0.310328i
\(735\) 0.0729490 + 0.126351i 0.00269077 + 0.00466054i
\(736\) 18.5410 0.683431
\(737\) 1.71885 + 2.97713i 0.0633145 + 0.109664i
\(738\) 2.85410 4.94345i 0.105061 0.181971i
\(739\) 23.5623 40.8111i 0.866753 1.50126i 0.00145790 0.999999i \(-0.499536\pi\)
0.865296 0.501262i \(-0.167131\pi\)
\(740\) −2.83282 −0.104136
\(741\) 4.63525 4.81710i 0.170280 0.176961i
\(742\) 3.14590 0.115490
\(743\) −11.8369 + 20.5021i −0.434253 + 0.752148i −0.997234 0.0743213i \(-0.976321\pi\)
0.562981 + 0.826470i \(0.309654\pi\)
\(744\) −2.44834 + 4.24064i −0.0897604 + 0.155470i
\(745\) 0.927051 + 1.60570i 0.0339645 + 0.0588283i
\(746\) −0.167184 −0.00612105
\(747\) −9.57295 16.5808i −0.350256 0.606661i
\(748\) −33.6246 58.2395i −1.22944 2.12945i
\(749\) −5.61803 −0.205278
\(750\) −0.274575 0.475578i −0.0100261 0.0173657i
\(751\) −4.64590 + 8.04693i −0.169531 + 0.293637i −0.938255 0.345944i \(-0.887559\pi\)
0.768724 + 0.639581i \(0.220892\pi\)
\(752\) −3.51722 + 6.09201i −0.128260 + 0.222153i
\(753\) −2.00000 −0.0728841
\(754\) −5.46807 1.35300i −0.199135 0.0492732i
\(755\) −5.61803 −0.204461
\(756\) 2.07295 3.59045i 0.0753924 0.130584i
\(757\) −14.0000 + 24.2487i −0.508839 + 0.881334i 0.491109 + 0.871098i \(0.336592\pi\)
−0.999948 + 0.0102362i \(0.996742\pi\)
\(758\) 2.45492 + 4.25204i 0.0891665 + 0.154441i
\(759\) 8.29180 0.300973
\(760\) 1.36475 + 2.36381i 0.0495045 + 0.0857443i
\(761\) 11.0729 + 19.1789i 0.401394 + 0.695235i 0.993894 0.110335i \(-0.0351925\pi\)
−0.592500 + 0.805570i \(0.701859\pi\)
\(762\) 2.06386 0.0747657
\(763\) −5.35410 9.27358i −0.193832 0.335726i
\(764\) 21.8951 37.9235i 0.792138 1.37202i
\(765\) 4.07295 7.05455i 0.147258 0.255058i
\(766\) 9.54102 0.344731
\(767\) 7.82624 + 1.93649i 0.282589 + 0.0699227i
\(768\) −2.12461 −0.0766653
\(769\) −4.20820 + 7.28882i −0.151752 + 0.262842i −0.931872 0.362788i \(-0.881825\pi\)
0.780120 +