Newspace parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.726638658394\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - x^{3} + 2x^{2} + x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} + 2x^{2} + x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 1 ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + \beta_{2} + \beta_1 \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{2} - 1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).
\(n\) | \(15\) | \(66\) |
\(\chi(n)\) | \(\beta_{3}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
22.1 |
|
−1.30902 | + | 2.26728i | 1.30902 | − | 2.26728i | −2.42705 | − | 4.20378i | 2.61803 | 3.42705 | + | 5.93583i | −0.500000 | − | 0.866025i | 7.47214 | −1.92705 | − | 3.33775i | −3.42705 | + | 5.93583i | ||||||||||||||||
22.2 | −0.190983 | + | 0.330792i | 0.190983 | − | 0.330792i | 0.927051 | + | 1.60570i | 0.381966 | 0.0729490 | + | 0.126351i | −0.500000 | − | 0.866025i | −1.47214 | 1.42705 | + | 2.47172i | −0.0729490 | + | 0.126351i | |||||||||||||||||
29.1 | −1.30902 | − | 2.26728i | 1.30902 | + | 2.26728i | −2.42705 | + | 4.20378i | 2.61803 | 3.42705 | − | 5.93583i | −0.500000 | + | 0.866025i | 7.47214 | −1.92705 | + | 3.33775i | −3.42705 | − | 5.93583i | |||||||||||||||||
29.2 | −0.190983 | − | 0.330792i | 0.190983 | + | 0.330792i | 0.927051 | − | 1.60570i | 0.381966 | 0.0729490 | − | 0.126351i | −0.500000 | + | 0.866025i | −1.47214 | 1.42705 | − | 2.47172i | −0.0729490 | − | 0.126351i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 91.2.f.a | ✓ | 4 |
3.b | odd | 2 | 1 | 819.2.o.c | 4 | ||
4.b | odd | 2 | 1 | 1456.2.s.h | 4 | ||
7.b | odd | 2 | 1 | 637.2.f.c | 4 | ||
7.c | even | 3 | 1 | 637.2.g.b | 4 | ||
7.c | even | 3 | 1 | 637.2.h.g | 4 | ||
7.d | odd | 6 | 1 | 637.2.g.c | 4 | ||
7.d | odd | 6 | 1 | 637.2.h.f | 4 | ||
13.c | even | 3 | 1 | inner | 91.2.f.a | ✓ | 4 |
13.c | even | 3 | 1 | 1183.2.a.g | 2 | ||
13.e | even | 6 | 1 | 1183.2.a.c | 2 | ||
13.f | odd | 12 | 2 | 1183.2.c.c | 4 | ||
39.i | odd | 6 | 1 | 819.2.o.c | 4 | ||
52.j | odd | 6 | 1 | 1456.2.s.h | 4 | ||
91.g | even | 3 | 1 | 637.2.h.g | 4 | ||
91.h | even | 3 | 1 | 637.2.g.b | 4 | ||
91.m | odd | 6 | 1 | 637.2.h.f | 4 | ||
91.n | odd | 6 | 1 | 637.2.f.c | 4 | ||
91.n | odd | 6 | 1 | 8281.2.a.bb | 2 | ||
91.t | odd | 6 | 1 | 8281.2.a.n | 2 | ||
91.v | odd | 6 | 1 | 637.2.g.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.f.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
91.2.f.a | ✓ | 4 | 13.c | even | 3 | 1 | inner |
637.2.f.c | 4 | 7.b | odd | 2 | 1 | ||
637.2.f.c | 4 | 91.n | odd | 6 | 1 | ||
637.2.g.b | 4 | 7.c | even | 3 | 1 | ||
637.2.g.b | 4 | 91.h | even | 3 | 1 | ||
637.2.g.c | 4 | 7.d | odd | 6 | 1 | ||
637.2.g.c | 4 | 91.v | odd | 6 | 1 | ||
637.2.h.f | 4 | 7.d | odd | 6 | 1 | ||
637.2.h.f | 4 | 91.m | odd | 6 | 1 | ||
637.2.h.g | 4 | 7.c | even | 3 | 1 | ||
637.2.h.g | 4 | 91.g | even | 3 | 1 | ||
819.2.o.c | 4 | 3.b | odd | 2 | 1 | ||
819.2.o.c | 4 | 39.i | odd | 6 | 1 | ||
1183.2.a.c | 2 | 13.e | even | 6 | 1 | ||
1183.2.a.g | 2 | 13.c | even | 3 | 1 | ||
1183.2.c.c | 4 | 13.f | odd | 12 | 2 | ||
1456.2.s.h | 4 | 4.b | odd | 2 | 1 | ||
1456.2.s.h | 4 | 52.j | odd | 6 | 1 | ||
8281.2.a.n | 2 | 91.t | odd | 6 | 1 | ||
8281.2.a.bb | 2 | 91.n | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 3T_{2}^{3} + 8T_{2}^{2} + 3T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(91, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 3 T^{3} + 8 T^{2} + 3 T + 1 \)
$3$
\( T^{4} - 3 T^{3} + 8 T^{2} - 3 T + 1 \)
$5$
\( (T^{2} - 3 T + 1)^{2} \)
$7$
\( (T^{2} + T + 1)^{2} \)
$11$
\( T^{4} - 3 T^{3} + 18 T^{2} + 27 T + 81 \)
$13$
\( (T^{2} + 5 T + 13)^{2} \)
$17$
\( T^{4} + 6 T^{3} + 47 T^{2} - 66 T + 121 \)
$19$
\( T^{4} + 3 T^{3} + 18 T^{2} - 27 T + 81 \)
$23$
\( T^{4} + 20T^{2} + 400 \)
$29$
\( T^{4} + 3 T^{3} + 38 T^{2} - 87 T + 841 \)
$31$
\( (T^{2} - 4 T - 41)^{2} \)
$37$
\( (T^{2} + 4 T + 16)^{2} \)
$41$
\( T^{4} + 6 T^{3} + 32 T^{2} + 24 T + 16 \)
$43$
\( T^{4} + 5 T^{3} + 120 T^{2} + \cdots + 9025 \)
$47$
\( (T^{2} - 5)^{2} \)
$53$
\( (T^{2} - 12 T + 31)^{2} \)
$59$
\( T^{4} + 5T^{2} + 25 \)
$61$
\( (T^{2} - 6 T + 36)^{2} \)
$67$
\( T^{4} - 12 T^{3} + 153 T^{2} + \cdots + 81 \)
$71$
\( T^{4} - 6 T^{3} + 152 T^{2} + \cdots + 13456 \)
$73$
\( (T + 2)^{4} \)
$79$
\( (T - 4)^{4} \)
$83$
\( (T^{2} - 45)^{2} \)
$89$
\( T^{4} + 21 T^{3} + 362 T^{2} + \cdots + 6241 \)
$97$
\( T^{4} + 31 T^{3} + 732 T^{2} + \cdots + 52441 \)
show more
show less