Defining parameters
Level: | \( N \) | \(=\) | \( 91 = 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 91.f (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(18\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(91, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 16 | 8 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(91, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
91.2.f.a | $4$ | $0.727$ | \(\Q(\sqrt{-3}, \sqrt{5})\) | None | \(-3\) | \(3\) | \(6\) | \(-2\) | \(q+(-1-\beta _{1}-\beta _{3})q^{2}+(1+\beta _{1}+\beta _{3})q^{3}+\cdots\) |
91.2.f.b | $4$ | $0.727$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | \(q-\beta_{2} q^{2}+(-\beta_{2}-\beta_1)q^{3}+(\beta_1-1)q^{4}+\cdots\) |
91.2.f.c | $8$ | $0.727$ | 8.0.\(\cdots\).1 | None | \(1\) | \(-1\) | \(-14\) | \(4\) | \(q+\beta _{1}q^{2}-\beta _{5}q^{3}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |