Properties

Label 91.2.f
Level $91$
Weight $2$
Character orbit 91.f
Rep. character $\chi_{91}(22,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $3$
Sturm bound $18$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.f (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(18\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).

Total New Old
Modular forms 24 16 8
Cusp forms 16 16 0
Eisenstein series 8 0 8

Trace form

\( 16 q - 2 q^{2} - 10 q^{4} - 8 q^{5} + 6 q^{6} - 10 q^{9} - 2 q^{10} - 2 q^{11} + 4 q^{12} - 2 q^{13} + 8 q^{14} - 2 q^{15} - 22 q^{16} + 10 q^{17} + 36 q^{18} - 8 q^{19} - 10 q^{20} - 4 q^{21} - 2 q^{22}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
91.2.f.a 91.f 13.c $4$ $0.727$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 91.2.f.a \(-3\) \(3\) \(6\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{1}-\beta _{3})q^{2}+(1+\beta _{1}+\beta _{3})q^{3}+\cdots\)
91.2.f.b 91.f 13.c $4$ $0.727$ \(\Q(\zeta_{12})\) None 91.2.f.b \(0\) \(-2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{2} q^{2}+(-\beta_{2}-\beta_1)q^{3}+(\beta_1-1)q^{4}+\cdots\)
91.2.f.c 91.f 13.c $8$ $0.727$ 8.0.\(\cdots\).1 None 91.2.f.c \(1\) \(-1\) \(-14\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)