Properties

Label 91.2.e.c.53.4
Level $91$
Weight $2$
Character 91.53
Analytic conductor $0.727$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - x^{9} + 8 x^{8} + 7 x^{7} + 41 x^{6} + 18 x^{5} + 58 x^{4} + 28 x^{3} + 64 x^{2} + 16 x + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 53.4
Root \(0.597828 + 1.03547i\) of defining polynomial
Character \(\chi\) \(=\) 91.53
Dual form 91.2.e.c.79.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0978281 + 0.169443i) q^{2} +(0.129894 - 0.224983i) q^{3} +(0.980859 - 1.69890i) q^{4} +(-1.96625 - 3.40565i) q^{5} +0.0508292 q^{6} +(1.12324 + 2.39548i) q^{7} +0.775135 q^{8} +(1.46625 + 2.53963i) q^{9} +O(q^{10})\) \(q+(0.0978281 + 0.169443i) q^{2} +(0.129894 - 0.224983i) q^{3} +(0.980859 - 1.69890i) q^{4} +(-1.96625 - 3.40565i) q^{5} +0.0508292 q^{6} +(1.12324 + 2.39548i) q^{7} +0.775135 q^{8} +(1.46625 + 2.53963i) q^{9} +(0.384710 - 0.666337i) q^{10} +(-2.25314 + 3.90255i) q^{11} +(-0.254816 - 0.441354i) q^{12} +1.00000 q^{13} +(-0.296013 + 0.424671i) q^{14} -1.02162 q^{15} +(-1.88589 - 3.26645i) q^{16} +(1.14070 - 1.97576i) q^{17} +(-0.286882 + 0.496894i) q^{18} +(0.893841 + 1.54818i) q^{19} -7.71448 q^{20} +(0.684846 + 0.0584481i) q^{21} -0.881681 q^{22} +(-0.870106 - 1.50707i) q^{23} +(0.100686 - 0.174393i) q^{24} +(-5.23232 + 9.06264i) q^{25} +(0.0978281 + 0.169443i) q^{26} +1.54120 q^{27} +(5.17142 + 0.441354i) q^{28} +1.65110 q^{29} +(-0.0999432 - 0.173107i) q^{30} +(-2.80262 + 4.85427i) q^{31} +(1.14412 - 1.98168i) q^{32} +(0.585339 + 1.01384i) q^{33} +0.446372 q^{34} +(5.94959 - 8.53550i) q^{35} +5.75276 q^{36} +(-3.57204 - 6.18695i) q^{37} +(-0.174886 + 0.302911i) q^{38} +(0.129894 - 0.224983i) q^{39} +(-1.52411 - 2.63984i) q^{40} -8.11574 q^{41} +(0.0570936 + 0.121760i) q^{42} +6.81353 q^{43} +(4.42002 + 7.65570i) q^{44} +(5.76606 - 9.98711i) q^{45} +(0.170242 - 0.294867i) q^{46} +(-1.77271 - 3.07043i) q^{47} -0.979864 q^{48} +(-4.47665 + 5.38141i) q^{49} -2.04747 q^{50} +(-0.296342 - 0.513279i) q^{51} +(0.980859 - 1.69890i) q^{52} +(-1.64483 + 2.84892i) q^{53} +(0.150772 + 0.261146i) q^{54} +17.7210 q^{55} +(0.870665 + 1.85682i) q^{56} +0.464419 q^{57} +(0.161524 + 0.279768i) q^{58} +(-2.25314 + 3.90255i) q^{59} +(-1.00207 + 1.73563i) q^{60} +(-3.77234 - 6.53388i) q^{61} -1.09670 q^{62} +(-4.43667 + 6.36500i) q^{63} -7.09585 q^{64} +(-1.96625 - 3.40565i) q^{65} +(-0.114525 + 0.198364i) q^{66} +(6.33263 - 10.9684i) q^{67} +(-2.23774 - 3.87588i) q^{68} -0.452087 q^{69} +(2.02832 + 0.173107i) q^{70} +9.54869 q^{71} +(1.13655 + 1.96855i) q^{72} +(-0.540019 + 0.935340i) q^{73} +(0.698891 - 1.21052i) q^{74} +(1.35930 + 2.35437i) q^{75} +3.50693 q^{76} +(-11.8793 - 1.01384i) q^{77} +0.0508292 q^{78} +(-0.395849 - 0.685630i) q^{79} +(-7.41628 + 12.8454i) q^{80} +(-4.19857 + 7.27214i) q^{81} +(-0.793947 - 1.37516i) q^{82} -7.14643 q^{83} +(0.771035 - 1.10615i) q^{84} -8.97166 q^{85} +(0.666555 + 1.15451i) q^{86} +(0.214468 - 0.371470i) q^{87} +(-1.74649 + 3.02500i) q^{88} +(5.63281 + 9.75631i) q^{89} +2.25633 q^{90} +(1.12324 + 2.39548i) q^{91} -3.41381 q^{92} +(0.728087 + 1.26108i) q^{93} +(0.346843 - 0.600749i) q^{94} +(3.51504 - 6.08823i) q^{95} +(-0.297229 - 0.514816i) q^{96} -8.81353 q^{97} +(-1.34979 - 0.232085i) q^{98} -13.2147 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{2} - 8 q^{4} - 2 q^{5} - 10 q^{6} + q^{7} + 18 q^{8} - 3 q^{9} + O(q^{10}) \) \( 10 q - 4 q^{2} - 8 q^{4} - 2 q^{5} - 10 q^{6} + q^{7} + 18 q^{8} - 3 q^{9} + 5 q^{10} - 11 q^{11} - 5 q^{12} + 10 q^{13} + 10 q^{14} - 10 q^{16} + 5 q^{17} - 9 q^{18} - 9 q^{19} + 2 q^{20} + 2 q^{21} + 16 q^{22} - 10 q^{23} - 9 q^{25} - 4 q^{26} + 37 q^{28} - 6 q^{29} + 13 q^{30} + 6 q^{31} - 22 q^{32} - 8 q^{33} - 44 q^{34} - 4 q^{35} + 14 q^{36} - 4 q^{37} + 10 q^{38} - 28 q^{40} + 28 q^{41} + 52 q^{42} + 4 q^{43} + 32 q^{45} - 3 q^{46} - q^{47} - 46 q^{48} - 11 q^{49} + 18 q^{50} + 8 q^{51} - 8 q^{52} - 17 q^{53} - 23 q^{54} - 21 q^{56} - 32 q^{57} + 27 q^{58} - 11 q^{59} + 29 q^{60} + 11 q^{61} - 46 q^{62} + 5 q^{63} + 18 q^{64} - 2 q^{65} - 21 q^{66} - 13 q^{67} + 32 q^{68} + 36 q^{69} + 49 q^{70} + 30 q^{71} + 19 q^{72} + 33 q^{74} + 20 q^{75} + 16 q^{76} - 46 q^{77} - 10 q^{78} - 2 q^{79} - 55 q^{80} + 19 q^{81} - 34 q^{82} + 12 q^{83} - 23 q^{84} - 44 q^{85} - 28 q^{86} + 8 q^{87} + 3 q^{88} + 4 q^{89} - 68 q^{90} + q^{91} + 42 q^{92} - 18 q^{93} - 20 q^{94} + 12 q^{95} + 37 q^{96} - 24 q^{97} - 7 q^{98} + 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0978281 + 0.169443i 0.0691749 + 0.119815i 0.898538 0.438895i \(-0.144630\pi\)
−0.829363 + 0.558710i \(0.811297\pi\)
\(3\) 0.129894 0.224983i 0.0749945 0.129894i −0.826089 0.563539i \(-0.809439\pi\)
0.901084 + 0.433645i \(0.142773\pi\)
\(4\) 0.980859 1.69890i 0.490430 0.849449i
\(5\) −1.96625 3.40565i −0.879336 1.52305i −0.852071 0.523426i \(-0.824654\pi\)
−0.0272650 0.999628i \(-0.508680\pi\)
\(6\) 0.0508292 0.0207509
\(7\) 1.12324 + 2.39548i 0.424546 + 0.905406i
\(8\) 0.775135 0.274052
\(9\) 1.46625 + 2.53963i 0.488752 + 0.846543i
\(10\) 0.384710 0.666337i 0.121656 0.210714i
\(11\) −2.25314 + 3.90255i −0.679346 + 1.17666i 0.295832 + 0.955240i \(0.404403\pi\)
−0.975178 + 0.221422i \(0.928930\pi\)
\(12\) −0.254816 0.441354i −0.0735590 0.127408i
\(13\) 1.00000 0.277350
\(14\) −0.296013 + 0.424671i −0.0791129 + 0.113498i
\(15\) −1.02162 −0.263781
\(16\) −1.88589 3.26645i −0.471472 0.816614i
\(17\) 1.14070 1.97576i 0.276661 0.479192i −0.693891 0.720080i \(-0.744105\pi\)
0.970553 + 0.240888i \(0.0774386\pi\)
\(18\) −0.286882 + 0.496894i −0.0676187 + 0.117119i
\(19\) 0.893841 + 1.54818i 0.205061 + 0.355177i 0.950152 0.311786i \(-0.100927\pi\)
−0.745091 + 0.666963i \(0.767594\pi\)
\(20\) −7.71448 −1.72501
\(21\) 0.684846 + 0.0584481i 0.149446 + 0.0127544i
\(22\) −0.881681 −0.187975
\(23\) −0.870106 1.50707i −0.181430 0.314245i 0.760938 0.648825i \(-0.224739\pi\)
−0.942368 + 0.334579i \(0.891406\pi\)
\(24\) 0.100686 0.174393i 0.0205524 0.0355977i
\(25\) −5.23232 + 9.06264i −1.04646 + 1.81253i
\(26\) 0.0978281 + 0.169443i 0.0191857 + 0.0332306i
\(27\) 1.54120 0.296604
\(28\) 5.17142 + 0.441354i 0.977307 + 0.0834081i
\(29\) 1.65110 0.306602 0.153301 0.988180i \(-0.451010\pi\)
0.153301 + 0.988180i \(0.451010\pi\)
\(30\) −0.0999432 0.173107i −0.0182471 0.0316048i
\(31\) −2.80262 + 4.85427i −0.503365 + 0.871853i 0.496628 + 0.867964i \(0.334571\pi\)
−0.999992 + 0.00388953i \(0.998762\pi\)
\(32\) 1.14412 1.98168i 0.202254 0.350314i
\(33\) 0.585339 + 1.01384i 0.101894 + 0.176486i
\(34\) 0.446372 0.0765522
\(35\) 5.94959 8.53550i 1.00566 1.44276i
\(36\) 5.75276 0.958793
\(37\) −3.57204 6.18695i −0.587239 1.01713i −0.994592 0.103857i \(-0.966881\pi\)
0.407353 0.913271i \(-0.366452\pi\)
\(38\) −0.174886 + 0.302911i −0.0283702 + 0.0491386i
\(39\) 0.129894 0.224983i 0.0207997 0.0360262i
\(40\) −1.52411 2.63984i −0.240983 0.417396i
\(41\) −8.11574 −1.26746 −0.633732 0.773552i \(-0.718478\pi\)
−0.633732 + 0.773552i \(0.718478\pi\)
\(42\) 0.0570936 + 0.121760i 0.00880973 + 0.0187880i
\(43\) 6.81353 1.03905 0.519527 0.854454i \(-0.326108\pi\)
0.519527 + 0.854454i \(0.326108\pi\)
\(44\) 4.42002 + 7.65570i 0.666343 + 1.15414i
\(45\) 5.76606 9.98711i 0.859554 1.48879i
\(46\) 0.170242 0.294867i 0.0251008 0.0434758i
\(47\) −1.77271 3.07043i −0.258577 0.447868i 0.707284 0.706929i \(-0.249920\pi\)
−0.965861 + 0.259061i \(0.916587\pi\)
\(48\) −0.979864 −0.141431
\(49\) −4.47665 + 5.38141i −0.639522 + 0.768773i
\(50\) −2.04747 −0.289556
\(51\) −0.296342 0.513279i −0.0414962 0.0718735i
\(52\) 0.980859 1.69890i 0.136021 0.235595i
\(53\) −1.64483 + 2.84892i −0.225934 + 0.391330i −0.956599 0.291406i \(-0.905877\pi\)
0.730665 + 0.682736i \(0.239210\pi\)
\(54\) 0.150772 + 0.261146i 0.0205175 + 0.0355374i
\(55\) 17.7210 2.38949
\(56\) 0.870665 + 1.85682i 0.116347 + 0.248128i
\(57\) 0.464419 0.0615138
\(58\) 0.161524 + 0.279768i 0.0212092 + 0.0367353i
\(59\) −2.25314 + 3.90255i −0.293333 + 0.508068i −0.974596 0.223971i \(-0.928098\pi\)
0.681262 + 0.732039i \(0.261431\pi\)
\(60\) −1.00207 + 1.73563i −0.129366 + 0.224069i
\(61\) −3.77234 6.53388i −0.482998 0.836577i 0.516811 0.856099i \(-0.327119\pi\)
−0.999809 + 0.0195220i \(0.993786\pi\)
\(62\) −1.09670 −0.139281
\(63\) −4.43667 + 6.36500i −0.558968 + 0.801915i
\(64\) −7.09585 −0.886981
\(65\) −1.96625 3.40565i −0.243884 0.422419i
\(66\) −0.114525 + 0.198364i −0.0140971 + 0.0244169i
\(67\) 6.33263 10.9684i 0.773653 1.34001i −0.161895 0.986808i \(-0.551761\pi\)
0.935548 0.353199i \(-0.114906\pi\)
\(68\) −2.23774 3.87588i −0.271366 0.470020i
\(69\) −0.452087 −0.0544249
\(70\) 2.02832 + 0.173107i 0.242431 + 0.0206902i
\(71\) 9.54869 1.13322 0.566610 0.823986i \(-0.308254\pi\)
0.566610 + 0.823986i \(0.308254\pi\)
\(72\) 1.13655 + 1.96855i 0.133943 + 0.231996i
\(73\) −0.540019 + 0.935340i −0.0632044 + 0.109473i −0.895896 0.444264i \(-0.853465\pi\)
0.832692 + 0.553737i \(0.186799\pi\)
\(74\) 0.698891 1.21052i 0.0812445 0.140720i
\(75\) 1.35930 + 2.35437i 0.156958 + 0.271859i
\(76\) 3.50693 0.402273
\(77\) −11.8793 1.01384i −1.35377 0.115537i
\(78\) 0.0508292 0.00575528
\(79\) −0.395849 0.685630i −0.0445365 0.0771394i 0.842898 0.538074i \(-0.180848\pi\)
−0.887434 + 0.460934i \(0.847514\pi\)
\(80\) −7.41628 + 12.8454i −0.829165 + 1.43616i
\(81\) −4.19857 + 7.27214i −0.466508 + 0.808016i
\(82\) −0.793947 1.37516i −0.0876768 0.151861i
\(83\) −7.14643 −0.784422 −0.392211 0.919875i \(-0.628290\pi\)
−0.392211 + 0.919875i \(0.628290\pi\)
\(84\) 0.771035 1.10615i 0.0841268 0.120691i
\(85\) −8.97166 −0.973114
\(86\) 0.666555 + 1.15451i 0.0718765 + 0.124494i
\(87\) 0.214468 0.371470i 0.0229934 0.0398258i
\(88\) −1.74649 + 3.02500i −0.186176 + 0.322466i
\(89\) 5.63281 + 9.75631i 0.597077 + 1.03417i 0.993250 + 0.115992i \(0.0370045\pi\)
−0.396174 + 0.918176i \(0.629662\pi\)
\(90\) 2.25633 0.237838
\(91\) 1.12324 + 2.39548i 0.117748 + 0.251115i
\(92\) −3.41381 −0.355914
\(93\) 0.728087 + 1.26108i 0.0754991 + 0.130768i
\(94\) 0.346843 0.600749i 0.0357741 0.0619625i
\(95\) 3.51504 6.08823i 0.360636 0.624639i
\(96\) −0.297229 0.514816i −0.0303358 0.0525432i
\(97\) −8.81353 −0.894879 −0.447439 0.894314i \(-0.647664\pi\)
−0.447439 + 0.894314i \(0.647664\pi\)
\(98\) −1.34979 0.232085i −0.136349 0.0234441i
\(99\) −13.2147 −1.32813
\(100\) 10.2643 + 17.7783i 1.02643 + 1.77783i
\(101\) 7.15855 12.3990i 0.712303 1.23374i −0.251688 0.967808i \(-0.580986\pi\)
0.963991 0.265936i \(-0.0856810\pi\)
\(102\) 0.0579811 0.100426i 0.00574099 0.00994368i
\(103\) 3.74607 + 6.48839i 0.369111 + 0.639320i 0.989427 0.145033i \(-0.0463287\pi\)
−0.620315 + 0.784352i \(0.712995\pi\)
\(104\) 0.775135 0.0760082
\(105\) −1.14753 2.44727i −0.111987 0.238829i
\(106\) −0.643641 −0.0625160
\(107\) −5.48919 9.50756i −0.530660 0.919130i −0.999360 0.0357726i \(-0.988611\pi\)
0.468700 0.883357i \(-0.344723\pi\)
\(108\) 1.51170 2.61834i 0.145463 0.251950i
\(109\) 6.22314 10.7788i 0.596068 1.03242i −0.397327 0.917677i \(-0.630062\pi\)
0.993395 0.114744i \(-0.0366046\pi\)
\(110\) 1.73361 + 3.00270i 0.165293 + 0.286296i
\(111\) −1.85595 −0.176159
\(112\) 5.70642 8.18663i 0.539206 0.773564i
\(113\) −1.65110 −0.155323 −0.0776613 0.996980i \(-0.524745\pi\)
−0.0776613 + 0.996980i \(0.524745\pi\)
\(114\) 0.0454333 + 0.0786927i 0.00425522 + 0.00737025i
\(115\) −3.42170 + 5.92656i −0.319075 + 0.552654i
\(116\) 1.61950 2.80505i 0.150367 0.260443i
\(117\) 1.46625 + 2.53963i 0.135555 + 0.234789i
\(118\) −0.881681 −0.0811653
\(119\) 6.01418 + 0.513279i 0.551319 + 0.0470522i
\(120\) −0.791894 −0.0722897
\(121\) −4.65325 8.05967i −0.423023 0.732697i
\(122\) 0.738081 1.27839i 0.0668227 0.115740i
\(123\) −1.05419 + 1.82591i −0.0950528 + 0.164636i
\(124\) 5.49794 + 9.52272i 0.493730 + 0.855165i
\(125\) 21.4897 1.92210
\(126\) −1.51254 0.129087i −0.134748 0.0115000i
\(127\) −4.49297 −0.398687 −0.199343 0.979930i \(-0.563881\pi\)
−0.199343 + 0.979930i \(0.563881\pi\)
\(128\) −2.98242 5.16569i −0.263611 0.456587i
\(129\) 0.885039 1.53293i 0.0779233 0.134967i
\(130\) 0.384710 0.666337i 0.0337413 0.0584417i
\(131\) 6.32836 + 10.9610i 0.552911 + 0.957670i 0.998063 + 0.0622152i \(0.0198165\pi\)
−0.445151 + 0.895455i \(0.646850\pi\)
\(132\) 2.29654 0.199888
\(133\) −2.70463 + 3.88016i −0.234521 + 0.336453i
\(134\) 2.47804 0.214070
\(135\) −3.03039 5.24878i −0.260814 0.451743i
\(136\) 0.884200 1.53148i 0.0758195 0.131323i
\(137\) 4.64321 8.04227i 0.396696 0.687097i −0.596620 0.802524i \(-0.703490\pi\)
0.993316 + 0.115426i \(0.0368234\pi\)
\(138\) −0.0442268 0.0766031i −0.00376484 0.00652089i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −8.66523 18.4799i −0.732346 1.56183i
\(141\) −0.921061 −0.0775673
\(142\) 0.934130 + 1.61796i 0.0783905 + 0.135776i
\(143\) −2.25314 + 3.90255i −0.188417 + 0.326347i
\(144\) 5.53039 9.57891i 0.460866 0.798243i
\(145\) −3.24649 5.62308i −0.269606 0.466971i
\(146\) −0.211316 −0.0174887
\(147\) 0.629237 + 1.70619i 0.0518986 + 0.140724i
\(148\) −14.0147 −1.15200
\(149\) 7.58243 + 13.1332i 0.621177 + 1.07591i 0.989267 + 0.146120i \(0.0466786\pi\)
−0.368090 + 0.929790i \(0.619988\pi\)
\(150\) −0.265955 + 0.460647i −0.0217151 + 0.0376117i
\(151\) −2.57079 + 4.45274i −0.209208 + 0.362359i −0.951465 0.307756i \(-0.900422\pi\)
0.742257 + 0.670115i \(0.233755\pi\)
\(152\) 0.692848 + 1.20005i 0.0561974 + 0.0973367i
\(153\) 6.69025 0.540875
\(154\) −0.990341 2.11205i −0.0798040 0.170194i
\(155\) 22.0426 1.77051
\(156\) −0.254816 0.441354i −0.0204016 0.0353366i
\(157\) 5.36557 9.29344i 0.428219 0.741697i −0.568496 0.822686i \(-0.692474\pi\)
0.996715 + 0.0809889i \(0.0258078\pi\)
\(158\) 0.0774503 0.134148i 0.00616162 0.0106722i
\(159\) 0.427307 + 0.740117i 0.0338877 + 0.0586951i
\(160\) −8.99853 −0.711397
\(161\) 2.63281 3.77712i 0.207495 0.297679i
\(162\) −1.64295 −0.129083
\(163\) −1.18620 2.05455i −0.0929101 0.160925i 0.815824 0.578300i \(-0.196284\pi\)
−0.908734 + 0.417375i \(0.862950\pi\)
\(164\) −7.96039 + 13.7878i −0.621602 + 1.07665i
\(165\) 2.30185 3.98692i 0.179199 0.310382i
\(166\) −0.699122 1.21091i −0.0542624 0.0939852i
\(167\) 12.0784 0.934653 0.467327 0.884085i \(-0.345217\pi\)
0.467327 + 0.884085i \(0.345217\pi\)
\(168\) 0.530848 + 0.0453052i 0.0409558 + 0.00349537i
\(169\) 1.00000 0.0769231
\(170\) −0.877681 1.52019i −0.0673151 0.116593i
\(171\) −2.62120 + 4.54005i −0.200448 + 0.347186i
\(172\) 6.68312 11.5755i 0.509583 0.882624i
\(173\) 9.70485 + 16.8093i 0.737846 + 1.27799i 0.953463 + 0.301509i \(0.0974902\pi\)
−0.215618 + 0.976478i \(0.569176\pi\)
\(174\) 0.0839242 0.00636228
\(175\) −27.5865 2.35437i −2.08535 0.177974i
\(176\) 16.9967 1.28117
\(177\) 0.585339 + 1.01384i 0.0439968 + 0.0762046i
\(178\) −1.10209 + 1.90888i −0.0826055 + 0.143077i
\(179\) −7.32219 + 12.6824i −0.547286 + 0.947928i 0.451173 + 0.892437i \(0.351006\pi\)
−0.998459 + 0.0554912i \(0.982328\pi\)
\(180\) −11.3114 19.5919i −0.843101 1.46029i
\(181\) −9.44627 −0.702136 −0.351068 0.936350i \(-0.614181\pi\)
−0.351068 + 0.936350i \(0.614181\pi\)
\(182\) −0.296013 + 0.424671i −0.0219420 + 0.0314787i
\(183\) −1.96002 −0.144889
\(184\) −0.674450 1.16818i −0.0497211 0.0861194i
\(185\) −14.0471 + 24.3302i −1.03276 + 1.78879i
\(186\) −0.142455 + 0.246739i −0.0104453 + 0.0180918i
\(187\) 5.14033 + 8.90331i 0.375898 + 0.651074i
\(188\) −6.95513 −0.507255
\(189\) 1.73114 + 3.69191i 0.125922 + 0.268547i
\(190\) 1.37548 0.0997878
\(191\) −6.27687 10.8719i −0.454179 0.786660i 0.544462 0.838786i \(-0.316734\pi\)
−0.998641 + 0.0521252i \(0.983401\pi\)
\(192\) −0.921709 + 1.59645i −0.0665186 + 0.115214i
\(193\) 4.68430 8.11344i 0.337183 0.584018i −0.646719 0.762729i \(-0.723859\pi\)
0.983902 + 0.178710i \(0.0571925\pi\)
\(194\) −0.862212 1.49339i −0.0619032 0.107219i
\(195\) −1.02162 −0.0731598
\(196\) 4.75151 + 12.8838i 0.339393 + 0.920270i
\(197\) −7.62276 −0.543099 −0.271550 0.962424i \(-0.587536\pi\)
−0.271550 + 0.962424i \(0.587536\pi\)
\(198\) −1.29277 2.23914i −0.0918731 0.159129i
\(199\) −6.76443 + 11.7163i −0.479518 + 0.830549i −0.999724 0.0234914i \(-0.992522\pi\)
0.520206 + 0.854041i \(0.325855\pi\)
\(200\) −4.05575 + 7.02477i −0.286785 + 0.496726i
\(201\) −1.64514 2.84947i −0.116039 0.200986i
\(202\) 2.80123 0.197094
\(203\) 1.85459 + 3.95518i 0.130167 + 0.277599i
\(204\) −1.16268 −0.0814038
\(205\) 15.9576 + 27.6394i 1.11453 + 1.93042i
\(206\) −0.732942 + 1.26949i −0.0510665 + 0.0884498i
\(207\) 2.55159 4.41949i 0.177348 0.307176i
\(208\) −1.88589 3.26645i −0.130763 0.226488i
\(209\) −8.05579 −0.557231
\(210\) 0.302413 0.433853i 0.0208685 0.0299387i
\(211\) −15.7995 −1.08768 −0.543840 0.839189i \(-0.683030\pi\)
−0.543840 + 0.839189i \(0.683030\pi\)
\(212\) 3.22669 + 5.58879i 0.221610 + 0.383839i
\(213\) 1.24032 2.14830i 0.0849853 0.147199i
\(214\) 1.07399 1.86021i 0.0734167 0.127162i
\(215\) −13.3971 23.2045i −0.913678 1.58254i
\(216\) 1.19464 0.0812847
\(217\) −14.7763 1.26108i −1.00308 0.0856080i
\(218\) 2.43519 0.164932
\(219\) 0.140291 + 0.242991i 0.00947997 + 0.0164198i
\(220\) 17.3818 30.1061i 1.17188 2.02975i
\(221\) 1.14070 1.97576i 0.0767321 0.132904i
\(222\) −0.181564 0.314478i −0.0121858 0.0211064i
\(223\) 22.4737 1.50495 0.752474 0.658622i \(-0.228861\pi\)
0.752474 + 0.658622i \(0.228861\pi\)
\(224\) 6.03219 + 0.514816i 0.403043 + 0.0343976i
\(225\) −30.6876 −2.04584
\(226\) −0.161524 0.279768i −0.0107444 0.0186099i
\(227\) 4.60124 7.96959i 0.305395 0.528960i −0.671954 0.740593i \(-0.734545\pi\)
0.977349 + 0.211633i \(0.0678781\pi\)
\(228\) 0.455530 0.789001i 0.0301682 0.0522529i
\(229\) −7.64611 13.2435i −0.505269 0.875152i −0.999981 0.00609528i \(-0.998060\pi\)
0.494712 0.869057i \(-0.335274\pi\)
\(230\) −1.33895 −0.0882880
\(231\) −1.77115 + 2.54095i −0.116533 + 0.167182i
\(232\) 1.27983 0.0840247
\(233\) 4.02789 + 6.97652i 0.263876 + 0.457047i 0.967269 0.253755i \(-0.0816656\pi\)
−0.703392 + 0.710802i \(0.748332\pi\)
\(234\) −0.286882 + 0.496894i −0.0187541 + 0.0324830i
\(235\) −6.97121 + 12.0745i −0.454752 + 0.787653i
\(236\) 4.42002 + 7.65570i 0.287719 + 0.498344i
\(237\) −0.205674 −0.0133600
\(238\) 0.501384 + 1.06928i 0.0324999 + 0.0693108i
\(239\) 21.7258 1.40533 0.702663 0.711523i \(-0.251994\pi\)
0.702663 + 0.711523i \(0.251994\pi\)
\(240\) 1.92666 + 3.33708i 0.124366 + 0.215407i
\(241\) 10.2490 17.7518i 0.660195 1.14349i −0.320369 0.947293i \(-0.603807\pi\)
0.980564 0.196199i \(-0.0628598\pi\)
\(242\) 0.910438 1.57692i 0.0585252 0.101369i
\(243\) 3.40254 + 5.89337i 0.218273 + 0.378060i
\(244\) −14.8005 −0.947507
\(245\) 27.1295 + 4.66470i 1.73324 + 0.298017i
\(246\) −0.412517 −0.0263011
\(247\) 0.893841 + 1.54818i 0.0568738 + 0.0985083i
\(248\) −2.17241 + 3.76272i −0.137948 + 0.238933i
\(249\) −0.928280 + 1.60783i −0.0588273 + 0.101892i
\(250\) 2.10230 + 3.64129i 0.132961 + 0.230295i
\(251\) 2.60871 0.164660 0.0823301 0.996605i \(-0.473764\pi\)
0.0823301 + 0.996605i \(0.473764\pi\)
\(252\) 6.46175 + 13.7806i 0.407052 + 0.868098i
\(253\) 7.84187 0.493014
\(254\) −0.439539 0.761304i −0.0275791 0.0477685i
\(255\) −1.16537 + 2.01848i −0.0729781 + 0.126402i
\(256\) −6.51232 + 11.2797i −0.407020 + 0.704979i
\(257\) 4.49838 + 7.79142i 0.280601 + 0.486016i 0.971533 0.236904i \(-0.0761328\pi\)
−0.690932 + 0.722920i \(0.742799\pi\)
\(258\) 0.346327 0.0215614
\(259\) 10.8084 15.5062i 0.671604 0.963508i
\(260\) −7.71448 −0.478432
\(261\) 2.42094 + 4.19318i 0.149852 + 0.259551i
\(262\) −1.23818 + 2.14460i −0.0764952 + 0.132494i
\(263\) −0.716961 + 1.24181i −0.0442097 + 0.0765735i −0.887284 0.461224i \(-0.847410\pi\)
0.843074 + 0.537798i \(0.180744\pi\)
\(264\) 0.453717 + 0.785860i 0.0279243 + 0.0483664i
\(265\) 12.9366 0.794689
\(266\) −0.922056 0.0786927i −0.0565349 0.00482496i
\(267\) 2.92668 0.179110
\(268\) −12.4228 21.5170i −0.758845 1.31436i
\(269\) 4.08416 7.07397i 0.249016 0.431308i −0.714237 0.699904i \(-0.753226\pi\)
0.963253 + 0.268596i \(0.0865596\pi\)
\(270\) 0.592914 1.02696i 0.0360836 0.0624986i
\(271\) 0.106159 + 0.183872i 0.00644867 + 0.0111694i 0.869232 0.494405i \(-0.164614\pi\)
−0.862783 + 0.505574i \(0.831281\pi\)
\(272\) −8.60497 −0.521753
\(273\) 0.684846 + 0.0584481i 0.0414488 + 0.00353744i
\(274\) 1.81695 0.109766
\(275\) −23.5783 40.8387i −1.42182 2.46267i
\(276\) −0.443434 + 0.768049i −0.0266916 + 0.0462311i
\(277\) −11.4875 + 19.8969i −0.690215 + 1.19549i 0.281552 + 0.959546i \(0.409151\pi\)
−0.971767 + 0.235942i \(0.924182\pi\)
\(278\) −0.391313 0.677773i −0.0234694 0.0406501i
\(279\) −16.4374 −0.984081
\(280\) 4.61174 6.61617i 0.275604 0.395392i
\(281\) −0.345228 −0.0205946 −0.0102973 0.999947i \(-0.503278\pi\)
−0.0102973 + 0.999947i \(0.503278\pi\)
\(282\) −0.0901057 0.156068i −0.00536572 0.00929369i
\(283\) 14.4857 25.0900i 0.861087 1.49145i −0.00979277 0.999952i \(-0.503117\pi\)
0.870880 0.491495i \(-0.163549\pi\)
\(284\) 9.36592 16.2222i 0.555765 0.962613i
\(285\) −0.913167 1.58165i −0.0540913 0.0936889i
\(286\) −0.881681 −0.0521349
\(287\) −9.11594 19.4411i −0.538097 1.14757i
\(288\) 6.71029 0.395408
\(289\) 5.89759 + 10.2149i 0.346917 + 0.600878i
\(290\) 0.635195 1.10019i 0.0372999 0.0646054i
\(291\) −1.14483 + 1.98290i −0.0671109 + 0.116240i
\(292\) 1.05937 + 1.83487i 0.0619947 + 0.107378i
\(293\) 31.5427 1.84274 0.921372 0.388682i \(-0.127070\pi\)
0.921372 + 0.388682i \(0.127070\pi\)
\(294\) −0.227545 + 0.273533i −0.0132707 + 0.0159528i
\(295\) 17.7210 1.03175
\(296\) −2.76881 4.79572i −0.160934 0.278746i
\(297\) −3.47253 + 6.01460i −0.201497 + 0.349002i
\(298\) −1.48355 + 2.56958i −0.0859398 + 0.148852i
\(299\) −0.870106 1.50707i −0.0503195 0.0871560i
\(300\) 5.33311 0.307907
\(301\) 7.65325 + 16.3217i 0.441126 + 0.940766i
\(302\) −1.00598 −0.0578879
\(303\) −1.85971 3.22111i −0.106838 0.185048i
\(304\) 3.37137 5.83939i 0.193361 0.334912i
\(305\) −14.8348 + 25.6945i −0.849435 + 1.47127i
\(306\) 0.654495 + 1.13362i 0.0374150 + 0.0648047i
\(307\) −18.1941 −1.03839 −0.519197 0.854655i \(-0.673769\pi\)
−0.519197 + 0.854655i \(0.673769\pi\)
\(308\) −13.3743 + 19.1873i −0.762073 + 1.09330i
\(309\) 1.94637 0.110725
\(310\) 2.15639 + 3.73498i 0.122475 + 0.212132i
\(311\) 0.188312 0.326165i 0.0106782 0.0184951i −0.860637 0.509219i \(-0.829934\pi\)
0.871315 + 0.490724i \(0.163268\pi\)
\(312\) 0.100686 0.174393i 0.00570020 0.00987303i
\(313\) −5.49415 9.51615i −0.310548 0.537884i 0.667933 0.744221i \(-0.267179\pi\)
−0.978481 + 0.206337i \(0.933846\pi\)
\(314\) 2.09961 0.118488
\(315\) 30.4006 + 2.59454i 1.71288 + 0.146186i
\(316\) −1.55309 −0.0873680
\(317\) −13.0903 22.6731i −0.735225 1.27345i −0.954625 0.297812i \(-0.903743\pi\)
0.219400 0.975635i \(-0.429590\pi\)
\(318\) −0.0836053 + 0.144809i −0.00468835 + 0.00812046i
\(319\) −3.72016 + 6.44350i −0.208289 + 0.360767i
\(320\) 13.9522 + 24.1660i 0.779954 + 1.35092i
\(321\) −2.85206 −0.159186
\(322\) 0.897571 + 0.0766031i 0.0500197 + 0.00426892i
\(323\) 4.07844 0.226930
\(324\) 8.23642 + 14.2659i 0.457579 + 0.792550i
\(325\) −5.23232 + 9.06264i −0.290237 + 0.502705i
\(326\) 0.232087 0.401986i 0.0128541 0.0222639i
\(327\) −1.61670 2.80020i −0.0894037 0.154852i
\(328\) −6.29079 −0.347351
\(329\) 5.36397 7.69534i 0.295725 0.424258i
\(330\) 0.900743 0.0495843
\(331\) 17.0466 + 29.5256i 0.936967 + 1.62287i 0.771089 + 0.636728i \(0.219712\pi\)
0.165878 + 0.986146i \(0.446954\pi\)
\(332\) −7.00964 + 12.1411i −0.384704 + 0.666327i
\(333\) 10.4750 18.1433i 0.574028 0.994246i
\(334\) 1.18161 + 2.04660i 0.0646546 + 0.111985i
\(335\) −49.8062 −2.72120
\(336\) −1.10063 2.34725i −0.0600440 0.128053i
\(337\) 14.7532 0.803657 0.401829 0.915715i \(-0.368375\pi\)
0.401829 + 0.915715i \(0.368375\pi\)
\(338\) 0.0978281 + 0.169443i 0.00532115 + 0.00921650i
\(339\) −0.214468 + 0.371470i −0.0116483 + 0.0201755i
\(340\) −8.79994 + 15.2419i −0.477244 + 0.826610i
\(341\) −12.6294 21.8747i −0.683918 1.18458i
\(342\) −1.02571 −0.0554639
\(343\) −17.9194 4.67910i −0.967558 0.252648i
\(344\) 5.28141 0.284754
\(345\) 0.888918 + 1.53965i 0.0478577 + 0.0828920i
\(346\) −1.89881 + 3.28884i −0.102081 + 0.176809i
\(347\) −14.9733 + 25.9345i −0.803809 + 1.39224i 0.113284 + 0.993563i \(0.463863\pi\)
−0.917092 + 0.398675i \(0.869470\pi\)
\(348\) −0.420727 0.728720i −0.0225533 0.0390635i
\(349\) −13.4793 −0.721532 −0.360766 0.932656i \(-0.617485\pi\)
−0.360766 + 0.932656i \(0.617485\pi\)
\(350\) −2.29981 4.90468i −0.122930 0.262166i
\(351\) 1.54120 0.0822630
\(352\) 5.15572 + 8.92997i 0.274801 + 0.475969i
\(353\) −0.0817659 + 0.141623i −0.00435196 + 0.00753781i −0.868193 0.496226i \(-0.834719\pi\)
0.863841 + 0.503764i \(0.168052\pi\)
\(354\) −0.114525 + 0.198364i −0.00608695 + 0.0105429i
\(355\) −18.7752 32.5195i −0.996482 1.72596i
\(356\) 22.1000 1.17130
\(357\) 0.896686 1.28642i 0.0474577 0.0680845i
\(358\) −2.86527 −0.151434
\(359\) −4.46065 7.72607i −0.235424 0.407766i 0.723972 0.689830i \(-0.242315\pi\)
−0.959396 + 0.282063i \(0.908981\pi\)
\(360\) 4.46948 7.74136i 0.235562 0.408006i
\(361\) 7.90209 13.6868i 0.415900 0.720359i
\(362\) −0.924111 1.60061i −0.0485702 0.0841261i
\(363\) −2.41772 −0.126898
\(364\) 5.17142 + 0.441354i 0.271056 + 0.0231332i
\(365\) 4.24726 0.222312
\(366\) −0.191745 0.332112i −0.0100227 0.0173598i
\(367\) −18.3276 + 31.7443i −0.956693 + 1.65704i −0.226248 + 0.974070i \(0.572646\pi\)
−0.730445 + 0.682971i \(0.760687\pi\)
\(368\) −3.28185 + 5.68432i −0.171078 + 0.296316i
\(369\) −11.8997 20.6110i −0.619476 1.07296i
\(370\) −5.49679 −0.285765
\(371\) −8.67208 0.740117i −0.450232 0.0384250i
\(372\) 2.85660 0.148108
\(373\) −13.5637 23.4930i −0.702302 1.21642i −0.967656 0.252271i \(-0.918822\pi\)
0.265355 0.964151i \(-0.414511\pi\)
\(374\) −1.00574 + 1.74199i −0.0520054 + 0.0900761i
\(375\) 2.79139 4.83483i 0.144147 0.249670i
\(376\) −1.37409 2.38000i −0.0708634 0.122739i
\(377\) 1.65110 0.0850360
\(378\) −0.456215 + 0.654502i −0.0234652 + 0.0336640i
\(379\) −15.8943 −0.816434 −0.408217 0.912885i \(-0.633849\pi\)
−0.408217 + 0.912885i \(0.633849\pi\)
\(380\) −6.89552 11.9434i −0.353733 0.612683i
\(381\) −0.583611 + 1.01084i −0.0298993 + 0.0517871i
\(382\) 1.22811 2.12715i 0.0628355 0.108834i
\(383\) −0.575394 0.996611i −0.0294013 0.0509245i 0.850950 0.525246i \(-0.176027\pi\)
−0.880352 + 0.474322i \(0.842693\pi\)
\(384\) −1.54959 −0.0790774
\(385\) 19.9049 + 42.4502i 1.01445 + 2.16346i
\(386\) 1.83302 0.0932985
\(387\) 9.99038 + 17.3038i 0.507839 + 0.879604i
\(388\) −8.64484 + 14.9733i −0.438875 + 0.760154i
\(389\) 7.15651 12.3954i 0.362850 0.628474i −0.625579 0.780161i \(-0.715137\pi\)
0.988429 + 0.151687i \(0.0484705\pi\)
\(390\) −0.0999432 0.173107i −0.00506082 0.00876560i
\(391\) −3.97013 −0.200778
\(392\) −3.47001 + 4.17132i −0.175262 + 0.210684i
\(393\) 3.28807 0.165861
\(394\) −0.745721 1.29163i −0.0375689 0.0650712i
\(395\) −1.55668 + 2.69625i −0.0783251 + 0.135663i
\(396\) −12.9618 + 22.4504i −0.651353 + 1.12818i
\(397\) 12.9588 + 22.4453i 0.650383 + 1.12650i 0.983030 + 0.183445i \(0.0587248\pi\)
−0.332647 + 0.943051i \(0.607942\pi\)
\(398\) −2.64701 −0.132682
\(399\) 0.521656 + 1.11251i 0.0261154 + 0.0556950i
\(400\) 39.4703 1.97351
\(401\) 2.14816 + 3.72072i 0.107274 + 0.185804i 0.914665 0.404213i \(-0.132455\pi\)
−0.807391 + 0.590017i \(0.799121\pi\)
\(402\) 0.321882 0.557517i 0.0160540 0.0278064i
\(403\) −2.80262 + 4.85427i −0.139608 + 0.241809i
\(404\) −14.0431 24.3233i −0.698669 1.21013i
\(405\) 33.0219 1.64087
\(406\) −0.488748 + 0.701175i −0.0242562 + 0.0347987i
\(407\) 32.1931 1.59575
\(408\) −0.229705 0.397861i −0.0113721 0.0196970i
\(409\) 12.3536 21.3970i 0.610844 1.05801i −0.380255 0.924882i \(-0.624164\pi\)
0.991098 0.133131i \(-0.0425030\pi\)
\(410\) −3.12221 + 5.40782i −0.154195 + 0.267073i
\(411\) −1.20625 2.08929i −0.0595000 0.103057i
\(412\) 14.6975 0.724093
\(413\) −11.8793 1.01384i −0.584542 0.0498876i
\(414\) 0.998471 0.0490722
\(415\) 14.0517 + 24.3383i 0.689771 + 1.19472i
\(416\) 1.14412 1.98168i 0.0560951 0.0971596i
\(417\) −0.519577 + 0.899934i −0.0254438 + 0.0440699i
\(418\) −0.788083 1.36500i −0.0385464 0.0667643i
\(419\) −24.9293 −1.21787 −0.608937 0.793218i \(-0.708404\pi\)
−0.608937 + 0.793218i \(0.708404\pi\)
\(420\) −5.28323 0.450896i −0.257795 0.0220015i
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) −1.54563 2.67712i −0.0752402 0.130320i
\(423\) 5.19850 9.00407i 0.252760 0.437793i
\(424\) −1.27496 + 2.20830i −0.0619177 + 0.107245i
\(425\) 11.9371 + 20.6756i 0.579032 + 1.00291i
\(426\) 0.485352 0.0235154
\(427\) 11.4145 16.3757i 0.552388 0.792475i
\(428\) −21.5365 −1.04101
\(429\) 0.585339 + 1.01384i 0.0282604 + 0.0489485i
\(430\) 2.62124 4.54011i 0.126407 0.218944i
\(431\) 2.84426 4.92639i 0.137003 0.237296i −0.789358 0.613933i \(-0.789586\pi\)
0.926361 + 0.376637i \(0.122920\pi\)
\(432\) −2.90653 5.03425i −0.139840 0.242211i
\(433\) 12.2598 0.589169 0.294584 0.955625i \(-0.404819\pi\)
0.294584 + 0.955625i \(0.404819\pi\)
\(434\) −1.23186 2.62712i −0.0591311 0.126106i
\(435\) −1.68680 −0.0808758
\(436\) −12.2080 21.1450i −0.584659 1.01266i
\(437\) 1.55547 2.69416i 0.0744084 0.128879i
\(438\) −0.0274487 + 0.0475426i −0.00131155 + 0.00227167i
\(439\) −2.51158 4.35019i −0.119871 0.207623i 0.799845 0.600206i \(-0.204915\pi\)
−0.919717 + 0.392583i \(0.871582\pi\)
\(440\) 13.7361 0.654845
\(441\) −20.2307 3.47851i −0.963367 0.165643i
\(442\) 0.446372 0.0212317
\(443\) −0.289401 0.501258i −0.0137499 0.0238155i 0.859069 0.511860i \(-0.171044\pi\)
−0.872818 + 0.488045i \(0.837710\pi\)
\(444\) −1.82042 + 3.15307i −0.0863935 + 0.149638i
\(445\) 22.1511 38.3668i 1.05006 1.81876i
\(446\) 2.19856 + 3.80801i 0.104105 + 0.180315i
\(447\) 3.93966 0.186339
\(448\) −7.97036 16.9980i −0.376564 0.803078i
\(449\) −7.36359 −0.347509 −0.173755 0.984789i \(-0.555590\pi\)
−0.173755 + 0.984789i \(0.555590\pi\)
\(450\) −3.00212 5.19982i −0.141521 0.245122i
\(451\) 18.2859 31.6720i 0.861048 1.49138i
\(452\) −1.61950 + 2.80505i −0.0761748 + 0.131939i
\(453\) 0.667862 + 1.15677i 0.0313789 + 0.0543499i
\(454\) 1.80052 0.0845028
\(455\) 5.94959 8.53550i 0.278921 0.400150i
\(456\) 0.359988 0.0168580
\(457\) −3.95912 6.85739i −0.185200 0.320775i 0.758444 0.651738i \(-0.225960\pi\)
−0.943644 + 0.330963i \(0.892627\pi\)
\(458\) 1.49601 2.59117i 0.0699040 0.121077i
\(459\) 1.75805 3.04503i 0.0820588 0.142130i
\(460\) 6.71241 + 11.6262i 0.312968 + 0.542076i
\(461\) −9.53600 −0.444136 −0.222068 0.975031i \(-0.571281\pi\)
−0.222068 + 0.975031i \(0.571281\pi\)
\(462\) −0.603816 0.0515325i −0.0280920 0.00239751i
\(463\) 2.16049 0.100406 0.0502032 0.998739i \(-0.484013\pi\)
0.0502032 + 0.998739i \(0.484013\pi\)
\(464\) −3.11379 5.39325i −0.144554 0.250375i
\(465\) 2.86321 4.95923i 0.132778 0.229979i
\(466\) −0.788083 + 1.36500i −0.0365072 + 0.0632324i
\(467\) 4.05950 + 7.03126i 0.187851 + 0.325368i 0.944534 0.328415i \(-0.106514\pi\)
−0.756682 + 0.653783i \(0.773181\pi\)
\(468\) 5.75276 0.265921
\(469\) 33.3877 + 2.84947i 1.54170 + 0.131576i
\(470\) −2.72792 −0.125830
\(471\) −1.39391 2.41433i −0.0642281 0.111246i
\(472\) −1.74649 + 3.02500i −0.0803885 + 0.139237i
\(473\) −15.3518 + 26.5901i −0.705878 + 1.22262i
\(474\) −0.0201207 0.0348501i −0.000924174 0.00160072i
\(475\) −18.7074 −0.858357
\(476\) 6.77107 9.71402i 0.310352 0.445241i
\(477\) −9.64694 −0.441703
\(478\) 2.12540 + 3.68129i 0.0972133 + 0.168378i
\(479\) −7.27663 + 12.6035i −0.332478 + 0.575868i −0.982997 0.183621i \(-0.941218\pi\)
0.650519 + 0.759490i \(0.274551\pi\)
\(480\) −1.16886 + 2.02452i −0.0533508 + 0.0924063i
\(481\) −3.57204 6.18695i −0.162871 0.282101i
\(482\) 4.01056 0.182676
\(483\) −0.507803 1.08297i −0.0231058 0.0492766i
\(484\) −18.2567 −0.829852
\(485\) 17.3297 + 30.0158i 0.786899 + 1.36295i
\(486\) −0.665728 + 1.15307i −0.0301980 + 0.0523045i
\(487\) 16.6295 28.8031i 0.753554 1.30519i −0.192536 0.981290i \(-0.561671\pi\)
0.946090 0.323904i \(-0.104995\pi\)
\(488\) −2.92407 5.06464i −0.132366 0.229265i
\(489\) −0.616320 −0.0278710
\(490\) 1.86362 + 5.05324i 0.0841899 + 0.228282i
\(491\) −22.5563 −1.01795 −0.508977 0.860780i \(-0.669976\pi\)
−0.508977 + 0.860780i \(0.669976\pi\)
\(492\) 2.06802 + 3.58191i 0.0932335 + 0.161485i
\(493\) 1.88342 3.26218i 0.0848249 0.146921i
\(494\) −0.174886 + 0.302911i −0.00786848 + 0.0136286i
\(495\) 25.9835 + 45.0047i 1.16787 + 2.02281i
\(496\) 21.1417 0.949290
\(497\) 10.7255 + 22.8737i 0.481104 + 1.02603i
\(498\) −0.363248 −0.0162775
\(499\) 5.69271 + 9.86007i 0.254841 + 0.441397i 0.964852 0.262793i \(-0.0846436\pi\)
−0.710011 + 0.704190i \(0.751310\pi\)
\(500\) 21.0784 36.5089i 0.942655 1.63273i
\(501\) 1.56891 2.71743i 0.0700938 0.121406i
\(502\) 0.255205 + 0.442028i 0.0113904 + 0.0197287i
\(503\) −8.81825 −0.393186 −0.196593 0.980485i \(-0.562988\pi\)
−0.196593 + 0.980485i \(0.562988\pi\)
\(504\) −3.43902 + 4.93374i −0.153186 + 0.219766i
\(505\) −56.3022 −2.50541
\(506\) 0.767156 + 1.32875i 0.0341042 + 0.0590702i
\(507\) 0.129894 0.224983i 0.00576880 0.00999186i
\(508\) −4.40697 + 7.63310i −0.195528 + 0.338664i
\(509\) −9.64188 16.7002i −0.427369 0.740225i 0.569269 0.822151i \(-0.307226\pi\)
−0.996638 + 0.0819263i \(0.973893\pi\)
\(510\) −0.456023 −0.0201930
\(511\) −2.84716 0.242991i −0.125951 0.0107493i
\(512\) −14.4780 −0.639844
\(513\) 1.37759 + 2.38605i 0.0608219 + 0.105347i
\(514\) −0.880136 + 1.52444i −0.0388211 + 0.0672402i
\(515\) 14.7315 25.5156i 0.649146 1.12435i
\(516\) −1.73620 3.00718i −0.0764318 0.132384i
\(517\) 15.9767 0.702653
\(518\) 3.68479 + 0.314478i 0.161900 + 0.0138174i
\(519\) 5.04241 0.221337
\(520\) −1.52411 2.63984i −0.0668368 0.115765i
\(521\) −12.5584 + 21.7518i −0.550193 + 0.952963i 0.448067 + 0.894000i \(0.352113\pi\)
−0.998260 + 0.0589629i \(0.981221\pi\)
\(522\) −0.473671 + 0.820422i −0.0207320 + 0.0359089i
\(523\) 14.9824 + 25.9503i 0.655134 + 1.13473i 0.981860 + 0.189606i \(0.0607212\pi\)
−0.326726 + 0.945119i \(0.605946\pi\)
\(524\) 24.8289 1.08466
\(525\) −4.11303 + 5.90069i −0.179507 + 0.257527i
\(526\) −0.280556 −0.0122328
\(527\) 6.39391 + 11.0746i 0.278523 + 0.482416i
\(528\) 2.20777 3.82397i 0.0960808 0.166417i
\(529\) 9.98583 17.2960i 0.434167 0.751999i
\(530\) 1.26556 + 2.19202i 0.0549726 + 0.0952153i
\(531\) −13.2147 −0.573469
\(532\) 3.93913 + 8.40078i 0.170783 + 0.364220i
\(533\) −8.11574 −0.351532
\(534\) 0.286311 + 0.495906i 0.0123899 + 0.0214599i
\(535\) −21.5863 + 37.3886i −0.933257 + 1.61645i
\(536\) 4.90864 8.50201i 0.212021 0.367231i
\(537\) 1.90222 + 3.29474i 0.0820869 + 0.142179i
\(538\) 1.59818 0.0689026
\(539\) −10.9147 29.5954i −0.470130 1.27476i
\(540\) −11.8895 −0.511644
\(541\) −2.54987 4.41650i −0.109627 0.189880i 0.805992 0.591926i \(-0.201632\pi\)
−0.915619 + 0.402046i \(0.868299\pi\)
\(542\) −0.0207706 + 0.0359757i −0.000892173 + 0.00154529i
\(543\) −1.22702 + 2.12525i −0.0526563 + 0.0912034i
\(544\) −2.61021 4.52101i −0.111912 0.193837i
\(545\) −48.9451 −2.09658
\(546\) 0.0570936 + 0.121760i 0.00244338 + 0.00521087i
\(547\) 2.92025 0.124861 0.0624305 0.998049i \(-0.480115\pi\)
0.0624305 + 0.998049i \(0.480115\pi\)
\(548\) −9.10867 15.7767i −0.389103 0.673946i
\(549\) 11.0624 19.1607i 0.472132 0.817757i
\(550\) 4.61323 7.99035i 0.196709 0.340710i
\(551\) 1.47582 + 2.55620i 0.0628722 + 0.108898i
\(552\) −0.350428 −0.0149152
\(553\) 1.19778 1.71838i 0.0509348 0.0730728i
\(554\) −4.49519 −0.190982
\(555\) 3.64927 + 6.32071i 0.154903 + 0.268299i
\(556\) −3.92344 + 6.79559i −0.166391 + 0.288197i
\(557\) −12.9937 + 22.5058i −0.550561 + 0.953600i 0.447673 + 0.894197i \(0.352253\pi\)
−0.998234 + 0.0594024i \(0.981080\pi\)
\(558\) −1.60804 2.78521i −0.0680738 0.117907i
\(559\) 6.81353 0.288182
\(560\) −39.1011 3.33708i −1.65232 0.141017i
\(561\) 2.67079 0.112761
\(562\) −0.0337730 0.0584965i −0.00142463 0.00246753i
\(563\) −1.82534 + 3.16159i −0.0769291 + 0.133245i −0.901924 0.431896i \(-0.857845\pi\)
0.824994 + 0.565141i \(0.191178\pi\)
\(564\) −0.903431 + 1.56479i −0.0380413 + 0.0658895i
\(565\) 3.24649 + 5.62308i 0.136581 + 0.236565i
\(566\) 5.66845 0.238263
\(567\) −22.1363 1.88922i −0.929637 0.0793397i
\(568\) 7.40152 0.310561
\(569\) 12.6766 + 21.9566i 0.531432 + 0.920468i 0.999327 + 0.0366835i \(0.0116793\pi\)
−0.467895 + 0.883784i \(0.654987\pi\)
\(570\) 0.178667 0.309460i 0.00748353 0.0129619i
\(571\) −13.8626 + 24.0108i −0.580133 + 1.00482i 0.415330 + 0.909671i \(0.363666\pi\)
−0.995463 + 0.0951493i \(0.969667\pi\)
\(572\) 4.42002 + 7.65570i 0.184810 + 0.320101i
\(573\) −3.26132 −0.136244
\(574\) 2.40237 3.44652i 0.100273 0.143855i
\(575\) 18.2107 0.759438
\(576\) −10.4043 18.0208i −0.433513 0.750867i
\(577\) −19.7877 + 34.2733i −0.823773 + 1.42682i 0.0790809 + 0.996868i \(0.474801\pi\)
−0.902854 + 0.429948i \(0.858532\pi\)
\(578\) −1.15390 + 1.99861i −0.0479959 + 0.0831313i
\(579\) −1.21693 2.10778i −0.0505737 0.0875963i
\(580\) −12.7374 −0.528891
\(581\) −8.02717 17.1191i −0.333023 0.710221i
\(582\) −0.447985 −0.0185696
\(583\) −7.41204 12.8380i −0.306975 0.531697i
\(584\) −0.418588 + 0.725015i −0.0173213 + 0.0300013i
\(585\) 5.76606 9.98711i 0.238397 0.412916i
\(586\) 3.08576 + 5.34470i 0.127472 + 0.220787i
\(587\) −8.24177 −0.340174 −0.170087 0.985429i \(-0.554405\pi\)
−0.170087 + 0.985429i \(0.554405\pi\)
\(588\) 3.51583 + 0.604519i 0.144990 + 0.0249299i
\(589\) −10.0204 −0.412882
\(590\) 1.73361 + 3.00270i 0.0713716 + 0.123619i
\(591\) −0.990153 + 1.71500i −0.0407295 + 0.0705455i
\(592\) −13.4729 + 23.3358i −0.553734 + 0.959095i
\(593\) 5.96149 + 10.3256i 0.244809 + 0.424021i 0.962078 0.272775i \(-0.0879415\pi\)
−0.717269 + 0.696796i \(0.754608\pi\)
\(594\) −1.35884 −0.0557540
\(595\) −10.0774 21.4914i −0.413131 0.881063i
\(596\) 29.7492 1.21857
\(597\) 1.75732 + 3.04377i 0.0719224 + 0.124573i
\(598\) 0.170242 0.294867i 0.00696170 0.0120580i
\(599\) 17.8079 30.8442i 0.727611 1.26026i −0.230279 0.973125i \(-0.573964\pi\)
0.957890 0.287135i \(-0.0927027\pi\)
\(600\) 1.05364 + 1.82495i 0.0430146 + 0.0745034i
\(601\) 38.9252 1.58779 0.793896 0.608054i \(-0.208050\pi\)
0.793896 + 0.608054i \(0.208050\pi\)
\(602\) −2.01690 + 2.89351i −0.0822026 + 0.117931i
\(603\) 37.1410 1.51250
\(604\) 5.04317 + 8.73503i 0.205204 + 0.355423i
\(605\) −18.2990 + 31.6947i −0.743959 + 1.28857i
\(606\) 0.363864 0.630231i 0.0147810 0.0256014i
\(607\) 6.84828 + 11.8616i 0.277963 + 0.481446i 0.970878 0.239573i \(-0.0770074\pi\)
−0.692915 + 0.721019i \(0.743674\pi\)
\(608\) 4.09065 0.165898
\(609\) 1.13075 + 0.0965037i 0.0458203 + 0.00391053i
\(610\) −5.80502 −0.235039
\(611\) −1.77271 3.07043i −0.0717163 0.124216i
\(612\) 6.56220 11.3661i 0.265261 0.459446i
\(613\) −1.58056 + 2.73761i −0.0638382 + 0.110571i −0.896178 0.443695i \(-0.853667\pi\)
0.832340 + 0.554266i \(0.187001\pi\)
\(614\) −1.77990 3.08287i −0.0718308 0.124415i
\(615\) 8.29120 0.334334
\(616\) −9.20806 0.785860i −0.371003 0.0316632i
\(617\) 20.9297 0.842597 0.421299 0.906922i \(-0.361574\pi\)
0.421299 + 0.906922i \(0.361574\pi\)
\(618\) 0.190410 + 0.329800i 0.00765941 + 0.0132665i
\(619\) −15.4772 + 26.8073i −0.622082 + 1.07748i 0.367016 + 0.930215i \(0.380379\pi\)
−0.989097 + 0.147262i \(0.952954\pi\)
\(620\) 21.6207 37.4482i 0.868309 1.50396i
\(621\) −1.34100 2.32269i −0.0538127 0.0932063i
\(622\) 0.0736887 0.00295465
\(623\) −17.0440 + 24.4520i −0.682855 + 0.979648i
\(624\) −0.979864 −0.0392260
\(625\) −16.0927 27.8734i −0.643708 1.11494i
\(626\) 1.07496 1.86189i 0.0429642 0.0744162i
\(627\) −1.04640 + 1.81242i −0.0417892 + 0.0723810i
\(628\) −10.5257 18.2311i −0.420023 0.727501i
\(629\) −16.2986 −0.649866
\(630\) 2.53441 + 5.40500i 0.100973 + 0.215340i
\(631\) −15.1218 −0.601988 −0.300994 0.953626i \(-0.597318\pi\)
−0.300994 + 0.953626i \(0.597318\pi\)
\(632\) −0.306836 0.531456i −0.0122053 0.0211402i
\(633\) −2.05226 + 3.55462i −0.0815700 + 0.141283i
\(634\) 2.56120 4.43613i 0.101718 0.176181i
\(635\) 8.83433 + 15.3015i 0.350580 + 0.607222i
\(636\) 1.67651 0.0664780
\(637\) −4.47665 + 5.38141i −0.177371 + 0.213219i
\(638\) −1.45574 −0.0576335
\(639\) 14.0008 + 24.2501i 0.553864 + 0.959320i
\(640\) −11.7284 + 20.3141i −0.463605 + 0.802987i
\(641\) 23.6207 40.9123i 0.932962 1.61594i 0.154733 0.987956i \(-0.450548\pi\)
0.778229 0.627981i \(-0.216118\pi\)
\(642\) −0.279011 0.483262i −0.0110117 0.0190728i
\(643\) 39.9249 1.57448 0.787241 0.616645i \(-0.211509\pi\)
0.787241 + 0.616645i \(0.211509\pi\)
\(644\) −3.83453 8.17770i −0.151102 0.322247i
\(645\) −6.96085 −0.274083
\(646\) 0.398986 + 0.691064i 0.0156979 + 0.0271895i
\(647\) 14.9139 25.8317i 0.586327 1.01555i −0.408382 0.912811i \(-0.633907\pi\)
0.994709 0.102736i \(-0.0327598\pi\)
\(648\) −3.25446 + 5.63689i −0.127847 + 0.221438i
\(649\) −10.1533 17.5859i −0.398550 0.690309i
\(650\) −2.04747 −0.0803084
\(651\) −2.20308 + 3.16062i −0.0863456 + 0.123875i
\(652\) −4.65397 −0.182263
\(653\) −12.5774 21.7848i −0.492194 0.852504i 0.507766 0.861495i \(-0.330471\pi\)
−0.999960 + 0.00899079i \(0.997138\pi\)
\(654\) 0.316317 0.547878i 0.0123690 0.0214237i
\(655\) 24.8863 43.1044i 0.972390 1.68423i
\(656\) 15.3054 + 26.5097i 0.597574 + 1.03503i
\(657\) −3.16722 −0.123565
\(658\) 1.82867 + 0.156068i 0.0712890 + 0.00608415i
\(659\) 17.3155 0.674517 0.337258 0.941412i \(-0.390500\pi\)
0.337258 + 0.941412i \(0.390500\pi\)
\(660\) −4.51558 7.82122i −0.175769 0.304441i
\(661\) 4.60037 7.96808i 0.178934 0.309922i −0.762582 0.646892i \(-0.776069\pi\)
0.941516 + 0.336969i \(0.109402\pi\)
\(662\) −3.33528 + 5.77687i −0.129629 + 0.224524i
\(663\) −0.296342 0.513279i −0.0115090 0.0199341i
\(664\) −5.53945 −0.214972
\(665\) 18.5325 + 1.58165i 0.718659 + 0.0613338i
\(666\) 4.09901 0.158833
\(667\) −1.43663 2.48832i −0.0556266 0.0963482i
\(668\) 11.8472 20.5199i 0.458382 0.793940i
\(669\) 2.91920 5.05620i 0.112863 0.195484i
\(670\) −4.87245 8.43933i −0.188239 0.326040i
\(671\) 33.9984 1.31249
\(672\) 0.899372 1.29027i 0.0346940 0.0497733i
\(673\) 17.3609 0.669212 0.334606 0.942358i \(-0.391397\pi\)
0.334606 + 0.942358i \(0.391397\pi\)
\(674\) 1.44328 + 2.49983i 0.0555930 + 0.0962898i
\(675\) −8.06403 + 13.9673i −0.310385 + 0.537602i
\(676\) 0.980859 1.69890i 0.0377254 0.0653422i
\(677\) −24.9913 43.2861i −0.960492 1.66362i −0.721267 0.692657i \(-0.756440\pi\)
−0.239225 0.970964i \(-0.576893\pi\)
\(678\) −0.0839242 −0.00322309
\(679\) −9.89974 21.1126i −0.379917 0.810229i
\(680\) −6.95425 −0.266683
\(681\) −1.19535 2.07041i −0.0458059 0.0793382i
\(682\) 2.47101 4.27992i 0.0946200 0.163887i
\(683\) −16.8077 + 29.1117i −0.643128 + 1.11393i 0.341603 + 0.939844i \(0.389030\pi\)
−0.984731 + 0.174086i \(0.944303\pi\)
\(684\) 5.14205 + 8.90630i 0.196611 + 0.340541i
\(685\) −36.5189 −1.39532
\(686\) −0.960183 3.49408i −0.0366599 0.133404i
\(687\) −3.97274 −0.151570
\(688\) −12.8496 22.2561i −0.489885 0.848506i
\(689\) −1.64483 + 2.84892i −0.0626629 + 0.108535i
\(690\) −0.173922 + 0.301242i −0.00662111 + 0.0114681i
\(691\) 7.56545 + 13.1038i 0.287803 + 0.498490i 0.973285 0.229600i \(-0.0737417\pi\)
−0.685482 + 0.728090i \(0.740408\pi\)
\(692\) 38.0764 1.44745
\(693\) −14.8433 31.6555i −0.563851 1.20249i
\(694\) −5.85924 −0.222414
\(695\) 7.86502 + 13.6226i 0.298337 + 0.516735i
\(696\) 0.166242 0.287940i 0.00630139 0.0109143i
\(697\) −9.25766 + 16.0347i −0.350659 + 0.607359i
\(698\) −1.31866 2.28398i −0.0499119 0.0864500i
\(699\) 2.09280 0.0791570
\(700\) −31.0583 + 44.5574i −1.17390 + 1.68411i
\(701\) 2.02467 0.0764705 0.0382353 0.999269i \(-0.487826\pi\)
0.0382353 + 0.999269i \(0.487826\pi\)
\(702\) 0.150772 + 0.261146i 0.00569054 + 0.00985630i
\(703\) 6.38567 11.0603i 0.240840 0.417147i
\(704\) 15.9879 27.6919i 0.602567 1.04368i
\(705\) 1.81104 + 3.13681i 0.0682077 + 0.118139i
\(706\) −0.0319960 −0.00120419
\(707\) 37.7423 + 3.22111i 1.41945 + 0.121142i
\(708\) 2.29654 0.0863093
\(709\) 15.2276 + 26.3751i 0.571886 + 0.990536i 0.996372 + 0.0851015i \(0.0271215\pi\)
−0.424486 + 0.905434i \(0.639545\pi\)
\(710\) 3.67348 6.36265i 0.137863 0.238786i
\(711\) 1.16083 2.01062i 0.0435346 0.0754041i
\(712\) 4.36619 + 7.56246i 0.163630 + 0.283415i
\(713\) 9.75429 0.365301
\(714\) 0.305696 + 0.0260896i 0.0114404 + 0.000976378i
\(715\) 17.7210 0.662727
\(716\) 14.3641 + 24.8793i 0.536811 + 0.929784i
\(717\) 2.82206 4.88795i 0.105392 0.182544i
\(718\) 0.872754 1.51165i 0.0325709 0.0564144i
\(719\) 12.2123 + 21.1523i 0.455442 + 0.788848i 0.998713 0.0507089i \(-0.0161481\pi\)
−0.543272 + 0.839557i \(0.682815\pi\)
\(720\) −43.4966 −1.62102
\(721\) −11.3351 + 16.2617i −0.422139 + 0.605616i
\(722\) 3.09219 0.115079
\(723\) −2.66257 4.61170i −0.0990220 0.171511i
\(724\) −9.26547 + 16.0483i −0.344348 + 0.596429i
\(725\) −8.63908 + 14.9633i −0.320848 + 0.555724i
\(726\) −0.236521 0.409667i −0.00877813 0.0152042i
\(727\) −3.09307 −0.114716 −0.0573578 0.998354i \(-0.518268\pi\)
−0.0573578 + 0.998354i \(0.518268\pi\)
\(728\) 0.870665 + 1.85682i 0.0322690 + 0.0688184i
\(729\) −23.4236 −0.867539
\(730\) 0.415501 + 0.719670i 0.0153784 + 0.0266362i
\(731\) 7.77223 13.4619i 0.287466 0.497906i
\(732\) −1.92250 + 3.32987i −0.0710577 + 0.123076i
\(733\) 4.20713 + 7.28697i 0.155394 + 0.269150i 0.933202 0.359351i \(-0.117002\pi\)
−0.777808 + 0.628501i \(0.783669\pi\)
\(734\) −7.17182 −0.264717
\(735\) 4.57344 5.49776i 0.168694 0.202788i
\(736\) −3.98203 −0.146779
\(737\) 28.5365 + 49.4267i 1.05116 + 1.82066i
\(738\) 2.32826 4.03266i 0.0857044 0.148444i
\(739\) 3.61379 6.25927i 0.132936 0.230251i −0.791871 0.610688i \(-0.790893\pi\)
0.924807 + 0.380437i \(0.124226\pi\)
\(740\) 27.5564 + 47.7291i 1.01299 + 1.75456i
\(741\) 0.464419 0.0170609
\(742\) −0.722966 1.54183i −0.0265409 0.0566024i
\(743\) −53.9092 −1.97774 −0.988869 0.148791i \(-0.952462\pi\)
−0.988869 + 0.148791i \(0.952462\pi\)
\(744\) 0.564366 + 0.977510i 0.0206907 + 0.0358373i
\(745\) 29.8180 51.6463i 1.09245 1.89217i
\(746\) 2.65382 4.59656i 0.0971634 0.168292i
\(747\) −10.4785 18.1493i −0.383388 0.664047i
\(748\) 20.1678 0.737406
\(749\) 16.6095 23.8285i 0.606897 0.870676i
\(750\) 1.09231 0.0398854
\(751\) −14.6221 25.3262i −0.533568 0.924168i −0.999231 0.0392053i \(-0.987517\pi\)
0.465663 0.884962i \(-0.345816\pi\)
\(752\) −6.68628 + 11.5810i −0.243824 + 0.422315i
\(753\) 0.338856 0.586916i 0.0123486 0.0213884i
\(754\) 0.161524 + 0.279768i 0.00588236 + 0.0101885i
\(755\) 20.2193 0.735857
\(756\) 7.97018 + 0.680214i 0.289873 + 0.0247391i
\(757\) −22.0597 −0.801773 −0.400887 0.916128i \(-0.631298\pi\)
−0.400887 + 0.916128i \(0.631298\pi\)
\(758\) −1.55491 2.69318i −0.0564768 0.0978206i
\(759\) 1.01861 1.76429i 0.0369733 0.0640397i
\(760\) 2.72463 4.71920i 0.0988328 0.171183i
\(761\) −8.90805 15.4292i −0.322917 0.559308i 0.658172 0.752868i \(-0.271330\pi\)
−0.981089 + 0.193560i \(0.937997\pi\)
\(762\) −0.228374 −0.00827313
\(763\) 32.8105 + 2.80020i 1.18782 + 0.101374i
\(764\) −24.6269 −0.890971
\(765\) −13.1547 22.7847i −0.475611 0.823782i
\(766\) 0.112579 0.194993i 0.00406766 0.00704539i
\(767\) −2.25314 + 3.90255i −0.0813561 + 0.140913i
\(768\) 1.69182 + 2.93033i 0.0610485 + 0.105739i
\(769\) −11.3069 −0.407738 −0.203869 0.978998i \(-0.565352\pi\)
−0.203869 + 0.978998i \(0.565352\pi\)
\(770\) −5.24564 + 7.52559i −0.189040 + 0.271203i
\(771\) 2.33725 0.0841741
\(772\) −9.18927 15.9163i −0.330729 0.572840i
\(773\) 0.964104 1.66988i 0.0346764 0.0600613i −0.848166 0.529730i \(-0.822293\pi\)
0.882843 + 0.469669i \(0.155627\pi\)
\(774\) −1.95468 + 3.38561i −0.0702595 + 0.121693i
\(775\) −29.3284 50.7982i −1.05351 1.82472i